Appendix A. AAOS Carpal Tunnel Syndrome Diagnosis Guideline Work Group

Michael Warren Keith, MD (Chair)
Professor of Orthopaedic and Biomedical Engineering
Metro Health Medical Center
Case Western Reserve University
Cleveland, OH 44109-1900

Victoria Masear, MD (Co-Chair)
Orthopaedic Specialists of Alabama
48 Medical Park E Dr Ste 255
Birmingham, AL 35235-3411

Peter C. Amadio, MD
Mayo Clinic
200 1st St S W
Rochester, MN 55902-3008

Michael Andary, MD (Physical Medicine and Rehabilitation Representative)
Michigan State University
B401 W Fee Hall (PMR)
East Lansing, MI 48824-1316

Richard W. Barth, MD (BOC Representative)
2021 K St Ste 400
Washington, DC 20006-1003

Kevin Chung, MD
Associate Professor of Plastic Surgery
University of Michigan Medical Center
1500 East Medical Center Drive
2130 Taubman Health Care Center
Ann Arbor, MI 48109-0340

Kent Maupin, MD (Plastic Surgery Representative)
1001 Medical Park Dr SE Ste 211
Grand Rapids, MI 49546-3681

William C. Watters III, MD (Guidelines Oversight Committee Chair)
Bone and Joint Clinic of Houston, P.A.
6624 Fannin #2600
Houston, TX 77030
Appendix B. Levels of evidence

<table>
<thead>
<tr>
<th>Level</th>
<th>Therapeutic Studies</th>
<th>Prognostic Studies</th>
<th>Diagnostic Studies</th>
<th>Economic & Decision Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>• High quality randomized trial with statistically significant difference or no statistically significant difference but narrow confidence intervals
• Systematic Review of Level I RCTs (and study results were homogenous)</td>
<td>• High quality prospective study (all patients were enrolled at the same point in their disease with ≥ 80% follow-up of enrolled patients)
• Systematic review of Level I studies</td>
<td>• Testing of previously developed diagnostic criteria on consecutive patients (with universally applied “gold” standard)
• Systematic review of Level I studies</td>
<td>• Sensible costs and alternatives; values obtained from many studies; with multi-way sensitivity analyses
• Systematic review of Level I studies</td>
</tr>
<tr>
<td>Level II</td>
<td>• Lesser quality RCT (e.g. < 80% follow-up, no blinding, or improper randomization)
• Prospective comparative study
• Systematic review of Level II studies or Level 1 studies with inconsistent results</td>
<td>• Retrospective study
• Untreated controls from an RCT
• Lesser quality prospective study (e.g. patients enrolled at different points in their disease or <80% follow-up.)
• Systematic review of Level II studies</td>
<td>• Development of diagnostic criteria on consecutive patients (with universally applied reference “gold” standard)
• Systematic review of Level II studies</td>
<td>• Sensible costs and alternatives; values obtained from limited studies; with multi-way sensitivity analyses
• Systematic review of Level II studies</td>
</tr>
<tr>
<td>Level III</td>
<td>• Case control study
• Retrospective comparative study
• Systematic review of Level III studies</td>
<td>• Case control study</td>
<td>• Study of non-consecutive patients; without consistently applied reference “gold” standard
• Systematic review of Level III studies</td>
<td>• Analyses based on limited alternatives and costs; and poor estimates
• Systematic review of Level III studies</td>
</tr>
<tr>
<td>Level IV</td>
<td>Case Series</td>
<td>Case series</td>
<td>• Case-control study
• Poor reference standard</td>
<td>• Analyses with no sensitivity analyses</td>
</tr>
</tbody>
</table>
Appendix C. Data Extraction Forms

a. Study and patient characteristics
b. Diagnostic data
c. Diagnostic and outcomes data (1)

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>Signs & Symptoms Diagnostic Tests</th>
<th>Diag. Type</th>
<th>Positive Test (PT)</th>
<th>Positive Surgical Outcome (PSO)</th>
<th>PT/N</th>
<th>PSO/N</th>
<th>Effect Size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Numbness</td>
<td>S</td>
<td>28</td>
<td>22</td>
<td>1.00</td>
<td>0.786</td>
<td>0.214</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Tingling</td>
<td>S</td>
<td>22</td>
<td>25</td>
<td>0.766</td>
<td>0.893</td>
<td>-0.107</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Clumsiness</td>
<td>S</td>
<td>24</td>
<td>10</td>
<td>0.857</td>
<td>0.357</td>
<td>0.500</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Weakness</td>
<td>S</td>
<td>19</td>
<td>12</td>
<td>0.679</td>
<td>0.429</td>
<td>0.250</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Pain (night)</td>
<td>S</td>
<td>20</td>
<td>21</td>
<td>0.714</td>
<td>0.750</td>
<td>-0.036</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Pain (day)</td>
<td>S</td>
<td>18</td>
<td>22</td>
<td>0.643</td>
<td>0.786</td>
<td>-0.143</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Phalani's</td>
<td>C</td>
<td>15</td>
<td>27</td>
<td>0.536</td>
<td>0.964</td>
<td>-0.429</td>
</tr>
<tr>
<td>Pataia</td>
<td>28</td>
<td>Tingli's</td>
<td>C</td>
<td>13</td>
<td>25</td>
<td>0.464</td>
<td>0.893</td>
<td>-0.429</td>
</tr>
<tr>
<td>Pataia</td>
<td>27</td>
<td>Electrodagnostic/NCS (SCV)</td>
<td>E</td>
<td>26</td>
<td>3</td>
<td>0.963</td>
<td>0.111</td>
<td>0.652</td>
</tr>
<tr>
<td>Pataia</td>
<td>27</td>
<td>Electrodagnostic/NCS (MCV)</td>
<td>E</td>
<td>22</td>
<td>9</td>
<td>0.815</td>
<td>0.333</td>
<td>0.481</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>Tactile Perception</td>
<td>C</td>
<td>26</td>
<td>36</td>
<td>0.542</td>
<td>0.750</td>
<td>-0.208</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>Biothesiometry</td>
<td>C</td>
<td>27</td>
<td>36</td>
<td>0.563</td>
<td>0.750</td>
<td>-0.188</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>Electrodagnostic/NCS (SCV)</td>
<td>E</td>
<td>44</td>
<td>13</td>
<td>0.917</td>
<td>0.271</td>
<td>0.646</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>Electrodagnostic/NCS (SDL)</td>
<td>E</td>
<td>37</td>
<td>36</td>
<td>0.771</td>
<td>0.750</td>
<td>0.021</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>Electrodagnostic/NCS (MCV)</td>
<td>E</td>
<td>19</td>
<td>33</td>
<td>0.396</td>
<td>0.688</td>
<td>-0.292</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>Electrodagnostic/NCS (MCV)</td>
<td>E</td>
<td>32</td>
<td>40</td>
<td>0.667</td>
<td>0.833</td>
<td>-0.167</td>
</tr>
<tr>
<td>Holmgren</td>
<td>48</td>
<td>EMG-Denervation</td>
<td>E</td>
<td>26</td>
<td>36</td>
<td>0.542</td>
<td>0.750</td>
<td>-0.208</td>
</tr>
</tbody>
</table>

d. Diagnostic and outcomes data (2)

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>EDX Test</th>
<th>Pre-surgical (mean, sd)</th>
<th>Ref.</th>
<th>Post-surgical (mean, sd)</th>
<th>Month 1-2</th>
<th>Month 3-4</th>
<th>Month 5-6</th>
<th>Month 10-12</th>
<th>>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (1M) mild</td>
<td>30.6 3.5</td>
<td>42.0</td>
<td>37.3 4.2</td>
<td>44.5</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (1M) moderate</td>
<td>30.5 3.6</td>
<td>42.0</td>
<td>35.4 3.7</td>
<td>38.5</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (1M) severe</td>
<td>25.6 4.6</td>
<td>42.0</td>
<td>28.2 5.5</td>
<td>32.4</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (1M)</td>
<td>31.2 4.9</td>
<td>42.0</td>
<td>34.3 8.4</td>
<td>37.9</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (3M) mild</td>
<td>41.6 4.9</td>
<td>44.0</td>
<td>48.2 6.3</td>
<td>49.4</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (3M) moderate</td>
<td>35.7 7.4</td>
<td>44.0</td>
<td>37.0 5.4</td>
<td>42.6</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (3M) severe</td>
<td>27.6 3.4</td>
<td>44.0</td>
<td>34.0 3.6</td>
<td>36.7</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>Sensory NCV (3M)</td>
<td>30.0 7.4</td>
<td>44.0</td>
<td>37.9 9.0</td>
<td>42.1</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>APB distal motor latency (DML) mild</td>
<td>3.5 0.4</td>
<td>4.0</td>
<td>3.7 0.4</td>
<td>3.4 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>APB distal motor latency (DML) moderate</td>
<td>5.0 0.6</td>
<td>4.0</td>
<td>4.3 0.6</td>
<td>3.8 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>APB distal motor latency (DML) severe</td>
<td>7.1 1.0</td>
<td>4.0</td>
<td>5.5 1.3</td>
<td>4.2 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padua(b)</td>
<td>53</td>
<td>APB distal motor latency (DML)</td>
<td>5.1 1.0</td>
<td>4.0</td>
<td>4.3 1.1</td>
<td>3.9 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momelli</td>
<td>104</td>
<td>Amplitude CMAP</td>
<td>7.5 4.5</td>
<td>NR</td>
<td>6.5 4.0</td>
<td>7.0 3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momelli</td>
<td>104</td>
<td>Motor NCV (MVC)</td>
<td>51.4 6.4</td>
<td>NR</td>
<td>51.7 5.1</td>
<td>52.2</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momelli</td>
<td>104</td>
<td>Sensory NCV (3M)</td>
<td>34.5 7.7</td>
<td>43.6</td>
<td>39.4 7.0</td>
<td>42.0</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momelli</td>
<td>104</td>
<td>APB distal motor latency (CMA)</td>
<td>6.0 2.6</td>
<td>4.5</td>
<td>5.5 1.4</td>
<td>5.0 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix D. Bibliography of excluded studies

70

201) Lord RW, Jr. How accurate are the history and physical examination in diagnosing carpal tunnel syndrome (CTS)? J.Fam.Pract. 2000 Sep;49(9):782-3.

82

233) Nakazumi Y, Hamasaki M. Electrophysiological studies and physical examinations in entrapment neuropathy: sensory and motor functions compensation for the central

341) Tetro AM, Evanoff BA, Hollstien SB, Gelberman RH. A new provocative test for
carpal tunnel syndrome. Assessment of wrist flexion and nerve compression. J.Bone

342) Thomas JE, Lambert EH, Cseuz KA. Electrodiagnostic aspects of the carpal tunnel

343) Thomesen JF, Mikkelsen S. Interview data versus questionnaire data in the diagnosis

344) Tilki HE, Stalberg E, Coskun M, Gungor L. Effect of heating on nerve conduction in

345) Trojaborg W, Grewal RP, Weimer LH, Sheriff P. Value of latency measurements to
the small palm muscles compared to other conduction parameters in the carpal tunnel

346) Tuncali D, Barutcu AY, Terzioglu A, Aslan G. Carpal tunnel syndrome: comparison
of intraoperative structural changes with clinical and electrodiagnostic severity.

347) Tuncali D, Barutcu AY, Terzioglu A, Uludag K, Aslan G. The thenar index: an
objective assessment and classification of thenar atrophy based on static hand

348) Ubogu EE, Benatar M. Electrodiagnostic criteria for carpal tunnel syndrome in

349) Uncini A, Lange DJ, Solomon M, Soliven B, Meer J, Lovelace RE. Ring finger
testing in carpal tunnel syndrome: a comparative study of diagnostic utility. Muscle

350) Vanderpool HE, Friis EA, Smith BS, Harms KL. Prevalence of carpal tunnel
syndrome and other work-related musculoskeletal problems in cardiac sonographers.

351) Varitimidis SE, Vardakas DG, Goebel F, Sotereanos DG. Treatment of recurrent
compressive neuropathy of peripheral nerves in the upper extremity with an

352) Violante FS, Bonfiglioli R, Isolani L, Raffi GB. Levels of agreement of nerve
conduction studies and symptoms in workers at risk of carpal tunnel syndrome.

353) Vogt T, Mika A, Thomke F, Hopf HC. Evaluation of carpal tunnel syndrome in
354) Wainner RS, Boninger ML, Balu G, Burdett R, Helkowski W. Durkan gauge and
carpal compression test: accuracy and diagnostic test properties. J.Orthop.Sports

355) Wainner RS, Fritz JM, Irrgang JJ, Delitto A, Allison S, Boninger ML. Development
of a clinical prediction rule for the diagnosis of carpal tunnel syndrome.

356) Walters C, Rice V. An evaluation of provocative testing in the diagnosis of carpal

357) Walters RJ, Murray NM. Transcarpal motor conduction velocity in carpal tunnel

358) Weber RA, Schuchmann JA, Albers JH, Ortiz J. A prospective blinded evaluation of
nerve conduction velocity versus Pressure-Specified Sensory Testing in carpal tunnel

359) Wee AS. Carpal tunnel syndrome: comparison of the compound muscle action
potentials recorded at the thenar region from ulnar and median nerve stimulation.

360) Weiss AP, Sachar K, Gendreau M. Conservative management of carpal tunnel
May;19(3):410-5.

361) Werner RA, Bir C, Armstrong TJ. Reverse Phalen's maneuver as an aid in diagnosing

362) Werner RA, Franzblau A, Johnston E. Quantitative vibrometry and
electrophysiological assessment in screening for carpal tunnel syndrome among

363) Werner RA, Franzblau A, Johnston E. Comparison of multiple frequency vibrometry
testing and sensory nerve conduction measures in screening for carpal tunnel

364) Werner RA, Albers JW. Relation between needle electromyography and nerve

factors for visiting a medical department because of upper-extremity musculoskeletal

Appendix E. Bibliography of included studies

