

Supplement to the Evaluation of Psychosocial Factors Influencing Recovery From Adult Orthopaedic Trauma Evidence-Based Clinical Practice Guideline

e-Appendix 1

- Quality Evaluation
- Data Summary
- Detailed Data Tables
- Excluded Literature
- AAOS Approval Bodies
- External Endorsements

This supplementary material has been provided by the authors to give readers additional information about their work.

Contents

Contents

Quality Evaluation – Prognostic	4
Quality Evaluation - Diagnostic	9
Data Summary	10
Table 1: Age (PICO 1)	10
Table 2: Anxiety (PICO 1)	18
Table 3: BMI (PICO 1)	20
Table 4: Comorbidities (PICO 1)	21
Table 5: Coping/Pain (PICO 1)	24
Table 6: Depression (PICO 1)	29
Table 7: Education (PICO 1)	31
Table 8: Gender (PICO 1)	38
Table 9: Mental Health (PICO 1)	43
Table 10: Other Factors (PICO 1)	47
Table 11: Personal View (PICO 1)	49
Table 12: Physical Health (PICO 1)	55
Table 13: PTSD (PICO 1)	57
Table 14: Socioeconomic Status (PICO 1)	58
Table 15: Social Support (PICO 1)	68
Table 16: Substance Use (PICO 1)	72
Table 17: PTSD Likelihood (PICO 1)	
Table 18: Screening Tools (PICO 2)	75
Table 19: Pre-Injury Psychosocial Factors in Military Population (PICO 4)	76
Table 20: Barriers to Screening (PICO 5)	77
Detailed Data Tables	78
Table 1: Age (PICO 1)	78
Table 2: Anxiety (PICO 1)	128

Table 3: BMI (PICO 1)	135
Table 3: BMI (PICO 1) Table 4: Comorbidities (PICO 1)	141
Table 5: Coping/Pain (PICO 1)	
Table 6: Depression (PICO 1)	177
Table 7: Education (PICO 1)	191
Table 8: Gender (PICO 1)	231
Table 8: Gender (PICO 1) Table 9: Mental Health (PICO 1)	259
Table 10: Other Factors (PICO 1)	282
Table 11: Personal View (PICO 1)	293
Table 12: Physical Health (PICO 1)	316
Table 13: PTSD (PICO 1)	322
Table 14: Socioeconomic Status (PICO 1)	329
Table 15: Social Support (PICO 1)	377
Table 16: Substance Use (PICO 1)	395
Table 17: PTSD Likelihood (PICO 1)	406
Table 18: Screening Tools (PICO 2)	
Table 19: Pre-Injury Psychosocial Factors in Military Population (PICO 4)	407
Table 20: Barriers to Screening (PICO 5)	409
Excluded Literature	
AAOS CPG Approval Bodies	539
External Endorsements	540

Quality Evaluation – Prognostic

Study	Representative Population	Reason for Follow Up Loss	Prognostic Factor Measured	Outcome Measurement	Confounders	Appropriate Statistical Analysis	Strength
Abraham, C. M., 2014	•	0	•	•	•	•	Moderate Quality
Andrew, N. E., 2008	•	0	•	•	•	0	Low Quality
Andrew, N. E., 2012	0	•	•	•	•	•	Low Quality
Archer, K. R., 2015	•	•	•	•	0	0	Low Quality
Bosma, Hans, 2004	•	0	•	•	•	•	Moderate Quality
Bosse, M. J., 2002	•	0	•	•	•	0	Low Quality
Bot, A. G., 2011	•	•	•	•	0	0	Low Quality
Burrus, C., 2009	•	•	•	•	0	0	Low Quality
Castillo, R. C., 2011	•	•	•	•	•	0	Low Quality
Castillo, R. C., 2013	•	•	•	•	•	•	High Quality
Clay, F. J., 2010 (a)	•	•	•	0	•	0	Low Quality
Clay, F. J., 2010 (b)	•	•	•	•	0	0	Low Quality

Study	Representative Population	Reason for Follow Up Loss	Prognostic Factor Measured	Outcome Measurement	Confounders	Appropriate Statistical Analysis	Strength
Doornberg, J. N., 2005	•	•	•	•	•	•	Low Quality
Gunawardena, N., 2007	•	•	•	•	0	0	Low Quality
Hebert, J. S., 2006	•	•	0	•	•	0	Low Quality
Holtslag, H. R., 2007	•	•	•	•	•	•	Moderate Quality
Hou, W. H., 2008	•	•	•	•	0	0	Low Quality
Hou, W. H., 2012	•	•	•	•	•	•	High Quality
Hou, W. H., 2013	•	•	0	•	•	•	Moderate Quality
Hu, J., 2014	•	•	•	•	0	0	Low Quality
Kugelman, D. N., 2018	•	0	•	•	•	•	Moderate Quality
Kwok, I. H. Y., 2011	•	•	•	•	•	•	Low Quality
Liedl, A., 2010	•	0	•	•	0	•	Low Quality
Luthi, F., 2011	•	•	0	•	0	0	Low Quality
MacDermid, J. C., 2002	•	•	•	•	•	0	Moderate Quality

Study	Representative Population	Reason for Follow Up Loss	Prognostic Factor Measured	Outcome Measurement	Confounders	Appropriate Statistical Analysis	Strength
MacKenzie, E. J., 1998	•	•	•	•	0	0	Low Quality
MacKenzie, E. J., 2004	•	•	•	•	•	0	Moderate Quality
MacKenzie, E. J., 2005	•	0	•	•	•	0	Low Quality
MacKenzie, E. J., 2006	•	•	•	•	•	0	Moderate Quality
Melcer, T., 2013 (a)	•	•	•	•	•	•	Low Quality
Melcer, T., 2013 (b)	•	•	•	•	0	0	Low Quality
Ni, Jun, 2013	•	•	0	•	0	•	Low Quality
Nota, S. P., 2015	•	0	•	•	•	•	Moderate Quality
O'Toole, R. V., 2008	•	•	•	•	0	•	Moderate Quality
Ouellet, M. C., 2009	•	•	•	•	•	0	Low Quality
Papadakaki, M., 2017	•	•	•	•	0	•	Moderate Quality
Pape, H. C., 2010	•	0	•	•	0	•	Low Quality
Pezzin, L. E., 2000	•	0	•	•	•	0	Low Quality

Study	Representative Population	Reason for Follow Up Loss	Prognostic Factor Measured	Outcome Measurement	Confounders	Appropriate Statistical Analysis	Strength
Ponsford, J., 2008	•	0	•	•	•	0	Low Quality
Ponzer, S., 1997	•	•	•	•	0	0	Low Quality
Rivara, F. P., 2008	•	•	0	•	•	•	Moderate Quality
Roh, Y. H., 2014	•	•	•	•	0	0	Low Quality
Roh, Y. H., 2015	•	•	0	•	•	0	Low Quality
Rusch, M. D., 2003	•	•	•	•	0	•	Moderate Quality
Schnyder, U., 2001 (a)	0	•	0	•	0	•	Low Quality
Schnyder, U., 2001 (b)	•	•	•	•	0	•	Moderate Quality
Schnyder, U., 2003	•	•	•	•	•	•	Moderate Quality
Schweininger, S., 2015	•	0	•	•	•	•	Low Quality
Shields, E., 2015	•	•	•	•	0	0	Low Quality
Soberg, H. L., 2007	•	•	0	•	0	0	Low Quality
Soberg, H. L., 2010	•	•	•	•	0	0	Low Quality

Study	Representative Population	Reason for Follow Up Loss	Prognostic Factor Measured	Outcome Measurement	Confounders	Appropriate Statistical Analysis	Strength
Soberg, H. L., 2011	•	•	•	•	•	0	Low Quality
Soberg, H. L., 2012	•	•	•	•	0	0	Low Quality
Soberg, H. L., 2015	•	0	•	•	•	0	Low Quality
Souer, J. S., 2008	•	•	•	•	0	0	Low Quality
Steven, J. L., 2010	•	0	•	•	•	•	Low Quality
Tuncay, Tarik, 2015	•	0	•	•	0	•	Low Quality
Vranceanu, A. M., 2014	•	•	•	•	0	0	Low Quality
Walsh, M. V., 2016	•	•	•	•	0	•	Moderate Quality
Walsh, M., 2010	•	0	•	•	•	•	Moderate Quality
Wegener, S. T., 2011	•	0	•	•	•	•	Low Quality
Wen, P. S., 2018	•	•	•	•	0	0	Low Quality
Zatzick, D. F., 2007	•	•	0	•	•	0	Low Quality
Zatzick, D., 2008	•	0	0	•	•	•	Low Quality

Quality Evaluation - Diagnostic

Study	Patient selection bias	Index test risk of bias	Reference standard bias	Flow and timing bias	Strength
Dezman, Z. D. W., 2018	•	0	•	•	Moderate Quality
Hennigar, C., 2001	•	0	•	•	Low Quality
Russo, Joan, 2013	•	0	•	•	Low Quality

Data SummaryTable 1: Age (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Melcer, T., 2013 (b)	Low	Age < 25 VS. Age >25 years	Any Infection (Adverse events)	285	24 mo	NS	
Melcer, T., 2013 (b)	Low	Age < 25 VS. Age >25 years	DVT/ PE (Adverse events)	285	24 mo	NS	
Melcer, T., 2013 (b)	Low	Age <25 years VS. Age >25 years	Heterotopic ossification (Adverse events)	285	24 mo	NS	
Holtslag, H. R., 2007	Mod	<55 VS. >55	EQ-5 Anxiety or depression (Anxiety)	33	12 mo	NS	
Schweininger, S., 2015	Low	Age VS. continuous	Anxiety- HADS (Anxiety)	775	12 mo	NS	
Bosma, Hans, 2004	Mod	Age VS. CONTINUOUS	Anxiety scores (Anxiety)	181	12 mo	NS	
Holtslag, H. R., 2007	Mod	<55 VS. >55	Head Injury symptom checklist (HISC) (Composite)	335	12 mo	NS	
MacKenzie, E. J., 2004	Mod	Age <55 years	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Not Significant	
Schweininger, S., 2015	Low	Age VS. continuous	Depression - HADS (Depression)	775	12 mo	Increasing Age is associated with worse depression scores on HADS	•
Bosma, Hans, 2004	Mod	Age VS. Continuous	Depression symptoms (Depression)	181	12 mo	NS	
Roh, Y. H., 2015	Low	65 and higher VS. younger than 65	QuickDASH Score (Function)	93	6 mo	Age predicts worse DASH scores at 6 months	•
Roh, Y. H., 2015	Low	65 and higher VS. younger than 65	Recovery of grip strength (Function)	93	6 mo	Age > 65 is associated with poor recovery of grip strength	•
Holtslag, H. R., 2007	Mod	<55 VS. >55	EQ-1 Mobility (Function)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<55 VS. >55	EQ-3 Daily activities (Function)	335	12 mo	NS	
MacKenzie, E. J., 2005	Low	>55 VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	>55 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of >50 years of age are 5.0 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	25-34 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of 25-34 years of age are 6.3 times more likely to have disability	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2005	Low	25-34 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of 25-34 years of age are 2.0 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	35-44 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of 35-44 years of age are 8.8 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	35-44 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of 35-44 years of age are 3.6 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	45-54 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of 45-54 years of age are 6.4 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	45-54 years VS. <25 years	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects of 45-54 years of age are 3.6 times more likely to have disability	•
MacKenzie, E. J., 2004	Mod	Age <55 years	Physical Function SIP (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2004	Mod	Age <55 years	Walking Speed >= 4ft/sec (Function)	124	24 mo	Not Significant	
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Low SF-36 PCS Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Low SF-36 Role Physical Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Low SF-36 Vitality Score (Function)	78	7 yrs	NS	
Pape, H. C., 2010	Low	Age at Injury VS. continuous	Physical Wellness (HASPOC) (Function)	637	10 yrs	Older age at injury is associated with lower odds of a poor physical wellness score	•
Ponsford, J., 2008	Low	Age at injury VS. Continuous	SF-36 Physical Summary Score (Function)	149	2 yrs	Older age is associated with high pain	→
Walsh, M., 2010	Mod	Age in years VS. continuous	DASH score (Function)	496	NR	NS	
Andrew, N. E., 2008	Low	Age VS. continuous	SF-12 Physical Component Score (Function)	366	12 mo	Increasing age is associated with lower SF-12 PCS scores	•
Doornberg, J. N., 2005	Low	Age VS. continuous	Disabilities of shoulder, arm and hand questionnaire (Function)	104	58 mo	NS	
Kwok, I. H. Y., 2011	Low	Age VS. continuous	Disabilities of shoulder, arm and hand questionnaire (DASH) (Function)	108	2 yrs	NS	
Roh, Y. H., 2014	Low	Age VS. continuous	Grip strength (Function)	121	6 mo	increased age is associated with decreased grip strength	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Roh, Y. H., 2014	Low	Age VS. continuous	Patient perceived disability measure by MHQ score (Function)	121	6 mo	increased age is associated with increased disability	•
Shields, E., 2015	Low	Age VS. continuous	Satisfactory DASH Score (<21) (Function)	77	1 yrs	Increasing age is associated with lower odds of a satisfactory DASH score at 1 year	
Shields, E., 2015	Low	Age VS. continuous	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Age VS. continuous	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
Andrew, N. E., 2012	Low	Age VS. Continuous	SF- 36; PCS (Function)	317	12 mo	NS	
Soberg, H. L., 2012	Low	Age VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Age VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Age VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2015	Low	Age VS. continuous	SF-36 Physical Component Score (Function)	58	10 yrs	NS	
Schweininger, S., 2015	Low	Age VS. continuous	WHODAS II- Disability (Function)	775	12 mo	NS	
Doornberg, J. N., 2005	Low	Age VS. continuous	American Shoulder and Elbow Surgeons Evaluation (Function)	104	58 mo	age is associated with poor body function	•
Doornberg, J. N., 2005	Low	Age VS. continuous	Broberg and Morrey rating (Function)	104	58 mo	Age is associated with poor B & M rating	•
Doornberg, J. N., 2005	Low	Age VS. continuous	Mayo Elbow Performance Index (Function)	104	58 mo	Age is associated with poor elbow performance index	•
MacDermid, J. C., 2002	Mod	Age VS. continuous	Patient Rated Wrist Evaluation (Function)	120	6 mo	NS	
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Physical Functioning (Function)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Role Physical (Function)	115	1 yrs	NS	
Nota, S. P., 2015	Mod	Age VS. continuous	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	
Doornberg, J. N., 2005	Low	Age VS. continuous	SF 36; physical component (Function)	104	58 mo	age is associated with physical fitness	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Hebert, J. S., 2006	Low	Age (at accident) VS. continuous	TD (total disability) (Function)	88	2 yrs	Older age at time of accident is associated with increased days of Total Disability	•
MacKenzie, E. J., 2005	Low	>55 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	>55 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	>55 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	25-34 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Subjects with LE trauma undergoing treatment of age 25- 34 are 2.1 times likely to have disability	•
MacKenzie, E. J., 2005	Low	25-34 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Subjects with LE trauma undergoing treatment of age 25- 34 are 2.9 times likely to have disability	•
MacKenzie, E. J., 2005	Low	25-34 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Subjects with LE trauma undergoing treatment of age 25- 34 are 2.1 times likely to have disability	•
MacKenzie, E. J., 2005	Low	35-44 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Subjects with LE trauma undergoing treatment of age 35- 44 are 2.7 times likely to have disability	•
MacKenzie, E. J., 2005	Low	35-44 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Subjects with LE trauma undergoing treatment of age 35- 44 are 3.4 times likely to have disability	•
MacKenzie, E. J., 2005	Low	35-44 years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Subjects with LE trauma undergoing treatment of age 35- 44 are 2.7 times likely to have disability	•
MacKenzie, E. J., 2005	Low	45-54years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	45-54years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	45-54years VS. <25 years	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Melcer, T., 2013 (b)	Low	Age < 25 VS. Age >25 years	Mood Diagnosis (Mental Health)	285	24 mo	NS	
Melcer, T., 2013 (b)	Low	Age < 25 VS. Age >25 years	Other Mental Health Diagnosis (Mental Health)	285	24 mo	NS	
Melcer, T., 2013 (b)	Low	Age < 25 VS. Age >25 years	Psychiatric Clinic Use (Mental Health)	285	24 mo	NS	
Melcer, T., 2013 (b)	Low	Age > 25 years VS. Age <25 years	Any Mental Health Diagnosis (Mental Health)	285	24 mo	Age >25 is associated with higher odds of any mental health diagnosis	•
MacKenzie, E. J., 2004	Mod	Age >=55 years	Psychosocial SIP (Mental Health)	124	24 mo	Pts >=55 are associated with lower psychosocial SIP scores	•
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Low SF-36 Role Emotional Score (Mental Health)	78	7 yrs	NS	
Soberg, H. L., 2010	Low	Age at injury VS. continuous	SF-36 Mental Health (Mental Health)	99	2 yrs	Older age at injury is associated with better mental health at 2 years	•
Shields, E., 2015	Low	Age VS. continuous	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	NS	
Andrew, N. E., 2012	Low	Age VS. Continuous	SF- 36; MCS (Mental Health)	317	12 mo	NS	
Andrew, N. E., 2008	Low	Age VS. continuous	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	
Ouellet, M. C., 2009	Low	Age VS. Continuous	SF-12 Mental Component Score (Mental Health)	235	3 yrs	NS	
Ouellet, M. C., 2009	Low	Age VS. Continuous	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Soberg, H. L., 2012	Low	Age VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Age VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2015	Low	Age VS. continuous	SF-36 Mental Component Score (Mental Health)	58	10 yrs	NS	
Doornberg, J. N., 2005	Low	Age VS. Continuous	SF36; Mental component (Mental Health)	104	58 mo	Age is associated with worse Mental health	•
Soberg, H. L., 2012	Low	Age VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Higher age is associated with higher SF-36 MCS at 5 years	†
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Mental Health (Mental Health)	115	1 yrs	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Role Emotional (Mental Health)	115	1 yrs	Higher age is associated with worse Role-Emotional scores.	•
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Social Functioning (Mental Health)	115	1 yrs	Higher age is associated with worse social functioning at 1 year	^
Holtslag, H. R., 2007	Mod	<55 VS. >55	EQ-4 Pain or discomfort (Pain)	335	12 mo	NS	
Rivara, F. P., 2008	Mod	Age 55-64 VS. Age <55	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	NS	
Rivara, F. P., 2008	Mod	Age 65- 74 VS. Age <55	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	Age 65-74 ys is associated with better pain outcome at 12 months	•
Rivara, F. P., 2008	Mod	Age 75- 84 VS. Age <55	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	Ages 75-84 was associated with lower rates of injury related pain	•
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Low SF-36 Bodily Pain Score (Pain)	78	7 yrs	NS	
Walsh, M., 2010	Mod	Age in years VS. continous	Visual analogue scale (VAS in mm) (Pain)	496	NR	NS	
Andrew, N. E., 2008	Low	Age VS. continuous	Maximum Pain (Pain)	366	12 mo	NS	
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Bodily Pain (Pain)	115	1 yrs	Older age is associated with lower pain at 1 year	•
Tuncay, Tarik, 2015	Low	Age VS. continuous	Posttraumatic Growth Inventory (PTG1 Relationship with others) (Post- traumatic growth)	106	9 mo	NS	
Tuncay, Tarik, 2015	Low	Age VS. continuous	Posttraumatic Growth Inventory (PTG2 Philosophy of life) (Post-traumatic growth)	106	9 mo	NS	
Tuncay, Tarik, 2015	Low	Age VS. continuous	Posttraumatic Growth Inventory (PTG3 Self Perception) (Post-traumatic growth)	106	9 mo	NS	
Tuncay, Tarik, 2015	Low	Age VS. continuous	Posttraumatic Growth Inventory (Total) (Post-traumatic growth)	106	9 mo	NS	
Zatzick, D. F., 2007	Low	Age VS. Continuous	PTSD Checklist symptoms (PTSD)	2931	12 mo	NS	
Melcer, T., 2013 (b)	Low	Age < 25 VS. Age >25 years	PTSD (PTSD)	285	24 mo	NS	
Soberg, H. L., 2010	Low	Age at Injury VS. continuous	PTSS-10 (PTSD)	99	2 yrs	Higher age at injury is associated with lower PTSS-10 scores at 2 years	•
Schweininger, S., 2015	Low	Age VS. Continuous	CAPS- PTSD (PTSD)	775	12 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Holtslag, H. R., 2007	Mod	<55 VS. >55	EQ-2 Self-care (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<55 VS. >55	Glasgow Outcome Scale (GOS) < 5 (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<55 VS. >55	Model B; EQol-vas (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<55 VS. >55	model B; EuroQol-utility (QOL)	335	12 mo	NS	
Hou, W. H., 2013	Mod	Age (per 10-year increase) VS. continuous	EQ-5D (QOL)	4643	24 mo	NS	
O'Toole, R. V., 2008	Mod	Age VS. continuous	Patient Satisfaction (QOL)	463	2 yrs	NS	
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 General Health (QOL)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	Age VS. continuous	SF-36 Vitality (QOL)	115	1 yrs	NS	
MacKenzie, E. J., 2006	Mod	>=55 years old VS. <25	Return to Work (Return to activity)	423	84 mo	Being >=55 years old is associated with lower RTW rates	•
MacKenzie, E. J., 1998	Low	>45 years VS. 18-24 years	RTW (Return to activity)	312	12 mo	Compared to individuals aged 18-24, patients >45 yrs are less likely to RTW	•
MacKenzie, E. J., 2006	Mod	25-34 years old VS. <25	Return to Work (Return to activity)	423	84 mo	NS	
MacKenzie, E. J., 1998	Low	25-34 years VS. >45 years	RTW (Return to activity)	312	12 mo	NS	
MacKenzie, E. J., 2006	Mod	35-44 years old VS. <25	Return to Work (Return to activity)	423	84 mo	NS	
MacKenzie, E. J., 1998	Low	35-44 years VS. >45 years	RTW (Return to activity)	312	12 mo	NS	
MacKenzie, E. J., 2006	Mod	45-54 years old VS. <25	Return to Work (Return to activity)	423	84 mo	NS	
Hou, W. H., 2008	Low	Age >44 VS. Age <25	Return to work (days) (Return to activity)	81	6 mo	Age >44 leads to faster RTW	•
Hou, W. H., 2008	Low	Age 25-44 VS. Age <25	Return to work (days) (Return to activity)	81	6 mo	NS	
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Return to Work (Return to activity)	78	7 yrs	Higher age at injury is associated with lower odds of return to work	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Pezzin, L. E., 2000	Low	Age at injury VS. continuous	Reduced Hours (Return to activity)	78	7 yrs	Higher age at injury is associated with higher odds of reduced hours	•
Ponsford, J., 2008	Low	Age VS. Conitnuous	Return to Work (Return to activity)	149	2 yrs	Older age is associated with slow RTW	•
Hou, W. H., 2012	High	Age VS. Continuous	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2012	High	Age VS. continuous	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	older age is associated with slow RTW (compared to average RTW)	•
Hou, W. H., 2012	High	Age VS. continuous	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	older age is associated with slow RTW (compare to Fast RTW)	•
Soberg, H. L., 2011	Low	age VS. continuous	Return to Work (Return to activity)	75	5 yrs	NS	
Soberg, H. L., 2007	Low	Age VS. continuous	RTW (Return to activity)	97	2 yrs	NS	
Clay, F. J., 2010 (b)	Low	Age VS. continuous	Time off work (Return to activity)	152	6 mo	Increasing age is associated with longer time off work	•
Schnyder, U., 2003	Mod	Age VS. continuous	Number of days of leaves taken (Return to activity)	100	12 mo	NS	
Rusch, M. D., 2003	Mod	Age VS. continuous	RTW status (Return to activity)	92	6 mo	NS	
Melcer, T., 2013 (a)	Low	Age >25 years VS. <25	Substance Abuse (Substance abuse)	772	2 yrs	>25 years old is associated with higher odds of substance abuse at 2 years	•

Table 2: Anxiety (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Castillo, R. C., 2013	High	12-month anxiety (BSI) VS. continuous	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	545	24 mo	Increased anxiety at 12mo leads to increased anxiety at 24mo	•
Castillo, R. C., 2013	High	6-month anxiety (BSI) VS. continuous	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	545	12 mo	Increased anxiety at 6mo leads to increased anxiety at 12mo	•
Schweininger, S., 2015	Low	Anxiety (3mo) VS. Continuous	Anxiety- HADS (Anxiety)	775	12 mo	Anxiety at 3 months was associated with worse anxiety scores at 12 months	
Bosma, Hans, 2004	Mod	Depression/Anxiety VS. continuous	Anxiety scores (Anxiety)	181	12 mo	increased depression/anxiety is associated with post-treatment anxiety at 1 year	
Wegener, S. T., 2011	Low	BSI Anxious distress (12mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	increased anxiety leads to decreased function	•
Wegener, S. T., 2011	Low	BSI Anxious distress (3mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	increased anxiety leads to decreased function	•
Wegener, S. T., 2011	Low	BSI Anxious distress (6mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	increased anxiety leads to decreased function	•
Castillo, R. C., 2013	High	12-month anxiety (BSI) VS. continuous	Brief Symptom Inventory (BSI) Depression Scale (Depression)	545	24 mo	NS	
Castillo, R. C., 2013	High	6-month anxiety (BSI) VS. continuous	Brief Symptom Inventory (BSI) Depression Scale (Depression)	545	12 mo	NS	
Schweininger, S., 2015	Low	Anxiety (3mo) VS. Continuous	Depression - HADS (Depression)	775	12 mo	NS	
Schweininger, S., 2015	Low	Anxiety (3mo) VS. continuous	WHODAS II- Disability (Function)	775	12 mo	NS	
Ponsford, J., 2008	Low	Anxiety VS. Continuous	SF-36 Physical Summary Score (Function)	149	2 yrs	High Anxiety is Associated with higher pain	•
Ni, Jun, 2013	Low	Fearful of death during incident VS. No fear of death during incident	Physical dysfunction (Function)	459	50 mo	NS	
Roh, Y. H., 2015	Low	Pain Anxiety Symptom State (PASS) over 35 VS. PASS under 35	Recovery of grip strength (Function)	93	6 mo	PASS >35 is associated with poor recovery of grip strength	•
Schnyder, U., 2001 (a)	Low	Sense of death threat VS. No sense of death threat	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	Increased sense of death threat is associated with increased post-accident psychiatric morbidity	•
Castillo, R. C., 2013	High	12-month anxiety (BSI) VS. continuous	VAS Pain (Pain)	545	24 mo	Increased anxiety at 12mo leads to increased pain at 24mo	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Castillo, R. C., 2013	High	6-month anxiety (BSI) VS. continuous	VAS Pain (Pain)	545	12 mo	Increased anxiety at 6mo leads to increased pain at 12mo	•
Schweininger, S., 2015	Low	Anxiety (3mo) VS. Continuous	CAPS- PTSD (PTSD)	775	12 mo	NS	
Ni, Jun, 2013	Low	Fearful of death during incident VS. No fear of death during incident	PTSD (PTSD)	459	50 mo	Fearful of death is associated with higher odds of PTSD	•
Zatzick, D. F., 2007	Low	Pre-injury benzodiazepine prescription VS. Anxiety	PTSD Checklist symptoms (PTSD)	2931	12 mo	Pre-injury benzodiazepine prescription is associated with high risk of PTSD symptoms.	•
Schnyder, U., 2001 (b)	Mod	Sense of death threat VS. no sense of death threat	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	higher sense of death threat leads to increased risk of PTSD	•
O'Toole, R. V., 2008	Mod	Anxiety VS. Continuous	Patient Satisfaction (QOL)	463	2 yrs	More anxiety results in the decreased odds of satisfaction	•

Table 3: BMI (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Holtslag, H. R., 2007	Mod	<25 VS. >25	EQ-5 Anxiety or depression (Anxiety)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	Head Injury symptom checklist (HISC) (Composite)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	EQ-1 Mobility (Function)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	EQ-3 Daily activities (Function)	335	12 mo	NS	
Walsh, M., 2010	Mod	BMI kg/m2 VS. continuous	DASH score (Function)	496	NR	NS	
Shields, E., 2015	Low	BMI VS. continuous	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	BMI VS. continuous	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	BMI VS. continuous	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	BMI VS. continuous	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	EQ-4 Pain or discomfort (Pain)	335	12 mo	NS	
Walsh, M., 2010	Mod	BMI (kg/m2) VS. continuous	Visual analogue scale (VAS in mm) (Pain)	496	NR	Increased BMI is associated with increased pain	•
Holtslag, H. R., 2007	Mod	<25 VS. >25	EQ-2 Self-care (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	Glasgow Outcome Scale (GOS) < 5 (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	Model B; EQol-vas (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	<25 VS. >25	model B; EuroQol-utility (QOL)	335	12 mo	NS	

Table 4: Comorbidities (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Holtslag, H. R., 2007	Mod	no VS. yes	EQ-5 Anxiety or depression (Anxiety)	335	12 mo	NS	
MacKenzie, E. J., 2004	Mod	Chronic preinjury medical condition	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Chronic preinjury medical condition is associated with higher overall SIP scores	•
Holtslag, H. R., 2007	Mod	yes VS. no	Head Injury symptom checklist (HISC) (Composite)	335	12 mo	co-morbidity is an independent predictor of long-term functional consequences after major trauma	•
Souer, J. S., 2008	Low	Radio-carpal arthritis VS. continuous; range 0-23	Modified Gartland and Werley (Composite)	84	22 mo	Radio-carpal arthritis is an independent predictor of Modified Gartland and Wesley score	•
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Physical Functioning (Function)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Role Physical (Function)	115	1 yrs	NS	
Shields, E., 2015	Low	Charlson Score VS. continuous	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Charlson Score VS. continuous	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	Higher charlson score is associated with lower odds of a satisfactory PCS score	•
Shields, E., 2015	Low	Charlson Score VS. continuous	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
MacKenzie, E. J., 2004	Mod	Chronic preinjury medical condition	Physical Function SIP (Function)	124	24 mo	Chronic preinjury medical condition is associated with higher Physical Function SIP scores	•
MacKenzie, E. J., 2004	Mod	Chronic preinjury medical condition	Walking Speed of >=4 ft/sec (Function)	124	24 mo	Not Significant	
Andrew, N. E., 2012	Low	Disease diagnosis - Yes VS. Disease diagnosis- No	SF- 36; PCS (Function)	317	12 mo	NS	
Holtslag, H. R., 2007	Mod	yes VS. no	EQ-1 Mobility (Function)	335	12 mo	co-morbidity is an independent predictor of long-term functional consequences after major trauma	•
Holtslag, H. R., 2007	Mod	yes VS. no	EQ-3 Daily activities (Function)	335	12 mo	co-morbidity is an independent predictor of long-term functional consequences after major trauma	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Archer, K. R., 2015	Low	One or more comorbid conditions VS. No comorbid conditions	SF-12 Physical Component Scale (Function)	110	1 yrs	1 or more comorbid conditions is associated with lower physical health at 1 year	•
Pezzin, L. E., 2000	Mod	Premorbid Illness	SF-36 (Low PCS) (Function)	78	7.5 yrs	Not Significant	
Pezzin, L. E., 2000	Mod	Premorbid Illness	SF-36 (Low RP) (Function)	78	7.5 yrs	Not Significant	
Pape, H. C., 2010	Low	Premorbid score VS. continuous	Physical Wellness (HASPOC) (Function)	637	10 yrs	NS	
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Mental Health (Mental Health)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Role Emotional (Mental Health)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Social Functioning (Mental Health)	115	1 yrs	NS	
Shields, E., 2015	Low	Charlson Score VS. continuous	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	Higher Charlson score is associated with lower odds of a satisfactory MCS score	•
MacKenzie, E. J., 2004	Mod	Chronic preinjury medical condition	Psychosocial Function SIP (Mental Health)	124	24 mo	Not Significant	
Andrew, N. E., 2012	Low	Disease diagnosis - Yes VS. Disease diagnosis - No	SF- 36; MCS (Mental Health)	317	12 mo	Presence of any pre- injury comorbidity is associated with worse MCS scores on SF-36	•
Ouellet, M. C., 2009	Low	Physical health problems VS. Continuous	SF-12 Mental Component Score (Mental Health)	235	3 yrs	NS	
Ouellet, M. C., 2009	Low	Physical health problems VS. Continuous	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Pezzin, L. E., 2000	Mod	Premorbid Illness	SF-36 (Low RE) (Mental Health)	78	7.5 yrs	Not Significant	
Luthi, F., 2011	Low	Psychiatric comorbidities VS. No psychiatric comorbidities	Psychoactive drug consumption (Mental Health)	118	1 yrs	increased psychiatric comorbidities is associated with increased psychoactive drug use	•
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Bodily Pain (Pain)	115	1 yrs	NS	
Holtslag, H. R., 2007	Mod	Yes VS. No	EQ-4 Pain or discomfort (Pain)	335	12 mo	co-morbidity is an independent predictor of long-term functional consequences after major trauma	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Pezzin, L. E., 2000	Mod	Premorbid illness	SF-36 (Low BP) (Pain)	78	7.5 yrs	Not Significant	
Luthi, F., 2011	Low	Psychiatric comorbidities VS. No psychiatric comorbidities	Pain medication consumption (Pain)	118	1 yrs	NS	
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 General Health (QOL)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	>=1 VS. None	SF-36 Vitality (QOL)	115	1 yrs	NS	
O'Toole, R. V., 2008	Mod	Medical comorbidities (does not specify)	Patient Satisfaction (QOL)	463	2 yrs	Not Significant	
O'Toole, R. V., 2008	Mod	Medical comorbidities VS. unclear	Patient Satisfaction (QOL)	463	2 yrs	NS	
Holtslag, H. R., 2007	Mod	Yes VS. No	Model B; EQol-vas (QOL)	335	12 mo	Comorbidity is associated with lower QOL	•
Holtslag, H. R., 2007	Mod	Yes VS. No	model B; EuroQol-utility (QOL)	335	12 mo	Comorbidities are associated with QOL	•
Holtslag, H. R., 2007	Mod	Yes VS. No	Glasgow Outcome Scale (GOS) < 5 (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	Yes VS. No	EQ-2 Self-care (QOL)	335	12 mo	co-morbidity is an independent predictor of long-term functional consequences after major trauma	•
Pezzin, L. E., 2000	Mod	Premorbid Illness	SF-36 (Low VT) (QOL)	78	7.5 yrs	Not Significant	
Clay, F. J., 2010 (b)	Low	One or more comorbid conditions VS. No comorbid conditions	Slower return to work (Return to activity)	152	6 mo	Comorbid conditions are associated with slower return to work	•
Clay, F. J., 2010 (b)	Low	One or more comorbid conditions VS. No comorbid conditions	Time off work (Return to activity)	152	6 mo	Having comorbid conditions is associated with longer time off work	•
Pezzin, L. E., 2000	Mod	Premorbid Illness	Return to Work (RTW) (Return to activity)	76	7.5 yrs	Not Significant	
Luthi, F., 2011	Low	Psychiatric comorbidities VS. No psychiatric comorbidities	Return to work (Return to activity)	118	1 yrs	NS	

Table 5: Coping/Pain (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Castillo, R. C., 2013	High	12-month pain (VAS) VS. continuous	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	545	24 mo	NS	
Castillo, R. C., 2013	High	6-month pain (VAS) VS. continuous	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	545	12 mo	Increased pain at 6mo leads to increased anxiety at 12mo	•
Schweininger, S., 2015	Low	Pain Severity VS. Continuous	Anxiety- HADS (Anxiety)	775	12 mo	Higher Pain severity associated with worse anxiety scores	•
Souer, J. S., 2008	Low	Pain VS. continuous; range 0-6	Modified Gartland and Werley (Composite)	84	22 mo	Pain is an independent predictor of Modified Gartland and Wesley score	•
Souer, J. S., 2008	Low	Pain VS. continuous; range 1-5	DASH questionnaire (Composite)	84	22 mo	Pain is a significant independent predictors of DASH scores	•
Wegener, S. T., 2011	Low	VAS Pain (3mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	12 mo	NS	
Wegener, S. T., 2011	Low	VAS Pain (6mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	NS	
Castillo, R. C., 2013	High	12-month pain (VAS) VS. continuous	Brief Symptom Inventory (BSI) Depression Scale (Depression)	545	24 mo	NS	
Castillo, R. C., 2013	High	6-month pain (VAS) VS. continuous	Brief Symptom Inventory (BSI) Depression Scale (Depression)	545	12 mo	NS	
Walsh, M. V., 2016	Mod	Pain interference VS. continuous	4-Item Depression Screen (Depression)	202	Post-Op	> pain interference is associated with more activity restriction and therefore higher depression	•
Walsh, M. V., 2016	Mod	Pain interference VS. continuous	4-Item Depression Screen (Depression)	202	Post-Op	> pain interference is associated with lower levels of pos. emotion and therefore higher depression	•
Schweininger, S., 2015	Low	Pain Severity VS. Continuous	Depression - HADS (Depression)	775	12 mo	Pain severity is associated with worse Depression scores on HADS	•
Ni, Jun, 2013	Low	Bereaving over death of friend or family in incident VS. No bereavement	Physical dysfunction (Function)	459	50 mo	NS	
Soberg, H. L., 2012	Low	Brief Approach/Avoidance Coping Questionnaire (BACQ) VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Brief Approach/Avoidance	SF-36 Physical Component Score (Function)	104	5 yrs	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
		Coping Questionnaire (BACQ) VS. continuous					
Doornberg, J. N., 2005	Low	Pain Score VS. continuous	American Shoulder and Elbow Surgeons Evaluation (Function)	104	58 mo	pain score is associated with lower body function	•
Doornberg, J. N., 2005	Low	Pain score VS. continuous	Broberg and Morrey rating (Function)	104	58 mo	pain score is associated with a lower B & M rating	•
Doornberg, J. N., 2005	Low	Pain Score VS. continuous	Mayo Elbow Performance Index (Function)	104	58 mo	pain is associated with lower elbow performance index	•
Doornberg, J. N., 2005	Low	Pain score VS. continuous	SF 36; physical component (Function)	104	58 mo	Pain score is associated with poor physical fitness	•
Doornberg, J. N., 2005	Low	pain Score VS. continuous	Disabilities of shoulder, arm and hand questionnaire (Function)	104	58 mo	pain score is associated with UE disabilities.	•
Schweininger, S., 2015	Low	Pain severity VS. Continuous	WHODAS II- Disability (Function)	775	12 mo	Increasing pain severity was associated with worse disability scores	•
Bot, A. G., 2011	Low	Pain VS. continuous	Disability (measured via DASH score) (Function)	71	21 yrs	Pain is a significant predictor of disability	•
Ni, Jun, 2013	Low	Witnessing death in incident VS. Not witnessing death	Physical dysfunction (Function)	459	50 mo	Witnessing death is associated with higher odds of physical disability	•
Schnyder, U., 2001 (a)	Low	Active problem- oriented coping VS. No active problem- oriented coping	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Soberg, H. L., 2010	Low	Lower BACQ Coping Score at return home VS. continuous	SF-36 Mental Health (Mental Health)	99	2 yrs	Low BACQ coping scores are associated with worse mental health at 2 years	•
Soberg, H. L., 2012	Low	Brief Approach/Avoidance Coping Questionnaire (BACQ) VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Lower Brief Approach/Avoidance Coping Questionnaire (BACQ) VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Lower coping scores are associated with lower SF-36 MCS scores at 5 years	•
Doornberg, J. N., 2005	Low	pain Score VS.	SF36; Mental component (Mental Health)	104	58 mo	pain score is associated with lower Mental health	→

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Schnyder, U., 2001 (a)	Low	Sense of coherence VS. No sense of coherence	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Luthi, F., 2011	Low	VAS Pain VS. continuous	Psychoactive drug consumption (Mental Health)	118	1 yrs	NS	
Castillo, R. C., 2013	High	12-month pain (VAS) VS. continuous	VAS Pain (Pain)	545	24 mo	increased pain at 12mo leads to increased pain at 24mo	•
Castillo, R. C., 2013	High	6-month pain (VAS) VS. continuous	VAS Pain (Pain)	545	12 mo	increased pain at 6mo leads to increased pain at 12mo	•
Rivara, F. P., 2008	Mod	Pain at 3 mo (each additional 5 points) VS. No pain	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	Every 5-addition point change in worse pain at 3 mo is associated with worse pain at 12 mo	•
Rivara, F. P., 2008	Mod	Pain at 3 mo (each additional point) VS. No Pain	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	Every addition point change in worse pain at 3 mo is associated with worse pain at 12 mo	•
Luthi, F., 2011	Low	VAS Pain VS. continuous	Pain medication consumption (Pain)	118	1 yrs	NS	
Tuncay, Tarik, 2015	Low	No Emotion-focused coping VS. Emotion-focused coping	Posttraumatic Growth Inventory (PTG1 Relationship with others) (Post- traumatic growth)	106	9 mo	Lower emotion-focused coping is associated with positive relationships with others	•
Tuncay, Tarik, 2015	Low	No Emotion-focused coping VS. Emotion-focused coping	Posttraumatic Growth Inventory (PTG2 Philosophy of life) (Post-traumatic growth)	106	9 mo	Lower emotion-focused coping is associated with worse philosophy of life in veterans	•
Tuncay, Tarik, 2015	Low	No Emotion-focused coping VS. Emotion-focused coping	Posttraumatic Growth Inventory (PTG3 Self Perception) (Post-traumatic growth)	106	9 mo	Lower emotion-focused coping is associated with worse self-perception in veterans	•
Tuncay, Tarik, 2015	Low	No Emotion-focused coping VS. Emotion-focused coping	Posttraumatic Growth Inventory (Total) (Post-traumatic growth)	106	9 mo	Lower emotion-focused coping is associated with decreased PTG in veterans	•
Tuncay, Tarik, 2015	Low	No Problem-focused coping VS. Problem-focused coping	Posttraumatic Growth Inventory (PTG1 Relationship with others) (Post- traumatic growth)	106	9 mo	Lower problem-focused coping is associated with worse relationships of veterans with others	•
Tuncay, Tarik, 2015	Low	No Problem-focused coping VS. Problem-focused coping	Posttraumatic Growth Inventory (PTG2 Philosophy of life) (Post-traumatic growth)	106	9 mo	Lower problem-focused coping is associated with worse philosophy of life in veterans	•
Tuncay, Tarik, 2015	Low	No Problem-focused coping VS. Problem-focused coping	Posttraumatic Growth Inventory (PTG3 Self Perception) (Post-traumatic growth)	106	9 mo	Lower problem-focused coping is associated with worse self-perception in veterans	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Tuncay, Tarik, 2015	Low	No Problem-focused coping VS. Problem-focused coping	Posttraumatic Growth Inventory (Total) (Post-traumatic growth)	106	9 mo	Lower problem-focused coping is associated with decreased PTG in veterans	•
Soberg, H. L., 2010	Low	Low BACQ Coping score at return home VS. continuous	PTSS-10 (PTSD)	99	2 yrs	Low BACQ coping scores are associated with worse PTSS-10 scores at 2 years	•
Ni, Jun, 2013	Low	Bereaving over death of friend or family in incident VS. No bereavement	PTSD (PTSD)	459	50 mo	NS	
Schnyder, U., 2001 (b)	Mod	Frieburg questionnaire of coping with illness VS. continuous	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	worse coping lead to increased PTSD	•
Walsh, M. V., 2016	Mod	Pain interference VS. continuous	Primary Care PTSD Screen (PTSD)	202	Post-Op	Increase pain interference is associated with lower levels of pos. emotion and therefore higher PTSD	•
Walsh, M. V., 2016	Mod	Pain interference VS. continuous	Primary Care PTSD Screen (PTSD)	202	Post-Op	Increase pain interference is associated with lower levels of activity and therefore higher PTSD	•
Schweininger, S., 2015	Low	Pain Severity VS. Continuous	CAPS- PTSD (PTSD)	775	12 mo	Increasing pain severity was associated with worse PTSD scores	•
Zatzick, D. F., 2007	Low	SF-36 Pain Sub scale 3 months VS. Pain	PTSD Checklist symptoms (PTSD)	2931	12 mo	Lower SF-36 Pain sub-scale score is associated with high risk of PTSD symptoms	•
Ni, Jun, 2013	Low	Witnessing death in incident VS. Not witnessing death	PTSD (PTSD)	459	50 mo	Witnessing death is associated with higher odds of PTSD	•
Hou, W. H., 2013	Mod	Lower coping ability VS. continuous	EQ-5D (QOL)	4643	24 mo	Lower coping scores are associated with a lower EQ-5D score	•
MacKenzie, E. J., 2006	Mod	3-month pain (VAS) VS. continuous	Return to Work (Return to activity)	423	84 mo	Higher 3-month pain ratings are associated with lower RTW rates	•
Clay, F. J., 2010 (b)	Low	Should not work with pain (agree) VS. Should not work with pain (disagree)	Time off work (Return to activity)	152	6 mo	Compared to disagreement, agreeing that one should not work with pain is related to longer time off	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Luthi, F., 2011	Low	VAS Pain VS. continuous	Return to work (Return to activity)	118	1 yrs	NS	

Table 6: Depression (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Castillo, R. C., 2013	High	12-month depression (BSI) VS. continuous	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	545	24 mo	NS	
Castillo, R. C., 2013	High	6-month depression (BSI) VS. continuous	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	545	12 mo	NS	
Schweininger, S., 2015	Low	Depression (3mo) VS. Continuous	Anxiety- HADS (Anxiety)	775	12 mo	NS	
Wegener, S. T., 2011	Low	BSI Depressive distress (12mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	increased depression leads to decreased function	
Wegener, S. T., 2011	Low	BSI Depressive distress (3mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	increased depression leads to decreased function	
Wegener, S. T., 2011	Low	BSI Depressive distress (6mo) VS. continuous	Sickness impact profile (SIP) (Composite)	327	24 mo	increased depression leads to decreased function	•
Castillo, R. C., 2013	High	12-month depression (BSI) VS. continuous	Brief Symptom Inventory (BSI) Depression Scale (Depression)	545	24 mo	increased depression at 12mo leads to increased depression at 24mo	•
Castillo, R. C., 2013	High	6-month depression (BSI) VS. continuous	Brief Symptom Inventory (BSI) Depression Scale (Depression)	545	12 mo	increased depression at 6mo leads to increased depression at 12mo	•
Schweininger, S., 2015	Low	Depression (3mo) VS. Continuous	Depression - HADS (Depression)	775	12 mo	Depression at 3 months is associated with worse depression scores at 12 months	•
Papadakaki, M., 2017	Mod	Depression at baseline VS. No depression at baseline	CES-D Scale >=16 (Depression)	84	6 mo	Depression at baseline is associated with higher odds of depression at 6 months	•
Bosma, Hans, 2004	Mod	Depression/Anxiety VS. continuous	Depression symptoms (Depression)	181	12 mo	increased depression/anxiety is associated with post-treatment depression at 1 year	•
Schweininger, S., 2015	Low	Depression (3mo) VS. continuous	WHODAS II- Disability (Function)	775	12 mo	NS	
Zatzick, D., 2008	Low	Depression VS. No depression	Activity of Daily Living (ADL) (Function)	2707	12 mo	Depression is associated with impaired ADL	•
Zatzick, D., 2008	Low	Depression VS. No Depression	Instrumental Activities of Daily Living (Function)	2707	12 mo	Depression is associated with impaired IADL	1
Zatzick, D., 2008	Low	Depression VS. No Depression	SF- 36; Physical Components Summary (PCS) (Function)	2707	12 mo	Depression is associated with lower PCS scores	1

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Archer, K. R., 2015	Low	Depressive symptoms at 4 weeks VS. continuous	SF-12 Physical Component Scale (Function)	110	1 yrs	Higher depressive symptoms at 4 weeks is associated with lower physical health scores at 1 year	•
Nota, S. P., 2015	Mod	Depressive symptoms measured by CES- D VS. continuous	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	
Zatzick, D., 2008	Low	Depression VS. No Depression	SF- 36; Mental Components Summary (Mental Health)	2707	12 mo	Depression is associated with lower MCS scores	•
Castillo, R. C., 2013	High	12-month depression (BSI) VS. continuous	VAS Pain (Pain)	545	24 mo	NS	
Castillo, R. C., 2013	High	6-month depression (BSI) VS. continuous	VAS Pain (Pain)	545	12 mo	NS	
Rivara, F. P., 2008	Mod	Depression before Injury- did not take medication VS. No Depression	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	NS	
Rivara, F. P., 2008	Mod	Depression before Injury- took medication VS. No Depression	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	NS	
Archer, K. R., 2015	Low	Depressive symptoms at 4 weeks VS. continuous	Pain Intensity - Brief Pain Inventory (Pain)	110	1 yrs	Higher depressive symptoms at 4 weeks is associated with higher pain scores at 1 year	•
Archer, K. R., 2015	Low	Depressive symptoms at 4 weeks VS. continuous	Pain Interference - Brief Pain Inventory (Pain)	110	1 yrs	Higher depressive symptoms at 4 weeks is associated with higher pain interference at 1 year	•
Schweininger, S., 2015	Low	Depression (3mo) VS. Continuous	CAPS- PTSD (PTSD)	775	12 mo	NS	
Zatzick, D. F., 2007	Low	Pre-injury depression VS. Post- injury depression	PTSD Checklist symptoms (PTSD)	2931	12 mo	Preinjury depression is associated with high risk of PTSD symptoms	•
Hou, W. H., 2013	Mod	BSRS-5 Depression Score VS. continuous	EQ-5D (QOL)	4643	24 mo	Higher BRSRS-5 scores are associated with lower EQ-5D score	•
O'Toole, R. V., 2008	Mod	Depression	Patient Satisfaction (QOL)	463	2 yrs	Depression results in decreased odds of satisfaction	1
Zatzick, D., 2008	Low	Depression VS. No Depression	Not productive (Return to activity)	2707	12 mo	Depression is associated with being nonproductive	1
Zatzick, D., 2008	Low	Depression VS. No depression	Not working (Return to activity)	2707	12 mo	Depression is associated with being non-working	•

Table 7: Education (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosma, Hans, 2004	Mod	Education Level VS. continuous	Anxiety scores (Anxiety)	181	12 mo	high education level is associated with low Anxiety score	•
Holtslag, H. R., 2007	Mod	Higher VS. primary School	EQ-5 Anxiety or depression (Anxiety)	335	12 mo	higher education is associated with lower Anxiety or depression	•
Bosse, M. J., 2002	Low	High school graduate VS. Some college	% Change in Overall SIP Score (Composite)	460	24 mo	NS	
Castillo, R. C., 2011	Low	High School Graduate VS. Some college	% Change in Overall SIP Score (Composite)	336	12 mo	NS	
Holtslag, H. R., 2007	Mod	HIGHER VS. primary school	Head Injury symptom checklist (HISC) (Composite)	335	12 mo	higher education is associated with better functioning after trauma	•
Bosse, M. J., 2002	Low	Some college VS. Less than high school	% Change in Overall SIP Score (Composite)	460	24 mo	Some college education is associated lower overall SIP score	•
Castillo, R. C., 2011	Low	Some college VS. Less than high school	% Change in Overall SIP Score (Composite)	336	12 mo	Some college education is associated with lower overall SIP scores at 1 year	•
MacKenzie, E. J., 2004	Mod	College education	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	College edu is associated with lower overall SIP	•
Bosma, Hans, 2004	Mod	Education VS. continuous	Depression symptoms (Depression)	181	12 mo	NS	
Papadakaki, M., 2017	Mod	High (secondary) education VS. Low education	CES-D Scale >=16 (Depression)	84	6 mo	NS	
Papadakaki, M., 2017	Mod	Higher education VS. Low education	CES-D Scale >=16 (Depression)	84	6 mo	NS	
Andrew, N. E., 2008	Low	11 years and below VS. Tertiary plus	SF-12 Physical Component Score (Function)	366	12 mo	NS	
Andrew, N. E., 2008	Low	12 years of schooling VS. Tertiary plus	SF-12 Physical Component Score (Function)	366	12 mo	NS	
Andrew, N. E., 2008	Low	Certificate/Diploma VS. Tertiary plus	SF-12 Physical Component Score (Function)	366	12 mo	NS	
Andrew, N. E., 2012	Low	Did not finish high school VS. Degree +	SF- 36; PCS (Function)	317	12 mo	NS	
Andrew, N. E., 2012	Low	Diploma VS. Degree +	SF- 36; PCS (Function)	317	12 mo	NS	
Nota, S. P., 2015	Mod	Education beyond high school unknown VS.	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
		Known education beyond high school					
Nota, S. P., 2015	Mod	Education beyond high school VS. Education not beyond high school	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	
Walsh, M., 2010	Mod	Education in years VS. continous	DASH score (Function)	496	NR	NS	
MacDermid, J. C., 2002	Mod	Education VS. continuous	Patient Rated Wrist Evaluation (Function)	120	6 mo	High education level is associated with better PRWE scores	•
Andrew, N. E., 2012	Low	Finished high school VS. Degree +	SF- 36; PCS (Function)	317	12 mo	NS	
Archer, K. R., 2015	Low	Greater than high school VS. high school education or less	SF-12 Physical Component Scale (Function)	110	1 yrs	NS	
Soberg, H. L., 2012	Low	High Education VS. Low Education	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	High Education VS. Low Education	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	High Education VS. Low Education	SF-36 Physical Component Score (Function)	104	5 yrs	Higher education is associated with better SF-36 PCS scores at 5 years	•
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Low SF-36 PCS Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Low SF-36 Role Physical Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Low SF-36 Vitality Score (Function)	78	7 yrs	NS	
Bosse, M. J., 2002	Low	High school graduate VS. Some college	% Change in Physical Function SIP Score (Function)	460	24 mo	NS	
Castillo, R. C., 2011	Low	High School Graduate VS. Some college	% Change in Physical Function SIP Score (Function)	336	12 mo	NS	
MacKenzie, E. J., 2005	Low	Some college VS. high school grad	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who have some college are 2.5 times less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. high school grad	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who have some college are 2.0 times less likely to have disability	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Papadakaki, M., 2017	Mod	Higher Education VS. low education	WHODAS 2.0 >=25 (Function)	89	6 mo	NS	
Holtslag, H. R., 2007	Mod	higher VS. primary school	EQ-1 Mobility (Function)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	higher VS. primary school	EQ-3 Daily activities (Function)	335	12 mo	NS	
Bosse, M. J., 2002	Low	Less than high school VS. Some college	% Change in Physical Function SIP Score (Function)	460	24 mo	NS	
Castillo, R. C., 2011	Low	Less than High school VS. Some college	% Change in Physical Function SIP Score (Function)	336	12 mo	NS	
MacKenzie, E. J., 2005	Low	Some college VS. less than high school	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who have some college are 10.0 times less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. less than high school	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who have some college are 2.5 times less likely to have disability	•
Kugelman, D. N., 2018	Mod	Higher education VS. Lower education	Total SMFA score (Function)	329	12 mo	higher education is associated with higher functional scores at 12 months	•
Kugelman, D. N., 2018	Mod	Lower education VS. Higher education	Total SMFA score (Function)	329	6 mo	NS	
MacKenzie, E. J., 2004	Mod	No college education	Physical Function SIP (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2004	Mod	No college education	Walking Speed >= 4ft/sec (Function)	124	24 mo	Not Significant	
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Low SF-36 PCS Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Low SF-36 Role Physical Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Low SF-36 Vitality Score (Function)	78	7 yrs	NS	
Andrew, N. E., 2008	Low	11 years and below VS. Tertiary plus	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	
Andrew, N. E., 2008	Low	12 years of schooling VS. Tertiary plus	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	
Andrew, N. E., 2008	Low	Certificate/Diploma VS. Tertiary plus	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Andrew, N. E., 2012	Low	Did not finish high school VS. Degree +	SF- 36; MCS (Mental Health)	317	12 mo	NS	
Andrew, N. E., 2012	Low	Diploma VS. Degree +	SF- 36; MCS (Mental Health)	317	12 mo	NS	
Ouellet, M. C., 2009	Low	Education VS. Continuous	SF-12 Mental Component Score (Mental Health)	235	3 yrs	NS	
Ouellet, M. C., 2009	Low	Education VS. Continuous	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Andrew, N. E., 2012	Low	Finished high school VS. Degree +	SF- 36; MCS (Mental Health)	317	12 mo	NS	
Soberg, H. L., 2012	Low	High Education VS. Low Education	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	High Education VS. Low Education	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	High Education VS. Low Education	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Higher education is associated with better SF-36 MCS scores at 5 years	•
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Low SF-36 Role Emotional Score (Mental Health)	78	7 yrs	NS	
Bosse, M. J., 2002	Low	High school graduate VS. Some college	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	NS	
MacKenzie, E. J., 2005	Low	Some college VS. High school graduate	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	More education is less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. High school graduate	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	More education is less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. High school graduate	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	More education is less likely to have disability	•
Bosse, M. J., 2002	Low	Some college VS. <hs< td=""><td>% Change in Mental Function SIP Score (Mental Health)</td><td>460</td><td>24 mo</td><td>More education is less likely to have disability</td><td>•</td></hs<>	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	More education is less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. <hs< td=""><td>Sickness Impact Profile (SIP)- Psychosocial (Mental Health)</td><td>413</td><td>84 mo</td><td>More education is less likely to have disability</td><td>•</td></hs<>	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	More education is less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. <hs< td=""><td>Sickness Impact Profile (SIP)- Psychosocial (Mental Health)</td><td>413</td><td>84 mo</td><td>More education is less likely to have disability</td><td>•</td></hs<>	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	More education is less likely to have disability	•
MacKenzie, E. J., 2005	Low	Some college VS. <hs< td=""><td>Sickness Impact Profile (SIP)- Psychosocial (Mental Health)</td><td>413</td><td>84 mo</td><td>More education is less likely to have disability</td><td>•</td></hs<>	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	More education is less likely to have disability	•
MacKenzie, E. J., 2004	Mod	HS VS. No college education	Psychosocial SIP (Mental Health)	124	24 mo	More education is less likely to have disability	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Low SF-36 Role Emotional Score (Mental Health)	78	7 yrs	NS	
Andrew, N. E., 2008	Low	11 years and below VS. Tertiary plus	Maximum Pain (Pain)	366	12 mo	NS	
Andrew, N. E., 2008	Low	12 years of schooling VS. Tertiary plus	Maximum Pain (Pain)	366	12 mo	NS	
Andrew, N. E., 2008	Low	Certificate/Diploma VS. Tertiary plus	Maximum Pain (Pain)	366	12 mo	NS	
Walsh, M., 2010	Mod	Education in years VS. continous	Visual analogue scale (VAS in mm) (Pain)	496	NR	NS	
Archer, K. R., 2015	Low	Greater than high school VS. high school education or less	Pain Intensity - Brief Pain Inventory (Pain)	110	1 yrs	Greater than high school education is associated with lower pain at 1 year	•
Archer, K. R., 2015	Low	Greater than high school VS. high school education or less	Pain Interference - Brief Pain Inventory (Pain)	110	1 yrs	NS	
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Low SF-36 Bodily Pain Score (Pain)	78	7 yrs	NS	
Holtslag, H. R., 2007	Mod	HIGHER VS. PRIMARY SCHOOL	EQ-4 Pain or discomfort (Pain)	335	12 mo	NS	
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Low SF-36 Bodily Pain Score (Pain)	78	7 yrs	NS	
Papadakaki, M., 2017	Mod	Higher education VS. Low education	IES-R >26 (PTSD)	86	6 mo	NS	
Hou, W. H., 2013	Mod	<9 years of education VS. >12 years of education	EQ-5D (QOL)	4643	24 mo	NS	
Hou, W. H., 2013	Mod	9-12 years of education VS. >12 years of education	EQ-5D (QOL)	4643	24 mo	NS	
O'Toole, R. V., 2008	Mod	Education VS. unclear	Patient Satisfaction (QOL)	463	2 yrs	NS	
Holtslag, H. R., 2007	Mod	Higher VS. primary School	Model B; EQol-vas (QOL)	335	12 mo	higher education is associated with QOL	•
Holtslag, H. R., 2007	Mod	higher VS. primary school	Glasgow Outcome Scale (GOS) < 5 (QOL)	335	12 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Holtslag, H. R., 2007	Mod	higher VS. primary school	EQ-2 Self-care (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	Higher VS. Primary School	model B; EuroQol-utility (QOL)	335	12 mo	NS	
Hou, W. H., 2012	High	<9 VS. >12	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2012	High	<9 VS. 9-12	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2012	High	>12 VS. <9	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	Higher education is associated with Average RTW (compared to slow RTW)	•
Hou, W. H., 2012	High	>12 VS. <9	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	Higher education is associated with fast RTW. (compare to slow RTW)	•
Hou, W. H., 2008	Low	>12 years education VS. <10 years education	Return to work (days) (Return to activity)	81	6 mo	>12 years education leads to faster RTW	•
Hou, W. H., 2008	Low	10-12 years education VS. <10 years education	Return to work (days) (Return to activity)	81	6 mo	NS	
Hou, W. H., 2012	High	9-12 VS. <9	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	Higher education is associated with Average RTW (compared to slow RTW)	•
Hou, W. H., 2012	High	9-12 VS. <9	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	NS	
Clay, F. J., 2010 (b)	Low	Above university education and high initial pain VS. Below university education and high initial pain	Time off work (Return to activity)	152	6 mo	Compared to pts w/low education, those with high education had short time off work	•
Soberg, H. L., 2011	Low	college education VS. high school education or lower	Return to Work (Return to activity)	75	5 yrs	higher education levels are associated with higher odds of returning to work	•
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Reduced Hours (Return to activity)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	High school education VS. No high school education	Return to Work (Return to activity)	78	7 yrs	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 1998	Low	High school graduate VS. Less than high school	RTW (Return to activity)	312	12 mo	NS	
MacKenzie, E. J., 2006	Mod	High school graduate VS. Less than high school	Return to Work (Return to activity)	423	84 mo	Being a high school graduate is associated with higher return to work rates	•
Soberg, H. L., 2007	Low	High VS. low	RTW (Return to activity)	97	2 yrs	Higher education is associated with increased probability of RTW	•
MacKenzie, E. J., 2006	Mod	Some college VS. Less than high school	Return to Work (Return to activity)	423	84 mo	Some college education is associated with higher return to work rates	•
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Reduced Hours (Return to activity)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Some college education VS. No college education	Return to Work (Return to activity)	78	7 yrs	NS	
MacKenzie, E. J., 1998	Low	Some college VS. Less than high school	RTW (Return to activity)	312	12 mo	Individuals with LL fractures with some college education are more likely to RTW	•
Ponsford, J., 2008	Low	Years of Education VS. Continuous	Return to Work (Return to activity)	149	2 yrs	NS	

Table 8: Gender (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Schweininger, S., 2015	Low	Gender VS. unclear; likely male reference	Anxiety- HADS (Anxiety)	775	12 mo	NS	
Bosma, Hans, 2004	Mod	Female VS. Male	Anxiety scores (Anxiety)	181	12 mo	Female have more anxiety compared to male	•
Holtslag, H. R., 2007	Mod	Female VS. Male	EQ-5 Anxiety or depression (Anxiety)	335	12 mo	anxiety level in female is low compare to male	•
MacKenzie, E. J., 2004	Mod	Female	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Not Significant	
Holtslag, H. R., 2007	Mod	male VS. female	Head Injury symptom checklist (HISC) (Composite)	335	12 mo	NS	
Schweininger, S., 2015	Low	Unclear (likely female)	Depression - HADS (Depression)	775	12 mo	Female gender is associated with depression	•
Bosma, Hans, 2004	Mod	Male VS. Female	Depression symptoms (Depression)	181	12 mo	NS	
MacKenzie, E. J., 2004	Mod	Female	Physical Function SIP (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2004	Mod	Female	Walking Speed >= 4ft/sec (Function)	124	24 mo	Compared with males, being female is associated with greater walking speed	•
Walsh, M., 2010	Mod	Female sex VS. Male	DASH score (Function)	496	NR	NS	
Kwok, I. H. Y., 2011	Low	Female VS. Male	Disabilities of shoulder, arm and hand questionnaire (DASH) (Function)	108	2 yrs	NS	
Andrew, N. E., 2012	Low	Female VS. Male	SF- 36; PCS (Function)	317	12 mo	NS	
Andrew, N. E., 2008	Low	Female VS. Male	SF-12 Physical Component Score (Function)	366	12 mo	NS	
Soberg, H. L., 2012	Low	Female VS. Male	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Female VS. Male	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Female VS. Male	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
MacKenzie, E. J., 2005	Low	Female VS. Male	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Females with LE trauma undergoing treatment are 2x more likely to have disability	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2005	Low	Female VS. Male	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Females with LE trauma undergoing treatment are 2.3x more likely to have disability	•
Doornberg, J. N., 2005	Low	Gender VS. continuous	Mayo Elbow Performance Index (Function)	104	58 mo	NS	
Doornberg, J. N., 2005	Low	Gender VS. continuous	SF 36; physical component (Function)	104	58 mo	NS	
Doornberg, J. N., 2005	Low	Gender VS. continuous	American Shoulder and Elbow Surgeons Evaluation (Function)	104	58 mo	NS	
Doornberg, J. N., 2005	Low	Gender VS. Continuous	Broberg and Morrey rating (Function)	104	58 mo	NS	
Doornberg, J. N., 2005	Low	Gender VS. continuous	Disabilities of shoulder, arm and hand questionnaire (Function)	104	58 mo	NS	
Schweininger, S., 2015	Low	Unclear (likely Female)	WHODAS II- Disability (Function)	775	12 mo	gender is associated with disability	•
Holtslag, H. R., 2007	Mod	male VS. female	EQ-3 Daily activities (Function)	335	12 mo	NS	
Pezzin, L. E., 2000	Low	Male VS. Female	Low SF-36 Role Physical Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Male VS. Female	Low SF-36 Vitality Score (Function)	78	7 yrs	NS	
Ni, Jun, 2013	Low	Male VS. Female	Physical dysfunction (Function)	459	50 mo	NS	
Soberg, H. L., 2015	Low	Male VS. Female	SF-36 Physical Component Score (Function)	58	10 yrs	NS	
Pezzin, L. E., 2000	Low	Female VS. Male	Low SF-36 PCS Score (Function)	78	7 yrs	Females have higher odds of a worse PCS score than male	•
Abraham, C. M., 2014	Mod	Female VS. Male	SF-36 Role Physical (Function)	115	1 yrs	Females have higher SF-36 Role- Physical scores at 1 year	•
Holtslag, H. R., 2007	Mod	male VS. female	EQ-1 Mobility (Function)	335	12 mo	NS	
MacDermid, J. C., 2002	Mod	Male VS. Female	Patient Rated Wrist Evaluation (Function)	120	6 mo	NS	
Abraham, C. M., 2014	Mod	Male VS. Female	SF-36 Physical Functioning (Function)	115	1 yrs	NS	
Nota, S. P., 2015	Mod	Male VS. Female	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	
MacKenzie, E. J., 2004	Mod	Female	Psychosocial SIP (Mental Health)	124	24 mo	Not Significant	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Ouellet, M. C., 2009	Low	Female gender VS. Male gender	SF-12 Mental Component Score (Mental Health)	235	3 yrs	Female gender leads to increased risk of low mental health in trauma pts with associated TBI	•
Ouellet, M. C., 2009	Low	Female gender VS. Male gender	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Schnyder, U., 2001 (a)	Low	Female VS. Male	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Andrew, N. E., 2012	Low	Female VS. Male	SF- 36; MCS (Mental Health)	317	12 mo	NS	
Andrew, N. E., 2008	Low	Female VS. Male	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	
Soberg, H. L., 2012	Low	Female VS. Male	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Female VS. Male	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Female VS. Male	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Compared to males, females are associated with lower SF-36 MCS scores at 5 years	•
Doornberg, J. N., 2005	Low	Gender VS. continuous	SF36; Mental component (Mental Health)	104	58 mo	NS	
Pezzin, L. E., 2000	Low	Male VS. Female	Low SF-36 Role Emotional Score (Mental Health)	78	7 yrs	NS	
Soberg, H. L., 2015	Low	Male VS. Female	SF-36 Mental Component Score (Mental Health)	58	10 yrs	NS	
Abraham, C. M., 2014	Mod	Female VS. Male	SF-36 Role Emotional (Mental Health)	115	1 yrs	Females have higher SF-36 Role- Emotional scores at 1 year	•
Abraham, C. M., 2014	Mod	Female VS. Male	SF-36 Social Functioning (Mental Health)	115	1 yrs	Females have higher social functioning at 1 year.	•
Abraham, C. M., 2014	Mod	Male VS. Female	SF-36 Mental Health (Mental Health)	115	1 yrs	NS	
Wen, P. S., 2018	Low	women VS. men	TAPES instrument- Psychosocial adjustment (Other PRF)	140	NR	Women are associated with better psychosocial adjustment	•
Andrew, N. E., 2008	Low	Female VS. Male	Maximum Pain (Pain)	366	12 mo	NS	
Ponsford, J., 2008	Low	Female VS. Male	SCL-90 Global Severity Scores (Pain)	149	2 yrs	Female gender is associated with higher pain in daily functions.	
Rivara, F. P., 2008	Mod	Female VS. Male	Pain; Chronic Pain Grade Scale in abst (Pain)	3047	12 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Walsh, M., 2010	Mod	Female VS. Male	Visual analogue scale (VAS in mm) (Pain)	496	NR	Female gender is associated with increased pain	•
Pezzin, L. E., 2000	Low	Male VS. Female	Low SF-36 Bodily Pain Score (Pain)	78	7 yrs	NS	
Holtslag, H. R., 2007	Mod	male VS. female	EQ-4 Pain or discomfort (Pain)	335	12 mo	NS	
Abraham, C. M., 2014	Mod	Male VS. Female	SF-36 Bodily Pain (Pain)	115	1 yrs	NS	
Zatzick, D. F., 2007	Low	female VS. male	PTSD Checklist symptoms (PTSD)	2931	12 mo	NS	
Soberg, H. L., 2010	Low	Female VS. Male	PTSS-10 (PTSD)	99	2 yrs	Being female is associated with higher PTSS-10 scores at 2 years	•
Schnyder, U., 2001 (b)	Mod	Female VS. Male	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	NS	
Schweininger, S., 2015	Low	Gender VS. unclear; likely male reference	CAPS- PTSD (PTSD)	775	12 mo	NS	
Ni, Jun, 2013	Low	Female VS. Male	PTSD (PTSD)	459	50 mo	Being female is associated with higher odds of PTSD	•
Holtslag, H. R., 2007	Mod	MALE VS. female	EQ-2 Self-care (QOL)	335	12 mo	NS	
Hou, W. H., 2013	Mod	Male VS. Female	EQ-5D (QOL)	4643	24 mo	NS	
Holtslag, H. R., 2007	Mod	male VS. female	Glasgow Outcome Scale (GOS) < 5 (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	male VS. female	Model B; EQol-vas (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	male VS. female	model B; EuroQol-utility (QOL)	335	12 mo	NS	
O'Toole, R. V., 2008	Mod	Male VS. Female	Patient Satisfaction (QOL)	463	2 yrs	NS	
Abraham, C. M., 2014	Mod	Male VS. Female	SF-36 General Health (QOL)	115	1 yrs	NS	
Abraham, C. M., 2014	Mod	Male VS. Female	SF-36 Vitality (QOL)	115	1 yrs	NS	
Schnyder, U., 2003	Mod	Being Female VS. Male	Number of days of leaves taken (Return to activity)	100	12 mo	NS	
Hou, W. H., 2008	Low	Female VS. Male	Return to work (days) (Return to activity)	81	6 mo	NS	
Hou, W. H., 2012	High	Male VS. female	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Hou, W. H., 2012	High	Male VS. Female	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	Male VS. Female	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	NS	
Pezzin, L. E., 2000	Low	Male VS. Female	Reduced Hours (Return to activity)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Male VS. Female	Return to Work (Return to activity)	78	7 yrs	NS	
MacKenzie, E. J., 2006	Mod	Male VS. Female	Return to Work (Return to activity)	423	84 mo	NS	
Rusch, M. D., 2003	Mod	Male VS. Female	RTW status (Return to activity)	92	6 mo	NS	
Soberg, H. L., 2007	Low	women VS. men	RTW (Return to activity)	97	2 yrs	NS	

Table 9: Mental Health (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosma, Hans, 2004	Mod	Neuroticism VS. continuous	Anxiety scores (Anxiety)	181	12 mo	High neuroticism is associated with adverse mental changes after fall	•
Bosma, Hans, 2004	Mod	Neuroticism VS. Continuous	Depression symptoms (Depression)	181	12 mo	High neuroticism is associated with high depression symptoms	•
Andrew, N. E., 2012	Low	Behavioral Disorder- Yes VS. Behavioral Disorder- No	SF- 36; PCS (Function)	317	12 mo	NS	
Shields, E., 2015	Low	No Presence of psychiatric history VS. Presence of psychiatric history	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Presence of psychiatric history VS. No Presence of psychiatric history	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	Presence of psychiatric history is associated with lower odds of satisfactory PCS score	•
Shields, E., 2015	Low	Presence of psychiatric history VS. No Presence of psychiatric history	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	Presence of psychiatric history is associated with lower odds of satisfactory SST score	•
Nota, S. P., 2015	Mod	PCS measuring pain catastrophy VS. continuous; ordinal 0-10	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	increased PCS is associated with worse SMFA score	•
Zatzick, D., 2008	Low	PTSD and Depression VS. No PTSD & Depression	SF- 36; Physical Components Summary (PCS) (Function)	2707	12 mo	Presence of both PTSD & Depression is associated with decreased PCS scores	•
Zatzick, D., 2008	Low	PTSD and Depression VS. No PTSD or Depression	Activity of Daily Living (ADL) (Function)	2707	12 mo	Presence of both PTSD & Depression is associated with impaired ADL	•
Zatzick, D., 2008	Low	PTSD and Depression VS. No PTSD or Depression	Instrumental Activities of Daily Living (Function)	2707	12 mo	Presence of both PTSD & Depression is associated with impaired IADL	•
Zatzick, D., 2008	Low	PTSD or Depression VS. No PTSD or Depression	Activity of Daily Living (ADL) (Function)	2707	12 mo	Presence of either PTSD or Depression is associated with impaired ADL	•
Zatzick, D., 2008	Low	PTSD or Depression VS. No PTSD or Depression	Instrumental Activities of Daily Living (Function)	2707	12 mo	Presence of either PTSD or Depression is associated with impaired IADL	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Zatzick, D., 2008	Low	PTSD or Depression VS. No PTSD or Depression	SF- 36; Physical Components Summary (PCS) (Function)	2707	12 mo	Presence of either PTSD or Depression is associated with decreased PCS scores	•
Andrew, N. E., 2012	Low	Behavioral Disorder- Yes VS. Behavioral Disorder- No	SF- 36; MCS (Mental Health)	317	12 mo	Presence of behavioral disorder is related to worse MCS score on SF- 36	•
Schnyder, U., 2001 (a)	Low	Biograhical risk factors VS. No biograhical risk factors	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	Higher number of biographical RFs is associated with increased psychiatric morbidity	•
Ouellet, M. C., 2009	Low	Cognitive problems VS. No cognitive problems	SF-12 Mental Component Score (Mental Health)	235	3 yrs	Cognitive problems lead to increased risk of low mental health in trauma pts with associated TBI	•
Ouellet, M. C., 2009	Low	Cognitive problems VS. No cognitive problems	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Shields, E., 2015	Low	Presence of psychiatric history VS. No presence of psychiatric history	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	Presence of psychiatric history is associated with lower odds of satisfactory SST score	•
Zatzick, D., 2008	Low	PTSD and Depression VS. No PTSD or Depression	SF- 36; Mental Components Summary (Mental Health)	2707	12 mo	Presence of both PTSD & Depression is associated with decreased MCS scores	•
Zatzick, D., 2008	Low	PTSD or Depression VS. No PTSD or Depression	SF- 36; Mental Components Summary (Mental Health)	2707	12 mo	Presence of either PTSD or Depression is associated with decreased MCS scores	•
Soberg, H. L., 2010	Low	SF-36 Mental Health at 1 year VS. continuous	SF-36 Mental Health (Mental Health)	99	2 yrs	Lower SF-36 MH scores at 1 year are associated with lower mental health at 2 years	•
Soberg, H. L., 2010	Low	SF-36 Mental Health at return home VS. continuous	SF-36 Mental Health (Mental Health)	99	2 yrs	Lower SF-36 MH scores at return home are associated with lower mental health at 2 years	•
Schnyder, U., 2001 (a)	Low	Stress attributable to life events VS. No Stress attributable to life events	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Clay, F. J., 2010 (a)	Low	Psychological distress VS. No psychological distress	Presence of Pain (Pain)	150	6 mo	Psychological distress is associated with presence of pain at 6 months	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Schnyder, U., 2001 (b)	Mod	Sense of coherence score VS. continuous	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	NS	
Zatzick, D. F., 2007	Low	Sf-36 Mental health Subscale 3 months VS. Continuous	PTSD Checklist symptoms (PTSD)	2931	12 mo	Lower Sf-36 Mental health is associated with high risk of PTSD symptoms	
Soberg, H. L., 2010	Low	SF-36 Mental Health at 1 year VS. continuous	PTSS-10 (PTSD)	99	2 yrs	Low SF-36 scores at 1 year were associated with high PTSS-10 scores at 2 years	
Soberg, H. L., 2010	Low	SF-36 Mental Health at return home VS. continuous	PTSS-10 (PTSD)	99	2 yrs	Lower SF-36 MH scores at return home are associated with lower PTSS-10 scores at 2 years	•
Schnyder, U., 2001 (b)	Mod	Stress (attributable to life events in the last 2 years) VS. No stress	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	NS	
Ponzer, S., 1997	Low	VAS Mental health scale >50mm VS. VAS Mental health scale <50mm	Disability in work, family, household, social life, or leisure (QOL)	93	1 yrs	VAS mental health scale >50/100 increases risk of disability	•
Hou, W. H., 2012	High	BSRS-5 (4-20) VS. Continuous	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	BSRS-5 (4-20) VS. Continuous	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	Lower score on the BSRS-5 is associated with Slow RTW (compare to Fast RTW)	•
Hou, W. H., 2012	High	BSRS-5 (4-20) VS. Continuous	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	
Soberg, H. L., 2011	Low	cognitive functioning during hospital/rehab period VS. continuous (higher scores equal worse cognitive function)	Return to Work (Return to activity)	75	5 yrs	worse cognitive dysfunction during hospital stay/rehab is related lower odds of returning to work	•
Soberg, H. L., 2007	Low	Cognitive functioning VS. No/Low Cognitive functioning	RTW (Return to activity)	97	2 yrs	NS	
Zatzick, D., 2008	Low	PTSD and Depression VS. No PTSD or Depression	Not productive (Return to activity)	2707	12 mo	Presence of both PTSD and depression is associated with being nonproductive	•
Zatzick, D., 2008	Low	PTSD and Depression VS. No PTSD or Depression	Not working (Return to activity)	2707	12 mo	Presence of both PTSD and depression is associated with being non-working	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Zatzick, D., 2008	Low	PTSD or Depression VS. No PTSD or Depression	Not productive (Return to activity)	2707	12 mo	Presence of either PTSD or Depression is associated with being nonproductive	•
Zatzick, D., 2008	Low	PTSD or Depression VS. No PTSD or Depression	Not working (Return to activity)	2707	12 mo	Presence of either PTSD or Depression is associated with being non-working	•
Soberg, H. L., 2011	Low	sf36 social functioning VS. continuous	Return to Work (Return to activity)	75	5 yrs	NS	
Soberg, H. L., 2011	Low	WHODAS II cognitive functioning at time of return home VS. continuous	Return to Work (Return to activity)	75	5 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL score; Psychological (4-20) VS. Continuous	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	Lower psychological score is associated with slower RTW (compared to fast RTW)	•
Hou, W. H., 2012	High	WHO-QOL score; Psychological (4-20) VS. Continuous	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL score; Psychological (4-20) VS. Continuous	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	Lower psychological score is associated with Slow RTW (compare to Fast RTW)	•

Table 10: Other Factors (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosse, M. J., 2002	Low	Nonwhite race VS. White Race	% Change in Overall SIP Score (Composite)	460	24 mo	Nonwhite race is associated with higher overall SIP scores	•
Castillo, R. C., 2011	Low	Nonwhite Race VS. White Race	% Change in Overall SIP Score (Composite)	336	12 mo	Nonwhite race is associated with higher overall SIP scores	~
Bosse, M. J., 2002	Low	Nonwhite race VS. White Race	% Change in Physical Function SIP Score (Function)	460	24 mo	Nonwhite race is associated with higher physical SIP scores	•
Castillo, R. C., 2011	Low	Nonwhite Race VS. White Race	% Change in Physical Function SIP Score (Function)	336	12 mo	Nonwhite race is associated with higher physical SIP scores	
MacKenzie, E. J., 2005	Low	Race-Non-White VS. Race-White	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	LE trauma subjects who are Non-Whites are 3.1 time more likely to have disability	*
Pezzin, L. E., 2000	Low	White VS. Non-white	Low SF-36 PCS Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	White VS. Non-white	Low SF-36 Role Physical Score (Function)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	White VS. Non-white	Low SF-36 Vitality Score (Function)	78	7 yrs	NS	
Luthi, F., 2011	Low	INTERMED score >20 VS. INTERMED <21	Psychoactive drug consumption (Mental Health)	118	1 yrs	higher complexity score on INTERMED leads to more psychoactive drug use	•
Bosse, M. J., 2002	Low	Nonwhite race VS. White Race	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Nonwhite race is associated with higher mental SIP scores	*
MacKenzie, E. J., 2005	Low	Race-Non-White VS. Race-White	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	LE trauma subjects who are Non-Whites are 2.4 times more likely to have disability	*
MacKenzie, E. J., 2005	Low	Race-Non-White VS. Race-White	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	LE trauma subjects who are non- whites are 2.3 time more likely to have disability	*
Pezzin, L. E., 2000	Low	Non-White VS. white	Low SF-36 Role Emotional Score (Mental Health)	78	7 yrs	Being non-white is associated with higher odds of a poor RE score	•
Luthi, F., 2011	Low	INTERMED score >20 VS. INTERMED <21	Pain medication consumption (Pain)	118	1 yrs	higher complexity score on INTERMED leads to more pain medication use	•
Pezzin, L. E., 2000	Low	Non-White VS. white	Low SF-36 Bodily Pain Score (Pain)	78	7 yrs	Being non-white is associated with higher odds of a low BP score	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Schnyder, U., 2001 (b)	Mod	Number of biographical risk factors VS. continuous	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	More biographical risk factors lead to increased PTSD	•
Luthi, F., 2011	Low	INTERMED score >20 VS. INTERMED <21	Return to work (Return to activity)	118	1 yrs	higher complexity score on INTERMED is less likely to return to work	•
Pezzin, L. E., 2000	Low	Non-White VS. white	Reduced Hours (Return to activity)	78	7 yrs	Being non-white is associated with higher odds of reduced hours	•
Pezzin, L. E., 2000	Low	Non-White VS. white	Return to Work (Return to activity)	78	7 yrs	Being non-white is associated with lower odds of return to work	•
MacKenzie, E. J., 2006	Mod	Non-White VS. white	Return to Work (Return to activity)	423	84 mo	Being non-white is associated with lower rates of RTW.	•
Hou, W. H., 2012	High	WHO-QOL score; Physical (4-20) VS. Continuous	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL scores; Environmental (4-20) VS. continuous	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL scores; Environmental (4-20) VS. continuous	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL score; Environmental (4-20) VS. Continuous	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	
MacKenzie, E. J., 2004	Mod	Nonwhite race	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Compared to whites, nonwhite is associated with higher overall SIP scores	•
MacKenzie, E. J., 2004	Mod	Nonwhite race	Physical Function SIP (Function)	124	24 mo	Compared to whites, nonwhite is associated with higher physical function SIP scores	•
MacKenzie, E. J., 2004	Mod	Nonwhite race	Walking Speed >= 4ft/sec (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2004	Mod	Nonwhite race	Psychosocial SIP (Mental Health)	124	24 mo	Compared to whites, nonwhite is associated with higher psychosocial SIP scores	•

Table 11: Personal View (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosma, Hans, 2004	Mod	Self-efficacy VS. Continuous	Anxiety scores (Anxiety)	181	12 mo	NS	
Bosse, M. J., 2002	Low	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	% Change in Overall SIP Score (Composite)	460	24 mo	Higher self-efficacy scores are associated with lower overall SIP scores	•
Castillo, R. C., 2011	Low	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	% Change in Overall SIP Score (Composite)	336	12 mo	Higher self-efficacy scores are associated with lower overall SIP scores	•
MacKenzie, E. J., 2004	Mod	Self-efficacy score	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Higher self-efficacy scores are associated with lower overall SIP scores	•
Walsh, M. V., 2016	Mod	Resilience VS. continuous	4-Item Depression Screen (Depression)	202	Post-Op	> positive resiliency is associated with less activity restriction and therefore lower depression	•
Walsh, M. V., 2016	Mod	Resilience VS. continuous	4-Item Depression Screen (Depression)	202	Post-Op	> positive resiliency is associated with higher positive emotion and therefore lower depression	•
Bosma, Hans, 2004	Mod	Self-efficacy VS. Continuous	Depression symptoms (Depression)	181	12 mo	High self-efficacy is associated with high depression symptoms	•
Vranceanu, A. M., 2014	Low	Catastrophic thinking (measured via PCS) VS. Unclear	Disability (Function)	136	8 mo	Catastrophic thinking is a significant predictor of degree of disability	•
Archer, K. R., 2015	Low	Fear of movement at 4 weeks VS. continuous	SF-12 Physical Component Scale (Function)	110	1 yrs	NS	
Steven, J. L., 2010	Low	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. continous	Mobility (ROM goniometer) (Function)	70	9 mo	NS	
Steven, J. L., 2010	Low	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. continuous	Handgrip strength/Heel rise (Function)	70	9 mo	NS	
Steven, J. L., 2010	Low	High modified fear- avoidance belief questionnaire	Recovery (increased mobility and strength) (Function)	70	9 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
		(MFABQ 0-3 months) VS. continuous					
Steven, J. L., 2010	Low	High pain catastrophizing scale (PCS 0-3 months)) VS. continuous	Handgrip strength/Heel rise (Function)	70	9 mo	high levels of catastrophizing leads to decreased functional strength	•
Steven, J. L., 2010	Low	High pain catastrophizing scale (PCS 0-3 months)) VS. continuous	Mobility (ROM goniometer) (Function)	70	9 mo	NS	
Steven, J. L., 2010	Low	High pain catastrophizing scale (PCS 0-3 months)) VS. continuous	Recovery (increased mobility and strength) (Function)	70	9 mo	NS	
Archer, K. R., 2015	Low	Pain catastrophizing at 4 weeks VS. continuous	SF-12 Physical Component Scale (Function)	110	1 yrs	NS	
Bot, A. G., 2011	Low	Pain Catastrophizing Scale VS. continuous	Disability (measured via DASH score) (Function)	71	21 yrs	Increasing PCS is a predictor of disability	•
MacKenzie, E. J., 2005	Low	Self-efficacy-Average VS. Self-efficacy-high	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	Self-efficacy-High VS. Self-Efficacy-Low	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	High self-efficacy is associated with lower physical SIP score	•
Bosse, M. J., 2002	Low	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	% Change in Physical Function SIP Score (Function)	460	24 mo	Higher self-efficacy scores are associated with lower physical SIP scores	•
Castillo, R. C., 2011	Low	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	% Change in Physical Function SIP Score (Function)	336	12 mo	Higher self-efficacy scores are associated with lower physical SIP scores	†
MacKenzie, E. J., 2004	Mod	Self-efficacy score	Physical Function SIP (Function)	124	24 mo	Higher self-efficacy scores are associated with lower Physical Function SIP scores	1
MacKenzie, E. J., 2004	Mod	Self-efficacy score	Walking speed of >=4ft/sec (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2005	Low	Self-efficacy-Average VS. Self-Efficacy- High	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2005	Low	Self-efficacy-High VS. Self-Efficacy-Low	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	High self-efficacy is associated with lower physical SIP scores	•
Schnyder, U., 2001 (a)	Low	Impact of event (measures via IES) VS. No impact of event	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Bosse, M. J., 2002	Low	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Higher self-efficacy scores are associated with lower mental SIP scores	•
MacKenzie, E. J., 2004	Mod	Self-efficacy score	Psychosocial Function SIP (Mental Health)	124	24 mo	Higher self-efficacy scores are associated with lower psychosocial function SIP scores	•
MacKenzie, E. J., 2005	Low	Self-efficacy-Average VS. Self-Efficacy- High	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	Self-efficacy-High VS. Self-Efficacy-Low	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	High self-efficacy is associated with lower mental health SIP scores	•
Schnyder, U., 2001 (a)	Low	Subjective appraisal of accident severity VS. No subjective appraisal of accident severity	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Vranceanu, A. M., 2014	Low	Catastrophic thinking (measured via PCS) VS. Unclear	Pain at rest (Pain)	136	8 mo	Catastrophic thinking is a significant predictor of degree of pain at rest	•
Vranceanu, A. M., 2014	Low	Catastrophic thinking (measured via PCS) VS. Unclear	Pain during activity (Pain)	136	8 mo	Catastrophic thinking is a significant predictor of degree of pain during activity	•
Clay, F. J., 2010 (a)	Low	External attributions and high pain intensity VS. External attributions and mild pain	Presence of Pain (Pain)	150	6 mo	External attributions and high pain intensity are associated with presence of pain at 6 months	•
Clay, F. J., 2010 (a)	Low	External attributions of responsibility VS. No external attributions of responsibility	Presence of Pain (Pain)	150	6 mo	External attributions are associated with the presence of pain at 6 months	•
Archer, K. R., 2015	Low	Fear of movement at 4 weeks VS. continuous	Pain Intensity - Brief Pain Inventory (Pain)	110	1 yrs	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Archer, K. R., 2015	Low	Fear of movement at 4 weeks VS. continuous	Pain Interference - Brief Pain Inventory (Pain)	110	1 yrs	NS	
Steven, J. L., 2010	Low	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. continuous	Numeric rating scale (NRS pain) (Pain)	70	9 mo	fear avoidance beliefs increase risk of pain	•
Steven, J. L., 2010	Low	High pain catastrophizing scale (PCS 0-3 months)) VS. continuous	Numeric rating scale (NRS pain) (Pain)	70	9 mo	NS	
Archer, K. R., 2015	Low	Pain catastrophizing at 4 weeks VS. continuous	Pain Interference - Brief Pain Inventory (Pain)	110	1 yrs	Higher pain catastrophizing at 4 weeks is associated with higher pain interference at 1 year	•
Archer, K. R., 2015	Low	Pain catastrophizing at 4 weeks VS. continuous	Pain Intensity - Brief Pain Inventory (Pain)	110	1 yrs	Higher pain catastrophizing at 4 weeks is associated with higher pain scores at 1 year	•
Schnyder, U., 2001 (b)	Mod	Impact of Event Scale (Intrusion subscale) VS. continuous	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	Higher IES intrusion score leads to increased PTSD	•
Walsh, M. V., 2016	Mod	Resilience VS. continuous	Primary Care PTSD Screen (PTSD)	202	Post-Op	Greater positive resiliency is associated with less activity restriction and therefore lower PTSD	†
Walsh, M. V., 2016	Mod	Resilience VS. continuous	Primary Care PTSD Screen (PTSD)	202	Post-Op	Greater positive resiliency is associated with greater positive emotion and therefore lower PTSD	†
O'Toole, R. V., 2008	Mod	Personality profile VS. unclear	Patient Satisfaction (QOL)	463	2 yrs	NS	
Hou, W. H., 2013	Mod	Self-efficacy VS. continuous	EQ-5D (QOL)	4643	24 mo	NS	
Hou, W. H., 2008	Low	A little self-efficacy of RTW VS. No self- efficacy of RTW	Return to work (days) (Return to activity)	81	6 mo	A little self-efficacy leads to faster RTW	•
MacKenzie, E. J., 2006	Mod	Average self-efficacy VS. Low self-efficacy	Return to Work (Return to activity)	423	84 mo	Average self-efficacy is associated with higher return to work rates	•
Rusch, M. D., 2003	Mod	Causal attributions VS. No Causal attributions	RTW status (Return to activity)	92	6 mo	Causal attributions are associated with poor RTW status	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2006	Mod	High job involvement (motivation/satisfactio n) VS. Low job involvement (motivation/satisfactio n)	Return to Work (Return to activity)	423	84 mo	Higher job involvement is associated with higher return to work rates	•
Hou, W. H., 2008	Low	High self-efficacy of RTW VS. No self- efficacy	Return to work (days) (Return to activity)	81	6 mo	NS	
MacKenzie, E. J., 2006	Mod	High self-efficacy VS. Low self-efficacy	Return to Work (Return to activity)	423	84 mo	High self-efficacy is associated with higher return to work rates	†
Schnyder, U., 2003	Mod	Impact of Event Scale Intrusion VS. continuous	Number of days of leaves taken (Return to activity)	100	12 mo	NS	
Hou, W. H., 2008	Low	Moderate self-efficacy of RTW VS. No self- efficacy of RTW	Return to work (days) (Return to activity)	81	6 mo	NS	
Soberg, H. L., 2007	Low	Powerful others locus of health control VS. No powerful others locus of health control	RTW (Return to activity)	97	2 yrs	NS	
Schnyder, U., 2003	Mod	Self-appraisal of accident severity VS. continuous	Number of days of leaves taken (Return to activity)	100	12 mo	Higher self-appraisal of accident severity is associated with more days of leave taken	•
Schnyder, U., 2003	Mod	Self-appraisal of coping abilities VS. continuous	Number of days of leaves taken (Return to activity)	100	12 mo	Higher self-appraisal of coping ability is associated with less days of leave taken	•
Hou, W. H., 2012	High	Self -efficacy to RTW; high chance VS. No chance	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	high chance in self efficacy is associated with average RTW (compared to slow RTW)	•
Hou, W. H., 2012	High	Self -efficacy to RTW; high chance VS. no chance	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	high chance in self efficacy is associated with fast RTW (compared to slow RTW)	•
Hou, W. H., 2012	High	Self -efficacy to RTW; moderate chance VS. No chance	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	moderate chance in self efficacy is associated with average RTW (compared to Slow RTW)	•
Hou, W. H., 2012	High	Self -efficacy to RTW; moderate chance VS. No chance	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	moderate chance in self efficacy is associated with faster RTW (compared to Slow RTW)	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Hou, W. H., 2012	High	Self-efficacy of RTW in 1-month High chance VS. No chance	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2012	High	Self-efficacy of RTW in 1-month Moderate chance VS. No chance	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2008	Low	Very high self-efficacy of RTW VS. No self- efficacy	Return to work (days) (Return to activity)	81	6 mo	Very high self-efficacy leads to faster return to work	•

Table 12: Physical Health (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Schweininger, S., 2015	Low	WHODAS II- Disability (3mo) VS. Continuous	Anxiety- HADS (Anxiety)	775	12 mo	NS	
Souer, J. S., 2008	Low	Arc of forearm rotation VS. continuous; range unclear	DASH questionnaire (Composite)	84	22 mo	Arc of forearm rotation is a significant independent predictors of DASH scores	•
Souer, J. S., 2008	Low	Flexion arc VS. continuous; range unclear	Modified Gartland and Werley (Composite)	84	22 mo	Flexion arc is an independent predictor of Modified Gartland and Wesley score	•
Souer, J. S., 2008	Low	Flexion/ Extension VS. continuous; range 0-25	Mayo Wrist score (Composite)	84	22 mo	Flexion extension is a significant independent indicator of Mayo Wrist Score	•
Souer, J. S., 2008	Low	Grip strength VS. continuous; range 0-25	Mayo Wrist score (Composite)	84	22 mo	Grip strength is an independent predictor of Mayo Wrist score	†
Schweininger, S., 2015	Low	WHODAS II- Disability (3mo) VS. Continuous	Depression - HADS (Depression)	775	12 mo	NS	
Nota, S. P., 2015	Mod	Other pain condition VS. No other pain condition	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	Presence of another pain condition is associated with higher SMFA total scores	•
Papadakaki, M., 2017	Mod	Baseline Physical disability VS. No baseline physical disability	WHODAS 2.0 >=25 (Function)	89	6 mo	NS	
Nota, S. P., 2015	Mod	Other pain condition not known VS. Other pain condition known	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	
MacKenzie, E. J., 2005	Low	Poor pre-injury health status VS. Good/excellent pre-injury status	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	Poor pre-injury health status VS. Good/excellent pre- injury status	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma with poor PIHS are 1.6 times likely to have disability	•
Schweininger, S., 2015	Low	WHODAS II- Disability (3mo) VS. continuous	WHODAS II- Disability (Function)	775	12 mo	Disability at 3 months was associated with worse disability scores at 12 months	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2005	Low	Pre-injury health status-Poor VS. Pre- injury health status- Good or excellent	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
Zatzick, D. F., 2007	Low	intentional Injury VS. Continuous	PTSD Checklist symptoms (PTSD)	2931	12 mo	Intentional injury is associated with high PTSD symptoms compared to natural injury	•
Schweininger, S., 2015	Low	WHODAS II- Disability (3mo) VS. Continuous	CAPS- PTSD (PTSD)	775	12 mo	NS	
Ponzer, S., 1997	Low	VAS Physical health scale >50mm VS. VAS Physical health scale <50mm	Disability in work, family, household, social life, or leisure (QOL)	93	1 yrs	VAS physical health scale >50/100 increases risk of disability	•
MacKenzie, E. J., 2006	Mod	3-month physical SIP score VS. continuous	Return to Work (Return to activity)	423	84 mo	Higher 3-month physical SIP scores are associated with lower RTW rates	•
Soberg, H. L., 2007	Low	Physical functioning VS. No/Low Physical functioning	RTW (Return to activity)	97	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL score; Physical (4-20) VS. Continuous	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOL score; Physical (4-20) VS. Continuous	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	NS	

Table 13: PTSD (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Schweininger, S., 2015	Low	PTSD (3mo) VS. Continuous	Anxiety- HADS (Anxiety)	775	12 mo	PTSD at 3 months was associated with worse anxiety scores at 12 months	•
Schweininger, S., 2015	Low	PTSD (3mo) VS. Continuous	Depression - HADS (Depression)	775	12 mo	PTSD at 3 mo is associated with worse depression scores at 12 months	
Schweininger, S., 2015	Low	PTSD (3mo) VS. Continuous	WHODAS II- Disability (Function)	775	12 mo	PTSD at 3 months was associated with worse PTSD scores at 12 months	•
Zatzick, D., 2008	Low	PTSD VS. No PTSD	Activity of Daily Living (ADL) (Function)	2707	12 mo	PTSD is associated with impaired ADL	•
Zatzick, D., 2008	Low	PTSD VS. No PTSD	Instrumental Activities of Daily Living (Function)	2707	12 mo	PTSD is associated with impaired IADL	•
Zatzick, D., 2008	Low	PTSD VS. No PTSD	SF- 36; Physical Components Summary (PCS) (Function)	2707	12 mo	PTSD is associated with lower PCS scores	•
Nota, S. P., 2015	Mod	SVL measuring PTSD VS. continuous	Short Musculoskeletal Functional Assessment (SMFA) Total (Function)	65	NR	NS	
Zatzick, D., 2008	Low	PTSD VS. No PTSD	SF- 36; Mental Components Summary (Mental Health)	2707	12 mo	PTSD is associated with lower PCS scores	•
Liedl, A., 2010	Low	CAPS arousal (3mo) VS. continuous	VAS pain (Pain)	824	12 mo	increased arousal at 3mo is associated with increased pain at 12mo	•
Liedl, A., 2010	Low	CAPS avoidance (3mo) VS. continuous	VAS pain (Pain)	824	12 mo	NS	
Liedl, A., 2010	Low	CAPS re-experiencing (3mo) VS. continuous	VAS pain (Pain)	824	12 mo	increased re-experiencing at 3mo is associated with increased pain at 12mo	•
Schweininger, S., 2015	Low	PTSD (3 mo) VS. Continuous	CAPS- PTSD (PTSD)	775	12 mo	PTSD at 3 mo is associated with worse PTSD scores at 12 months	•
Papadakaki, M., 2017	Mod	PTSD at baseline VS. No PTSD at baseline	IES-R >26 (PTSD)	86	6 mo	PTSD at baseline is significantly associated with higher odds of PTSD at 6 months	•
Zatzick, D., 2008	Low	PTSD VS. No PTSD	Not productive (Return to activity)	2707	12 mo	PTSD is associated with being nonproductive	•
Zatzick, D., 2008	Low	PTSD VS. No PTSD	Not working (Return to activity)	2707	12 mo	PTSD is associated with being non-working	•

Table 14: Socioeconomic Status (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosma, Hans, 2004	Mod	occupational level VS.	Anxiety scores (Anxiety)	181	12 mo	NS	
MacKenzie, E. J., 2004	Mod	Income level at or below poverty level	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Not Significant	
Bosse, M. J., 2002	Low	Near or above poverty level VS. Income level at or below poverty level	% Change in Overall SIP Score (Composite)	460	24 mo	Income level near or above poverty level is associated with lower overall SIP scores	•
Castillo, R. C., 2011	Low	Income level at or below poverty level VS. Near or above poverty level	% Change in Overall SIP Score (Composite)	336	12 mo	NS	
Bosse, M. J., 2002	Low	Lawyer hired VS. No lawyer hired	% Change in Overall SIP Score (Composite)	460	24 mo	Hiring a lawyer is associated with higher overall SIP scores	•
Castillo, R. C., 2011	Low	Lawyer hired VS. No lawyer hired	% Change in Overall SIP Score (Composite)	336	12 mo	Hiring a lawyer is associated with higher overall SIP scores	•
Bosse, M. J., 2002	Low	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	% Change in Overall SIP Score (Composite)	460	24 mo	NS	
Castillo, R. C., 2011	Low	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	% Change in Overall SIP Score (Composite)	336	12 mo	NS	
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 13-24 mos after injury	% Change in Overall SIP Score (Composite)	460	24 mo	Private insurance is associated with lower physical SIP scores	•
Castillo, R. C., 2011	Low	Private insurance VS. No health insurance or public health ins 13-24 mos after injury	% Change in Overall SIP Score (Composite)	336	12 mo	Private insurance is associated with lower physical SIP scores	•
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 4-6 mos after injury	% Change in Overall SIP Score (Composite)	460	24 mo	Private insurance is associated with lower physical SIP scores	•
Castillo, R. C., 2011	Low	Private insurance VS. No health insurance or	% Change in Overall SIP Score (Composite)	336	12 mo	Private insurance is associated with lower physical SIP scores	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
		public health ins 4-6 mos after injury					
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 7-12 mos after injury	% Change in Overall SIP Score (Composite)	460	24 mo	Private insurance is associated with lower physical SIP scores	•
Castillo, R. C., 2011	Low	Private insurance VS. No health insurance or public health ins 7-12 mos after injury	% Change in Overall SIP Score (Composite)	336	12 mo	Private insurance is associated with lower physical SIP scores	•
MacKenzie, E. J., 2004	Mod	No insurance or public insurance	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Not Significant	
Bosma, Hans, 2004	Mod	Occupation level VS. Continuous	Depression symptoms (Depression)	181	12 mo	NS	
Soberg, H. L., 2012	Low	Blue-collar employment VS. White-collar employment	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Blue-collar employment VS. White-collar employment	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Blue-collar employment VS. White-collar employment	SF-36 Physical Component Score (Function)	104	5 yrs	NS	
Hebert, J. S., 2006	Low	Gross income VS. categorical	TD (total disability) (Function)	88	2 yrs	NS	
Kugelman, D. N., 2018	Mod	Income <50,000 VS. Income >50,000	Total SMFA score (Function)	329	6 mo	NS	
MacKenzie, E. J., 2004	Mod	Income level at or below poverty level	Physical Function SIP (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2004	Mod	Income level at or below poverty level	Walking speed of >=4 ft/sec (Function)	124	24 mo	Not Significant	
Bosse, M. J., 2002	Low	Income level at or below poverty level VS. Near or above poverty level	% Change in Physical Function SIP Score (Function)	460	24 mo	NS	
Castillo, R. C., 2011	Low	Income level at or below poverty level	% Change in Physical Function SIP Score (Function)	336	12 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
		VS. Near or above poverty level					
MacDermid, J. C., 2002	Mod	Injury compensation via legal case VS. No injury compensation	Patient Rated Wrist Evaluation (Function)	120	6 mo	Injury compensation is associated with higher PRWE scores	
Bosse, M. J., 2002	Low	Lawyer hired VS. No lawyer hired	% Change in Physical Function SIP Score (Function)	460	24 mo	Hiring a lawyer is associated with higher physical SIP scores	•
Castillo, R. C., 2011	Low	Lawyer hired VS. No lawyer hired	% Change in Physical Function SIP Score (Function)	336	12 mo	Hiring a lawyer is associated with higher physical SIP scores	→
Shields, E., 2015	Low	Medicaid insurance VS. Workers Comp/MV	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Medicaid insurance VS. Workers Comp/MV	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Medicaid VS. Workers comp/MV	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Medicare VS. Workers comp/MV	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Medicare VS. Workers Comp/MV	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Medicare VS. Workers Comp/MV	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	NS	
Bosse, M. J., 2002	Low	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	% Change in Physical Function SIP Score (Function)	460	24 mo	NS	
Castillo, R. C., 2011	Low	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	% Change in Physical Function SIP Score (Function)	336	12 mo	NS	
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 13-24 mos after injury	% Change in Physical Function SIP Score (Function)	460	24 mo	Private insurance is associated with lower physical SIP scores	†
Castillo, R. C., 2011	Low	Private insurance VS. No health insurance or public health ins 13-24 mos after injury	% Change in Physical Function SIP Score (Function)	336	12 mo	Private insurance is associated with lower physical SIP scores	†

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 4-6 mos after injury	% Change in Physical Function SIP Score (Function)	460	24 mo	Private insurance is associated with lower physical SIP scores	•
Castillo, R. C., 2011	Low	Private insurance VS. No health insurance or public health ins 4-6 mos after injury	% Change in Physical Function SIP Score (Function)	336	12 mo	Private insurance is associated with lower physical SIP scores	•
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 7-12 mos after injury	% Change in Physical Function SIP Score (Function)	460	24 mo	Private insurance is associated with lower physical SIP scores	•
Castillo, R. C., 2011	Low	Private insurance VS. No health insurance or public health ins 7-12 mos after injury	% Change in Physical Function SIP Score (Function)	336	12 mo	Private insurance is associated with lower physical SIP scores	•
MacKenzie, E. J., 2004	Mod	No insurance or public insurance	Physical Function of SIP (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2004	Mod	No insurance or public insurance	Walking speed (>=4 ft/sec) (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2005	Low	Poverty status-Near- poor or Non-poor VS. Poverty status-Poor	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Patients near poor or not poor have lower physical SIP scores than those who are poor	•
Shields, E., 2015	Low	Private Insurance VS. Workers Comp/MV	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Private Insurance VS. Workers Comp/MV	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	Private insurance is associated with higher odds of a satisfactory PCS score	1
Shields, E., 2015	Low	Private insurance VS. Workers comp/MV	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
Walsh, M., 2010	Mod	Workers' compensation VS. No workers' compensation	DASH score (Function)	496	NR	Workers' comp leads to decreased function	•
Luthi, F., 2011	Low	accident at work VS. accident not at work	Psychoactive drug consumption (Mental Health)	118	1 yrs	NS	
Gunawardena, N., 2007	Low	Being employed in the army	Presence of Psychological Distress - BSI Scale (Mental Health)	461	3 yrs	Those who are employed in the army have higher odds of psychological distress	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Gunawardena, N., 2007	Low	Being employed in the army	Presence of Psychological Distress - GHQ Scale (Mental Health)	461	3 yrs	Those who are employed in the army have higher odds of psychological distress	•
Soberg, H. L., 2012	Low	Blue-collar employment VS. White-collar employment	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Blue-collar employment VS. White-collar employment	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Soberg, H. L., 2012	Low	Blue-collar employment VS. White-collar employment	SF-36 Mental Component Score (Mental Health)	104	5 yrs	NS	
Ouellet, M. C., 2009	Low	Employed VS. Not employed	SF-12 Mental Component Score (Mental Health)	235	3 yrs	NS	
Ouellet, M. C., 2009	Low	Employed VS. Not employed	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
MacKenzie, E. J., 2004	Mod	Income level at or below poverty level	Psychosocial Function SIP (Mental Health)	124	24 mo	Not Significant	
Bosse, M. J., 2002	Low	Income Near or above poverty level VS. at or below poverty level	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Income near or above poverty level is associated with lower mental function SIP scores	•
MacKenzie, E. J., 2005	Low	Involvement with legal system-Yes VS. Involvement with legal system-No	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	LE trauma subjects who are involved with legal system are 2.1 times more likely to have disability	•
Bosse, M. J., 2002	Low	Lawyer hired VS. No lawyer hired	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Hiring a lawyer is associated with higher mental SIP scores	•
Shields, E., 2015	Low	Medicaid VS. Workers comp/MV	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	NS	
Shields, E., 2015	Low	Medicare VS. Workers comp/MV	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	NS	
Bosse, M. J., 2002	Low	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 13-24 mos after injury	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Private insurance is associated with lower mental function SIP scores	•
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 4-6 mos after injury	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Private insurance is associated with lower mental function SIP scores	•
Bosse, M. J., 2002	Low	Private insurance VS. No health insurance or public health ins 7-12 mos after injury	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Private insurance is associated with lower mental function SIP scores	•
MacKenzie, E. J., 2004	Mod	No insurance or public insurance	Psychosocial Function of SIP (Mental Health)	124	24 mo	Not Significant	
MacKenzie, E. J., 2005	Low	Poverty status-Near- poor or Non-poor VS. Poverty status-Poor	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Patients who are not poor or are near poor have lower risk of disability than those who are poor	•
MacKenzie, E. J., 2005	Low	Poverty status-Poor VS. Poverty Status- Near-poor or Non-poor	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
Shields, E., 2015	Low	Private insurance VS. Workers comp/MV	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	NS	
Luthi, F., 2011	Low	unqualified work VS. qualified work	Psychoactive drug consumption (Mental Health)	118	1 yrs	NS	
Luthi, F., 2011	Low	accident at work VS. accident not at work	Pain medication consumption (Pain)	118	1 yrs	accident at work leads to more pain medication use	•
Luthi, F., 2011	Low	unqualified work VS. qualified work	Pain medication consumption (Pain)	118	1 yrs	unqualified workers are associated with more pain medication use	•
Walsh, M., 2010	Mod	Workers' compensation VS. No workers' compensation	Visual analogue scale (VAS in mm) (Pain)	496	NR	Workers' comp leads to increased pain	•
Zatzick, D. F., 2007	Low	No insurance VS. Private Insurance	PTSD Checklist symptoms (PTSD)	2931	12 mo	NS	
Zatzick, D. F., 2007	Low	Public insurance VS. Private Insurance	PTSD Checklist symptoms (PTSD)	2931	12 mo	NS	
Hou, W. H., 2013	Mod	Farming/forestry/fishin g occupation VS. Housewife occupation	EQ-5D (QOL)	4643	24 mo	NS	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
O'Toole, R. V., 2008	Mod	Insurance Status	Patient Satisfaction (QOL)	463	2 mo		
Hou, W. H., 2013	Mod	Low economic burden VS. High economic burden	EQ-5D (QOL)	4643	24 mo	NS	
Hou, W. H., 2013	Mod	Moderate economic burden VS. High economic burden	EQ-5D (QOL)	4643	24 mo	NS	
Hou, W. H., 2013	Mod	Part-time occupation VS. Housewife occupation	EQ-5D (QOL)	4643	24 mo	NS	
O'Toole, R. V., 2008	Mod	Poverty status VS. No poverty	Patient Satisfaction (QOL)	463	2 yrs	NS	
O'Toole, R. V., 2008	Mod	Pre-injury job VS. unclear	Patient Satisfaction (QOL)	463	2 yrs	NS	
O'Toole, R. V., 2008	Mod	Pre-injury work status VS. unclear	Patient Satisfaction (QOL)	463	2 yrs	NS	
Hou, W. H., 2013	Mod	Repairs personnel/operators/lab orers occupation VS. Housewife occupation	EQ-5D (QOL)	4643	24 mo	NS	
Hou, W. H., 2013	Mod	Returned to work after injury VS. Did not return to work after injury	EQ-5D (QOL)	4643	24 mo	Returning to work after injury is associated with higher EQ-5D score.	•
Hou, W. H., 2013	Mod	White-collar occupation VS. Housewife occupation	EQ-5D (QOL)	4643	24 mo	NS	
Hou, W. H., 2013	Mod	Workers Comp Coverage VS. No workers comp coverage	EQ-5D (QOL)	4643	24 mo	NS	
Hebert, J. S., 2006	Low	\$25,001-50,000/annum (gross income) VS. <\$25,000/annum	failure to RTW (Return to activity)	88	2 yrs	Having annual income of \$25,00-50K1 is associated with high likelihood of RTW	†
Hebert, J. S., 2006	Low	>75,000/annum (gross income) VS. <\$25,000/annum	failure to RTW (Return to activity)	88	2 yrs	Having annual income of >\$ 75K is associated with high likelihood of RTW	†

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Hebert, J. S., 2006	Low	50,001-75,000/annum (gross income) VS. <\$25,000/annum	failure to RTW (Return to activity)	88	2 yrs	Having annual income of \$50,001-75K is associated with high likelihood of RTW	•
Luthi, F., 2011	Low	accident at work VS. accident not at work	Return to work (Return to activity)	118	1 yrs	NS	
MacKenzie, E. J., 2006	Mod	Blue collar job VS. White collar job	Return to Work (Return to activity)	423	84 mo	NS	
Clay, F. J., 2010 (b)	Low	White Collar Worker VS. Blue Collar Worker	Time off work (Return to activity)	152	6 mo	White collar employment is associated with less time off work	•
Clay, F. J., 2010 (b)	Low	Comorbid conditions and self-employment VS. Comorbid conditions and not sef- employed	Slower return to work (Return to activity)	152	6 mo	Self-employed pts with comorbid conditions has faster return to work	•
Pezzin, L. E., 2000	Low	Job scale at time of injury VS. continuous	Reduced Hours (Return to activity)	78	7 yrs	NS	
Pezzin, L. E., 2000	Low	Job scale at time of injury VS. continuous	Return to Work (Return to activity)	78	7 yrs	NS	
MacKenzie, E. J., 2006	Mod	Job with high physical demands VS. Job with low physical demands	Return to Work (Return to activity)	423	84 mo	NS	
Rusch, M. D., 2003	Mod	litigation status VS. unclear	RTW status (Return to activity)	92	6 mo	NS	
MacKenzie, E. J., 1998	Low	Low-Physical demand of job in 0-3m) VS. High	RTW (Return to activity)	312	12 mo	Individuals with LL fractures with jobs with low physical demands are more likely to RTW	•
MacKenzie, E. J., 1998	Low	Low-Physical demand of job in 0-3m) VS. High	RTW (Return to activity)	312	12 mo	NS	
MacKenzie, E. J., 1998	Low	Medium-Physical demand of job in 0- 3m) VS. High	RTW (Return to activity)	312	12 mo	NS	
Rusch, M. D., 2003	Mod	Months with employers VS. continuous	RTW status (Return to activity)	92	6 mo	NS	
MacKenzie, E. J., 1998	Low	Near poor (poverty status) VS. Poor	RTW (Return to activity)	312	12 mo	Individuals with LL fractures who are near poor are more likely to RTW	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2006	Mod	No health insurance VS. Health insurance	Return to Work (Return to activity)	423	84 mo	NS	
MacKenzie, E. J., 2006	Mod	No involvement with legal system VS. Involvement with legal system	Return to Work (Return to activity)	423	84 mo	No involvement with legal system is associated with higher return to work rates	•
MacKenzie, E. J., 1998	Low	Not Poor (Poverty status) VS. Poor	RTW (Return to activity)	312	12 mo	Individuals with LL fractures who are not poor are more likely to RTW	†
MacKenzie, E. J., 1998	Low	Other-Compensation in 0-3 m VS. None	RTW (Return to activity)	312	12 mo	Individuals with LL fractures with jobs with other compensation are more likely to RTW	•
MacKenzie, E. J., 1998	Low	Other-Compensation in 3-6 m VS. None	RTW (Return to activity)	312	12 mo	NS	
Hou, W. H., 2012	High	White-Collar Full- Time Job VS. Part time job	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	White collar job is associated with faster RTW	•
Hou, W. H., 2012	High	part time jobs VS. White-Collar Full- Time Job	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	Part time jobs VS. White-collar full time	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	
Hu, J., 2014	Low	Post-injury monthly salary VS. continuous	RTW status (Return to activity)	246	8 mo	NS	
MacKenzie, E. J., 2006	Mod	Poverty VS. unclear	Return to Work (Return to activity)	423	84 mo	NS	
MacKenzie, E. J., 2006	Mod	Pre-injury job tenure of 1 yr of more VS. Pre- injury job tenure of <1 yr	Return to Work (Return to activity)	423	84 mo	Longer pre-injury job tenure is associated with higher return to work rates	•
Hu, J., 2014	Low	Pre-injury monthly salary VS. continuous	RTW status (Return to activity)	246	8 mo	NS	
Hou, W. H., 2012	High	Repair personnel/operators/lab orers VS. White-Collar Full-Time Job	RTW; Slow vs. Average RTW (Return to activity)	637	2 yrs	NS	
Hou, W. H., 2012	High	White-Collar Full- Time Job VS. Repair	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	White collar job is associated with faster RTW.	†

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
		personnel/operators/lab orers					
Hou, W. H., 2012	High	Repair personnel/operators/lab orers VS. White-collar full time	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	
Luthi, F., 2011	Low	unqualified work VS. qualified work	Return to work (Return to activity)	118	1 yrs	qualified workers are more likely to return to work	•
Soberg, H. L., 2007	Low	White collar job VS. Blue collar job	RTW (Return to activity)	97	2 yrs	NS	
MacKenzie, E. J., 1998	Low	White collar (Occupation in month 0-3) VS. Blue collar	RTW (Return to activity)	312	12 mo	Individuals with LL fractures with white collar jobs are more likely to RTW	•
MacKenzie, E. J., 1998	Low	White collar (Occupation in month 3-6) VS. Blue collar	RTW (Return to activity)	312	12 mo	NS	
Hou, W. H., 2012	High	Workers in farming /forestry/fishing VS. White-Collar Full- Time Job	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	White-Collar Full- Time Job VS. Workers in farming /forestry/fishing	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	White collar job is associated with faster RTW	•
Hou, W. H., 2012	High	Workers in farming/forestry/fishin g VS. White-collar full time	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	Ns	
MacKenzie, E. J., 1998	Low	Workers- Compensation in 0-3 m VS. None	RTW (Return to activity)	312	12 mo	Individuals with LL fractures with jobs with worker's compensation are more likely to RTW	•
MacKenzie, E. J., 1998	Low	Workers- Compensation in 3-6 m VS. None	RTW (Return to activity)	312	12 mo	Individuals with LL fractures with jobs with worker's compensation are more likely to RTW	†

Table 15: Social Support (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Holtslag, H. R., 2007	Mod	household composition more VS. Household Composition Alone	EQ-5 Anxiety or depression (Anxiety)	335	12 mo	NS	
Bosma, Hans, 2004	Mod	Social Support VS. continuous	Anxiety scores (Anxiety)	181	12 mo	NS	
Holtslag, H. R., 2007	Mod	household more VS. household single	Head Injury symptom checklist (HISC) (Composite)	225	12 mo	NS	
Bosse, M. J., 2002	Low	Social Support (Inventory of Socially Supported Behaviors) VS. continuous	% Change in Overall SIP Score (Composite)	460	24 mo	Higher social support scores are associated with lower overall SIP scores	•
Castillo, R. C., 2011	Low	Social Support (Inventory of Socially Supported Behaviors) VS. continuous	% Change in Overall SIP Score (Composite)	336	12 mo	Higher social support scores are associated with lower overall SIP scores	•
Papadakaki, M., 2017	Mod	Divorced/widowed VS. Single	CES-D Scale >=16 (Depression)	84	6 mo	Divorced/widowed patients have higher odds of depression at 6 mos compared to those who are single	•
Papadakaki, M., 2017	Mod	Married VS. Single	CES-D Scale >=16 (Depression)	84	6 mo	NS	
Bosma, Hans, 2004	Mod	social support VS. Continuous	Depression symptoms (Depression)	181	12 mo	NS	
Papadakaki, M., 2017	Mod	Divorced/Widowed VS. Single	WHODAS 2.0 >=25 (Function)	89	6 mo	NS	
Holtslag, H. R., 2007	Mod	household more VS. household alone	EQ-3 Daily activities (Function)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	household more VS. household alone	EQ-1 Mobility (Function)	335	12 mo	NS	
Andrew, N. E., 2008	Low	Married VS. Never married	SF-12 Physical Component Score (Function)	366	12 mo	NS	
Soberg, H. L., 2012	Low	Participation in society at rehab discharge VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	Higher levels participation in society are associated with higher SF-36 PCS scores at 5 years	•
Soberg, H. L., 2012	Low	Participation in society at rehab discharge VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	Higher levels participation in society are associated with higher SF-36 PCS scores at 5 years	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Soberg, H. L., 2012	Low	Participation in society at rehab discharge VS. continuous	SF-36 Physical Component Score (Function)	104	5 yrs	Higher levels participation in society are associated with higher SF-36 PCS scores at 5 years	•
Andrew, N. E., 2008	Low	Previously married VS. Never married	SF-12 Physical Component Score (Function)	366	12 mo	NS	
Bosse, M. J., 2002	Low	Social Support (Inventory of Socially Supported Behaviors) VS. continuous	% Change in Physical Function SIP Score (Function)	460	24 mo	Higher social support scores are associated with lower physical SIP scores	†
Castillo, R. C., 2011	Low	Social Support (Inventory of Socially Supported Behaviors) VS. continuous	% Change in Physical Function SIP Score (Function)	336	12 mo	Higher social support scores are associated with lower physical SIP scores	•
Ouellet, M. C., 2009	Low	Living with spouse VS. Living alone	SF-12 Mental Component Score (Mental Health)	235	3 yrs	NS	
Ouellet, M. C., 2009	Low	Living with spouse VS. Living alone	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Andrew, N. E., 2008	Low	Married VS. Never married	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	
Soberg, H. L., 2012	Low	Participation in society at rehab discharge VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Higher levels participation in society are associated with higher SF-36 MCS scores at 5 years	•
Soberg, H. L., 2012	Low	Participation in society at rehab discharge VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Higher levels participation in society are associated with higher SF-36 MCS scores at 5 years	•
Soberg, H. L., 2012	Low	Participation in society at rehab discharge VS. continuous	SF-36 Mental Component Score (Mental Health)	104	5 yrs	Higher levels participation in society are associated with higher SF-36 MCS scores at 5 years	•
Andrew, N. E., 2008	Low	Previously married VS. Never married	SF-12 Mental Component Score (Mental Health)	366	12 mo	NS	
Schnyder, U., 2001 (a)	Low	Social network VS. No social network	Psychiatric morbidity (includes PTSD, depression and anxiety) (Mental Health)	99	1 yrs	NS	
Bosse, M. J., 2002	Low	Social Support (Inventory of Socially Supported Behaviors) VS. continuous	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	Higher social support scores are associated with lower mental SIP scores	†
Ouellet, M. C., 2009	Low	Social support VS. Continuous	SF-12 Mental Component Score (Mental Health)	235	3 yrs	Increased social support leads to decreased risk of low mental health in trauma pts with associated	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Ouellet, M. C., 2009	Low	Social support VS. Continuous	SF-12 Mental Component Score (Mental Health)	162	3 yrs	NS	
Holtslag, H. R., 2007	Mod	HOUSEHOLD MORE VS. HOUSEHOLD ALONE	EQ-4 Pain or discomfort (Pain)	335	12 mo	NS	
Andrew, N. E., 2008	Low	Married VS. Never married	Maximum Pain (Pain)	366	12 mo	NS	
Andrew, N. E., 2008	Low	Previously married VS. Never married	Maximum Pain (Pain)	366	12 mo	NS	
Papadakaki, M., 2017	Mod	Divorced/widow VS. Single	IES-R >26 (PTSD)	86	6 mo	NS	
Schnyder, U., 2001 (b)	Mod	Size of social network VS. continuous	Clinician Administered PTSD Scale (PTSD)	106	1 yrs	NS	
Holtslag, H. R., 2007	Mod	Household composition more VS. Household composition Alone	Model B; EQol-vas (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	Household Composition More VS. Household Composition Alone	model B; EuroQol-utility (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	household more VS. household alone	EQ-2 Self-care (QOL)	335	12 mo	NS	
Holtslag, H. R., 2007	Mod	household more VS. household alone	Glasgow Outcome Scale (GOS) < 5 (QOL)	335	12 mo	NS	
Hou, W. H., 2013	Mod	Married VS. Single	EQ-5D (QOL)	4643	24 mo	NS	
Clay, F. J., 2010 (b)	Low	High social functioning and receipt of injury compensation VS. Low social functioning and receipt of injury compensation	Time off work (Return to activity)	152	6 то	Compared to pts w/low social functioning, those with high had shorter time off work	•
MacKenzie, E. J., 2006	Mod	Low levels of social support VS. unclear	Return to Work (Return to activity)	423	84 mo	NS	
Hou, W. H., 2012	High	Married VS. Single, divorced or Widowed	RTW; Average vs. Fast RTW (Return to activity)	576	2 yrs	NS	
Hou, W. H., 2012	High	Married VS. Single, divorced or widowed	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	married patients are associated with average RTW (compared to slow RTW)	•

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Hou, W. H., 2012	High	Married VS. Single, divorced or widowed	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	Married patients are associated to faster RTW (compare to slow RTW)	•
Soberg, H. L., 2007	Low	Social functioning high VS. Social functioning low	RTW (Return to activity)	97	2 yrs	Higher social functioning (>75) is associated with increased probability of RTW	•
MacKenzie, E. J., 1998	Low	Strong-Practical support VS. Weak	RTW (Return to activity)	312	12 mo	NS	
Hou, W. H., 2012	High	WHO-QOLscore; Social (4-20) VS. Continuous	RTW; Slow vs. Average RTW (Return to activity)	627	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOLscore; Social (4-20) VS. Continuous	RTW; Slow Vs. Fast RTW (Return to activity)	405	2 yrs	NS	
Hou, W. H., 2012	High	WHO-QOLscore; Social (4-20) VS. continuous	RTW; Average vs fast RTW (Return to activity)	576	2 yrs	NS	

Table 16: Substance Use (PICO 1)

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Bosse, M. J., 2002	Low	<10 cigarettes/day VS. Not a current smoker	% Change in Overall SIP Score (Composite)	460	24 mo	<10 cigarettes/day is associated with a higher overall SIP score	•
Castillo, R. C., 2011	Low	<10 cigarettes/day VS. Not a current smoker	% Change in Overall SIP Score (Composite)	336	12 mo	<10 cigarettes/day is associated with a higher overall SIP score	
Bosse, M. J., 2002	Low	>=10 cigarettes/day VS. Not a current smoker	% Change in Overall SIP Score (Composite)	460	24 mo	>=10 cigarettes/day is associated with higher overall SIP scores	*
Castillo, R. C., 2011	Low	>=10 cigarettes/day VS. Not a current smoker	% Change in Overall SIP Score (Composite)	336	12 mo	>=10 cigarettes/day is associated with higher overall SIP scores	*
MacKenzie, E. J., 2004	Mod	Smoking	Overall Sickness impact Profile (SIP) (Composite)	124	24 mo	Smoking results in increased odds of overall SIP score	
Bosse, M. J., 2002	Low	<10 cigarettes/day VS. Not a current smoker	% Change in Physical Function SIP Score (Function)	460	24 mo	<10 cigarettes/day is associated with a higher physical SIP score	
Castillo, R. C., 2011	Low	<10 cigarettes/day VS. Not a current smoker	% Change in Physical Function SIP Score (Function)	336	12 mo	<10 cigarettes/day is associated with a higher physical SIP score	
Bosse, M. J., 2002	Low	>=10 cigarettes/day VS. Not a current smoker	% Change in Physical Function SIP Score (Function)	460	24 mo	>=10 cigarettes/day is associated with higher physical SIP scores	•
Castillo, R. C., 2011	Low	>=10 cigarettes/day VS. Not a current smoker	% Change in Physical Function SIP Score (Function)	336	12 mo	>=10 cigarettes/day is associated with higher physical SIP scores	•
Shields, E., 2015	Low	No smoking VS. Smoking	Satisfactory Simple Shoulder Test (>=10) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Non-smoker VS. Smoker	Satisfactory DASH Score (<21) (Function)	77	1 yrs	NS	
Shields, E., 2015	Low	Non-smoker VS. Smoker	Satisfactory SF-12 PCS (>=40) (Function)	77	1 yrs	NS	
MacKenzie, E. J., 2004	Mod	Smoking	Physical Function of SIP (Function)	124	24 mo	Smoking results in increased odds of physical function SIP score	•
MacKenzie, E. J., 2004	Mod	Smoking	Walking speed (>=4 ft/sec) (Function)	124	24 mo	Not Significant	
MacKenzie, E. J., 2005	Low	Status: Current Smoker VS. Status: Never smoked	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who are current smokers are 3.3 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	Status: Current Smoker VS. Status: Never smoked	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Current smokers with LE trauma are 2.1 times more likely to have disability	

Reference	Quality	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
MacKenzie, E. J., 2005	Low	Status: Quit smoking VS. Status: Never smoked	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who quit smoking are 2.2 times more likely to have disability	•
MacKenzie, E. J., 2005	Low	Status: Quit smoking VS. Status: Never smoked	Sickness Impact Profile (SIP)-Physical (Function)	413	84 mo	Subjects with LE trauma who quit smoking are 2.1 times more likely to have disability	
Bosse, M. J., 2002	Low	<10 cigarettes/day VS. Not a current smoker	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	NS	
Bosse, M. J., 2002	Low	>=10 cigarettes/day VS. Not a current smoker	% Change in Mental Function SIP Score (Mental Health)	460	24 mo	>=10 cigarettes/day is associated with higher mental SIP scores	•
MacKenzie, E. J., 2005	Low	Current smoker VS. Never smoked	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Current smokers with LE trauma getting treatment are 1.8 times likely to have disability	•
MacKenzie, E. J., 2005	Low	Current smoker VS. Never smoked	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Current smokers with LE trauma getting treatment are 1.8 times likely to have disability	•
MacKenzie, E. J., 2005	Low	Current smoker VS. Never smoked	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Current smokers with LE trauma getting treatment are 1.8 times likely to have disability	•
Shields, E., 2015	Low	No smoking VS. Smoking	Satisfactory SF-12 MCS (>=40) (Mental Health)	77	1 yrs	NS	
MacKenzie, E. J., 2005	Low	Quit smoking VS. Never smoked	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	Quit smoking VS. Never smoked	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	NS	
MacKenzie, E. J., 2005	Low	Quit smoking VS. Never smoked	Sickness Impact Profile (SIP)- Psychosocial (Mental Health)	413	84 mo	Smokers who quit with LE trauma getting treatment are 1.8 times likely to have disability	•
MacKenzie, E. J., 2004	Mod	Smoking	Psychosocial Function of SIP (Mental Health)	124	24 mo	Smoking results in increased odds of psychosocial function SIP score	•
MacKenzie, E. J., 2006	Mod	Drinking problem VS. No drinking problem	Return to Work (Return to activity)	423	84 mo	NS	
MacKenzie, E. J., 2006	Mod	Current Smoker VS. Never Smoked	Return to Work (Return to activity)	423	84 mo	Current smoker is associated with lower RTW rates	•
MacKenzie, E. J., 2006	Mod	Quit smoking VS. Current smoker	Return to Work (Return to activity)	423	84 mo	NS	

Table 17: PTSD Likelihood (PICO 1)

Reference	Quality	Patient Characteristics	Reference Standard	Duration	Index Test	N1	Events	N2	Events	LR(+	LR(-	Rule	Rule
							1		2))	In	Out
Russo, Joan, 2013	Low	trauma injury pts; unclear location; excluded head/TBI/SCI	Clinician Administered PTSD Scale (CAPS)	180	PTSD Checklist Civilian Version (PCL- C >34 at injury)	207	AR	207	AR	2.13	0.8	WEA K	POOR
Russo, Joan, 2013	Low	trauma injury pts; unclear location; excluded head/TBI/SCI	Clinician Administered PTSD Scale (CAPS)	360	PTSD Checklist Civilian Version (PCL- C >34 at injury)	207	AR	207	AR	1.65	0.87	POOR	POOR

Table 18: Screening Tools (PICO 2)

Reference	Quality	Patient Characteristics	Reference Standard	Index Test	N1	Events 1	N2	Events 2	LR(+	LR(-	Rule In	Rule Out
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (>=1 yes)	35 0	291	76 5	58	10.83	0.18	STRONG	MODERAT E
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (>=3 yes)	23	214	88 4	135	27.63	0.40	STRONG	WEAK
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (4 yes)	17 0	162	94 5	187	44.45	0.54	STRONG	POOR
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (>=2 yes)	29 4	262	82 1	87	17.97	0.26	STRONG	WEAK
Hennigar, C., 2001	Low	traumatic hand injury pts	Post-traumatic stress diagnostic scale (PDS)	Injured Workers Survey (IWS >4)	84	AR	84	AR	2.26	0.09	MODERAT E	STRONG
Hennigar, C., 2001	Low	traumatic hand injury pts	Post-traumatic stress diagnostic scale (PDS)	Injured Workers Survey (IWS<4)	84	AR	84	AR	3.42	0.15	MODERAT E	MODERAT E
Hennigar, C., 2001	Low	traumatic hand injury pts	Post-traumatic stress diagnostic scale (PDS)	Injured Workers Survey (IWS>4 including #4 or 5)	84	AR	84	AR	2.46	0.14	MODERAT E	MODERAT E

Table 19: Pre-Injury Psychosocial Factors in Military Population (PICO 4)

Reference	Qualit y	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Gunawardena, N., 2007	Low	Being shot at under war/violent circumstances	Presence of Psychological Distress - BSI Scale (Mental Health)	461	3 yrs	Pts who have been shot at under war have higher odds of psychological distress	•
Gunawardena, N., 2007	Low	Being threatened with arms under war	Presence of Psychological Distress - BSI Scale (Mental Health)	461	3 yrs	Pts who have been threatened with war have higher odds of psychological distress	•
Gunawardena, N., 2007	Low	Being threatened with arms under war/violent circumstances	Presence of Psychological Distress - GHQ Scale (Mental Health)	461	3 yrs	Pts who have been threatened with arms have higher odds of psychological distress	•
Gunawardena, N., 2007	Low	Witnessed war/violent actions including shooting, grenades, bombs, explosions	Presence of Psychological Distress - GHQ Scale (Mental Health)	461	3 yrs	Pts who have seen war have higher odds of psychological distress	•
Melcer, T., 2013 (a)	Low	Preinjury psychological diagnosis	PTSD (PTSD)	772	2 yrs	Preinjury psychological diagnosis is associated with increased odds of PTSD	•
Melcer, T., 2013 (a)	Low	Preinjury psychological diagnosis	Substance Abuse (Substance abuse)	772	2 yrs	Preinjury psychological diagnosis is associated with increased odds of substance abuse	•

Table 20: Barriers to Screening (PICO 5)

Reference	Qualit y	Factor VS. Reference	Outcome	Grp N	Duration	Significance	Direction
Burrus, C., 2009	Low	Age VS. continuous	Non-Participation in questionnaire at 1 year (Other)	990	1 yrs	Increasing age is associated with lower odds of non-response at 1 year	1
Burrus, C., 2009	Low	Further Education VS. Compulsory School	Non-Participation in questionnaire at 1 year (Other)	990	1 yrs	Further education is associated with lower odds of non-response at 1 year	†
Burrus, C., 2009	Low	Further Education VS. Compulsory school	Non-Participation in questionnaire at hospitalization (Other)	990	3 days	Further education is associated with lower odds of non-response at 3 days	†
Burrus, C., 2009	Low	Complex biopsychosocial complexity VS. Simple biopsychosocial complexity	Non-Participation in questionnaire at 1 year (Other)	990	1 yrs	Patients with more complex biopsychosocial profile have higher odds of non-response	•
Burrus, C., 2009	Low	Complex biopsychosocial complexity VS. Simple biopsychosocial complexity	Non-Participation in questionnaire at hospitalization (Other)	990	3 days	Patients with more complex biopsychosocial profile have higher odds of non-response	
Burrus, C., 2009	Low	Other language than native language VS. Native language (French or German)	Non-Participation in questionnaire at 1 year (Other)	990	1 yrs	Speaking a language other than the native language is associated with higher odds of non-response	•
Burrus, C., 2009	Low	Other language than native language VS. Native language (French or German)	Non-Participation in questionnaire at hospitalization (Other)	990	3 days	Speaking a language other than the native language is associated with higher odds of non-response	•
Burrus, C., 2009	Low	Single VS. Married or domestic partner	Non-Participation in questionnaire at hospitalization (Other)	990	3 days	Being single is associated with lower odds of non-response at 3 days	†

Detailed Data Tables

Table 1: Age (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	Any Infection (Adverse events)	Age < 25 VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)	Sig only	Sig only	NS
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	DVT/PE (Adverse events)	Age < 25 VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)	Sig only	Sig only	NS
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	Heterotop ic ossificatio n (Adverse events)	Age <25 yrs VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)	Sig only	Sig only	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-5 Anxiety or depressio n (Anxiety)	<55 VS. >55	33	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR (LL, UL)	0.4(0.2, 1.2)	NS
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	Age VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts	0.01	NS
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	Age VS. Continuous	181	12 mo	Multivariate Regression Analysis (Depression, Sex, Age, Education, Occupation, social Support, Self- efficacy, Neuroticism & mastery)	Beta coefficien t	0	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Head Injury symptom checklist (HISC) (Composi te)	<55 VS. >55	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR (LL, UL)	2.1(0.6, 6.9)	NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Age <55 yrs	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	38.7, 0.06	Not Significant
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	Age VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	0.05; <0.05	Increasing Age is associated with worse depression scores on HADS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Age VS. Continuous	181	12 mo	Multivariate Regression Analysis (Depression, Sex, Age, Education, Occupation, social Support, Self- efficacy, Neuroticism & mastery)	Beta coefficien t	0.11	NS
Roh, Y. H., 2015	Low	pts with hand fractures; 28% HISS >=51; 23% open wound	Quick DASH Score (Function)	65 and higher VS. younger than 65	93	6 mo	Multivariate linear regression (male sex, age younger than 65 years, dominant side, minor injury severity, closed reduction and internal fixation [pinning], PCS\27, and PASS-20\35)	Beta Coefficie nt (LL, UL)	0.86 (1.16– 0.56)	Age predicts worse DASH scores at 6 months

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Roh, Y. H., 2015	Low	pts with hand fractures; 28% HISS >=51; 23% open wound	Recovery of grip strength (Function	65 and higher VS. younger than 65	93	6 то	Multivariate linear regression (male sex, age younger than 65 years, dominant side, minor injury severity, closed reduction and internal fixation [pinning], PCS\27, and PASS-20\35)	Beta Coefficie nt (LL, UL)	-0.61 (- 0.75, - 0.37)	Age > 65 is associated with poor recovery of grip strength
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-1 Mobility (Function)	<55 VS. >55	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR (LL, UL)	0.8(0.3, 2.2)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-3 Daily activities (Function	<55 VS. >55	335	12 mo	multivariate logistic regression (e.g. BMI, co morbidity)	OR (LL, UL)	1.3(0.5, 3.1)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	>55 VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of sub score of >5 points)	1.9	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	>55 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of sub score of >20 points)	5	LE trauma subjects of >50 years of age are 5.0 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	25-34 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of sub score of >20 points)	6.3	LE trauma subjects of 25- 34 years of age are 6.3 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	25-34 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR (of sub score of >5 points)	2	LE trauma subjects of 25- 34 years of age are 2.0 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	35-44 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR (of sub score of >20 points)	8.8	LE trauma subjects of 35- 44 years of age are 8.8 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	35-44 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	3.6	LE trauma subjects of 35- 44 years of age are 3.6 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	45-54 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	6.4	LE trauma subjects of 45- 54 years of age are 6.4 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	45-54 yrs VS. <25 yrs	413	84 mo	Logistic Regression (type of treatment, age, gender, race, education, poverty status, pre-injury health status, smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2	LE trauma subjects of 45- 54 years of age are 3.6 times more likely to have disability
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function)	Age <55 yrs	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	0.40, 0.97	Not Significant
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking Speed >= 4ft/sec (Function)	Age <55 yrs	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	4.69, 0.16	Not Significant

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 PCS Score (Function	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.095	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Physical Score (Function)	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.046	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Vitality Score (Function	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.039	NS
Pape, H. C., 2010	Low	Multiple trauma, Avg age at injury 26.5; 2.7% paraplegia included; 35% femur & 29% tibia fracture	Physical Wellness (HASPO C) (Function	Age at Injury VS. Continuous	637	10 yrs	Multivariate logistic regression (age at injury, ISS, head trauma, foot fracture, LE amputation, ICU los, acetabulum fracture, MAISspine, hip fracture, knee fracture, 2+ fractures, premorbid score)	OR, CI	0.95 (0.93- 0.97)	Older age at injury is associated with lower odds of a poor physical wellness score
Ponsford, J., 2008	Low	Severe work/MVA ortho trauma pts with majority of lower extremity fractures	SF-36 Physical Summary Score (Function	Age at injury VS. Continuous	149	2 yrs	Multivariate regression analysis (Age, Gender, Education, & anxiety level)	Beta Coefficie nt	-0.15	Older age is associated with high pain

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	DASH score (Function)	Age in yrs VS. continuous	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	0.08 (-0.10 to 0.26)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function	Age VS. Continuous	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-0.01 (-0.2 0.03)	Increasing age is associated with lower SF- 12 PCS scores
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury, intra-articular fracture of elbow	Disabiliti es of shoulder, arm and hand questionn aire (Function)	Age VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	P-value	NA	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Kwok, I. H. Y., 2011	Low	Unclear trauma/injury Pts with distal radial fractures	Disabiliti es of shoulder, arm and hand questionn aire (DASH) (Function)	Age VS. Continuous	108	2 yrs	Multiple linear regression analysis (age, gender, fracture type, plate, grip, pain, function, ROM, length of FU)	r correlatio n coefficien t (p- value)	0.095 (0.168)	NS
Roh, Y. H., 2014	Low	Unclear trauma/injuries distal radius fracture treated with volar plate fixation	Grip strength (Function	Age VS. Continuous	121	6 mo	Multivariate linear regression (unclear factors)	beta coef; p value	-0.98; <0.01	increased age is associated with decreased grip strength
Roh, Y. H., 2014	Low	Unclear trauma/injuries distal radius fracture treated with volar plate fixation	Patient perceived disability measure by MHQ score (Function	Age VS. Continuous	121	6 то	Multivariate linear regression (age, fracture type)	beta coef; p value	-0.95; <0.01	increased age is associated with increased disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	Age VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.95	Increasing age is associated with lower odds of a satisfactory DASH score at 1 year
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	Age VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.97	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function)	Age VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.96	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function	Age VS. Continuous	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	0.00; (- 0.09 to 0.09)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function)	Age VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	-0.06 (- 0.15-0.04)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Age VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	-0.04 (- 0.12-0.05)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Age VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	0.07 (- 0.17-0.21)	NS
Soberg, H. L., 2015	Low	severe multiple trauma injuries; 69% extremity, 39% spine, 61% head	SF-36 Physical Compone nt Score (Function	Age VS. Continuous	58	10 yrs	Multivariate regression (age, sex, injury factors, function, coping)	Beta (p- value)	0.004 (0.966)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	Age VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	0.04	NS
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury, intra-articular fracture of elbow	American Shoulder and Elbow Surgeons Evaluatio n (Function	Age VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.05	age is associated with body function

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury, intra-articular fracture of elbow	Broberg and Morrey rating (Function	Age VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.05	Age is associated with B & M rating
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury, intra-articular fracture of elbow	Mayo Elbow Performa nce Index (Function	Age VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.05	Age is associated with elbow performance index

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacDerm id, J. C., 2002	Mod	All pts had distal radius fractures; 59% AO C fractures, 24% B, and 17% A	Patient Rated Wrist Evaluatio n (Function)	Age VS. Continuous	120	6 mo	Multivariate linear regression (injury compensation, education, prereduction radial shortening, age, sex, AO fracture type, post reduction radial shortening)	None	None	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Physical Functioni ng (Function)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.01 (- 0.01-0.03)	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Role Physical (Function	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.01 (- 0.003- 0.03)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function	Age VS. Continuous	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high school-yes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	-0.17; - 0.17; 0.12; 0.17; (- 0.41 to 0.076)	NS
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury, intra-articular fracture of elbow	SF 36; physical compone nt (Function	Age VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.001	age is associated with physical fitness
Hebert, J. S., 2006	Low	Unclear etiology; Population with LE amputation, average age 34,96.6%, males	TD (total disability) (Function)	Age (at accident) VS. Continuous	88	2 yrs	Multivariate linear regression (age, level of amputation, no. of surgical procedures, days of stay, gender, interaction terms)	beta- coefficien t (CI)	7(1.6-12.3)	Older age at time of accident is associated with increased days of Total Disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	>55 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	0.7	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	>55 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	0.6	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	>55 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	0.7	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	25-34 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.1	Subjects with LE trauma undergoing treatment of age 25-34 are 2.1 times likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	25-34 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.9	Subjects with LE trauma undergoing treatment of age 25-34 are 2.9 times likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	25-34 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.1	Subjects with LE trauma undergoing treatment of age 25-34 are 2.1 times likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	35-44 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.7	Subjects with LE trauma undergoing treatment of age 35-44 are 2.7 times likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	35-44 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	3.4	Subjects with LE trauma undergoing treatment of age 35-44 are 3.4 times likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	35-44 yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self-efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.7	Subjects with LE trauma undergoing treatment of age 35-44 are 2.7 times likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	45-54yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.7	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	45-54yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	1.9	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	45-54yrs VS. <25 yrs	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.7	NS
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	Mood Diagnosis (Mental Health)	Age < 25 VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)			NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	Other Mental Health Diagnosis (Mental Health)	Age < 25 VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)			NS
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	Psychiatri c Clinic Use (Mental Health)	Age < 25 VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)			NS
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	Any Mental Health Diagnosis (Mental Health)	Age < 25 yrs VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)	OR; CI; p- value	0.66 (0.47 to 0.93); <0.05	Age <25 is associated with lower odds of any mental health diagnosis

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial SIP (Mental Health)	Age <55 yrs	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	46.6, 0.001	Compared to age>=55, pts under 55 are associated with high psychosocial SIP scores
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Emotiona 1 Score (Mental Health)	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.033	NS
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS>=16	SF-36 Mental Health (Mental Health)	Age at injury VS. Continuous	99	2 yrs	Multivariate linear regression (age at injury; BACQ coping; mental health at return home; cognitive functioning at return home)	Beta coef, CI	0.22 (0.01- 0.42)	Older age at injury is associated with better mental health at 2 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	Age VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	1.1	NS
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Age VS. Continuous	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	0.01 (-0.08 to 0.07)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	Age VS. Continuous	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-0.01 (-0.1- 0.05)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Age VS. Continuous	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.97 (0.94, 1)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Age VS. Continuous	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.96 (0.91, 1)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Age VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	0.01 (- 0.08-1.00)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Age VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	0.02 (- 0.08-0.12)	NS
Soberg, H. L., 2015	Low	severe multiple trauma injuries; 69% extremity, 39% spine, 61% head	SF-36 Mental Compone nt Score (Mental Health)	Age VS. Continuous	58	10 yrs	Multivariate regression (age, sex, injury factors, function, coping)	Beta (p-value)	0.03 (0.762)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	SF36; Mental compone nt (Mental Health)	Age VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.001	Age is associated with Mental health
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Age VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	0.11 (0.01- 0.21)	Higher age is associated with higher SF-36 MCS at 5 years
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Mental Health (Mental Health)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.01 (- 0.02- 0.002)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Role Emotiona 1 (Mental Health)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.02 (- 0.03 0.004)	Higher age is associated with worse Role- Emotional scores.
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Social Functioni ng (Mental Health)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.02 (- 0.03 0.007)	Higher age is associated with worse social functioning at 1 year
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-4 Pain or discomfor t (Pain)	<55 VS. >55	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.0(0.4, 2.8)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Age 55-64 VS. Age <55	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	1.05; (0.99, 1.12)	NS
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Age 65- 74 VS. Age <55	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	0.73 (0.65, 0.83)	Age 65-74 ys is associated with better pain outcome at 12 months
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Age 75- 84 VS. Age <55	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	0.69 (0.61- 0.79	Ages 75-84 was associated with lower rates of injury related pain

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Bodily Pain Score (Pain)	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.006	NS
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	Visual analogue scale (VAS in mm) (Pain)	Age in yrs VS. continuous	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	-0.02 (- 0.04 to 0.01)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	Age VS. Continuous	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	1.0 (1.0-1.1)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Bodily Pain (Pain)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.01 (0.001- 0.03)	Older age is associated with lower pain at 1 year
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG1 Relations hip with others) (Posttraumatic growth)	Age VS. Continuous	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	0.018	NS
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG2 Philosoph y of life) (Post-traumatic growth)	Age VS. Continuous	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	-0.189	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG3 Self Perceptio n) (Post- traumatic growth)	Age VS. Continuous	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	-0.06	NS
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (Total) (Post- traumatic growth)	Age VS. Continuous	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta- coefficien t	-0.122	NS
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	Age VS. Continuous	293	12 mo	Multiple logistic regression(Gender, Age, Injury characteristics, & Insurance status)	RR(LL, UL)	1.00(0.99, 1.00)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Melcer, T., 2013 (b)	Low	Severely injured veterans; amputees and those w/AIS >=3; 75% LE injury	PTSD (PTSD)	Age < 25 VS. Age >25 yrs	285	24 mo	Multivariate logistic regression; (Injury group (amputee vs non- amputee); ISS (log); TBI; mechanism of injury; injury year and pre-injury MH diagnosis)			NS
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >=16	PTSS-10 (PTSD)	Age at Injury VS. Continuous	99	2 yrs	Multivariate linear regression (gender; age at injury; BACQ coping at return home; mental health at return home; cognitive functioning at return home; bodily pain at return home)	Beta coef, CI	-0.17 (- 0.28 0.06)	Higher age at injury is associated with lower PTSS-10 scores at 2 years
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	Age VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts	-0.03	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-2 Self care (QOL)	<55 VS. >55	335	12 mo	multivariate linear regression (e.g. BMI, co morbidity)	OR(LL, UL)	2.0(0.7, 5.7)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Glasgow Outcome Scale (GOS) < 5 (QOL)	<55 VS. >55	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.2(0.8, 5.8)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Model B; EQol-vas (QOL)	<55 VS. >55	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Score	-0.001	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	model B; EuroQol- utility (QOL)	<55 VS. >55	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	0.024	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Age (per 10-year increase) VS. Continuous	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	-0.002	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Age VS. Continuous	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 General Health (QOL)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.01 (- 0.003- 0.02)	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Vitality (QOL)	Age VS. Continuous	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.01 (- 0.02- 0.001)	NS
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	>=55 yrs old VS. <25	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	0.41 (0.18- 0.92)	Being >=55 years old is associated with lower RTW rates

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	18-24 yrs VS. >45 yrs	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	2.8(1.6,4.6	Individuals aged 18-24 are more likely to RTW
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	25-34 yrs old VS. <25	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	0.87 (0.57- 1.33)	NS
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	25-34 yrs VS. >45 yrs	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.5(1.0,2.4	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	35-44 yrs old VS. <25	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	0.80 (0.51- 1.25)	NS
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	35-44 yrs VS. >45 yrs	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.0(0.6,1.6	NS
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	45-54 yrs old VS. <25	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	0.72 (0.44- 1.17)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	Age >44 VS. Age <25	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	2.39 (1.05, 5.47)	Age >44 leads to faster RTW
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	Age 25-44 VS. Age <25	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	1.39 (0.48, 2.36)	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Return to Work (Return to activity)	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.08	Higher age at injury is associated with lower odds of return to work

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Reduced Hours (Return to activity)	Age at injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.79	Higher age at injury is associated with higher odds of reduced hours
Ponsford, J., 2008	Low	Severe work/MVA ortho trauma pts with majority of lower extremity fractures	Return to Work (Return to activity)	Age VS. Continuous	149	2 yrs	Multivariate regression analysis(Age, Gender,Education, & anxiety level)	Beta Coefficie nt	1.06	Older age is associated with slow RTW
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs. Fast RTW (Return to activity)	Age VS. Continuous	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.02(1.00, 1.04)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Age VS. Continuous	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.02(1.00, 1.04)	older age is associated with slow RTW(compared to average RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Age VS. Continuous	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.04(1.01, 1.06)	older age is associated with slow RTW (compare to Fast RTW)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2011	Low	patients with multiple traumatic injuries	Return to Work (Return to activity)	age VS. Continuous	75	5 yrs	logistic regression (gender, age, college education, blue vs white collar job, New Injury Severity Score, physical function at return to home, pain at return home, social functioning at return home, cognitive function at return home, cognitive functioning in hospital-rehab)	OR (LL, UL)	0.99 (0.94– 1.04)	NS
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	Age VS. Continuous	97	2 yrs	Cox regression(gender,education,pr ofession,NISS,LOS, locus of health control,function)	RR(LL,U L)	0.99(0.96,1 .02)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Time off work (Return to activity)	Age VS. Continuous	152	6 mo	multivariate cox regression (coping, comorbidities, employment, polytrauma, social functioning, ISS, age, self-employment, education, compensation, high initial pain, recovery beliefs, interactions)	Relative Rate Ratio, CI	0.98 (0.96- 0.99)	Increasing age is associated with longer time off work
Schnyder, U., 2003	Mod	Victims of accidental trauma, excluding pts w/ severe head trauma and mental illness; avg ISS 22.1	Number of days of leaves taken (Return to activity)	Age VS. Continuous	100	12 mo	Multivariate linear regression (age, accident type, impact, self- appraisal, ISS, gender)	beta coefficien t	0.16	NS
Rusch, M. D., 2003	Mod	Hand/UE pts; required tx by hand surgeon; 20 crush, 4 degloving; 51 amputations	RTW status (Return to activity)	Age VS. Continuous	92	6 mo	Logistic regression (age, sex, causal attributions, litigation status, months with employers)	significan ce	NR	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Melcer, T., 2013 (a)	Low	military-related lower limb injury	Substance Abuse (Substanc e abuse)	Age <=25 yrs	772	2 yrs	age, log ISS, mechanism of injury (blast or nonblast), injury year (2001Y2005 or 2006Y2008), injury location (above the knee or below the knee), or preinjury psychological diagnosis.	Multivari ate Logistic regressio n, OR, CI	0.46 (0.28- 0.78)	<=25 years old is associated with lower odds of substance abuse at 2 years

Table 2: Anxiety (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	12 month anxiety (BSI) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.82 (0.02; 0.0001)	Increased anxiety at 12mo leads to increased anxiety at 24mo
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	6 month anxiety (BSI) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.74 (0.03; 0.0001)	Increased anxiety at 6mo leads to increased anxiety at 12mo
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	Anxiety (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; P- value	0.45; <0.001	Anxiety at 3 months was associated with worse anxiety scores at 12 months

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	Depression/Anxiety VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	0.56	increased depression/anxi ety is associated with post- treatment anxiety at 1 year
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	BSI Anxious distress (12mo) VS. Continuous	327	24 mo	structural equation modeling (education, insurance, gender, race, social support, self-efficacy)	p-value	0.04	increased anxiety leads to decreased function
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	BSI Anxious distress (3mo) VS. Continuous	327	24 mo	structural equation modeling (education, insurance, gender, race, social support, self-efficacy)	p-value	<0.01	increased anxiety leads to decreased function

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	BSI Anxious distress (6mo) VS. Continuous	327	24 mo	structural equation modeling (education, insurance, gender, race, social support, self-efficacy)	p-value	<0.01	increased anxiety leads to decreased function
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Depressio n Scale (Depressi on)	12 month anxiety (BSI) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.88	NS
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Depressio n Scale (Depressi on)	6 month anxiety (BSI) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.72	NS
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	Anxiety (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	Anxiety (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS
Ponsford, J., 2008	Low	Severe work/MVA ortho trauma pts with majority of lower extremity fractures	SF-36 Physical Summary Score (Function	Anxiety VS. Continuous	149	2 yrs	Multivariate regression analysis(Age, Gender,Education, & anxiety level)	Beta Coefficie nt	0.12	High Anxiety is Associated with higher pain
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	Physical dysfuncti on (Function)	Fearful of death during incident VS. No fear of death during incident	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	1.13, 0.41	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Roh, Y. H., 2015	Low	pts with hand fractures; 28% HISS >=51; 23% open wound	Recovery of grip strength (Function	Pain Anxiety Symptom State (PASS) over 35 VS. PASS under 35	93	6 mo	Multivariate linear regression (male sex, age younger than 65 years, dominant side, minor injury severity, closed reduction and internal fixation [pinning], PCS\27, and PASS-20\35)	Beta Coefficie nt(LL, UL)	-0.74 (- 1.04 0.44)	PASS >35 is associated with poor recovery of grip strength
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Sense of death threat VS. No sense of death threat	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	4.67(1.04,2 0.9)	Increased sense of death threat is associated with increased post-accident psychiatric morbidity
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	VAS Pain (Pain)	12 month anxiety (BSI) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.18 (0.04; 0.0001)	Increased anxiety at 12mo leads to increased pain at 24mo

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	VAS Pain (Pain)	6 month anxiety (BSI) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.14 (0.05; 0.0065)	Increased anxiety at 6mo leads to increased pain at 12mo
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	Anxiety (3mo) VS. Continuous	775	12 mo	cross-laged longitudinal panel design (unclear factors)	NR	NR	NS
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	PTSD (PTSD)	Fearful of death during incident VS. No fear of death during incident	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	0.252, 0.047	Fearful of death is associated with higher odds of PTSD
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	Pre-injury benzodiazepine prescription VS. Anxiety	293	12 mo	Multiple logistic regression(Gender, Age, Injury characteristics, & Insurance status)	RR(LL, UL)	1.46(1.17, 1.84)	Pre-injury benzodiazepine prescription is associated with high risk of PTSD symptoms.

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Sense of death threat VS. no sense of death threat	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta (pvalue)	0.26 (<0.01)	higher sense of death threat leads to increased risk of PTSD
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Anxiety	463	2 yrs	age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety	Multivari ate logistic regressio n, p-value	p<0.1	Less anxiety results in the increased odds of satisfaction

Table 3: BMI (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-5 Anxiety or depressio n (Anxiety)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.0(0.5- 2.0)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Head Injury symptom checklist (HISC) (Composi te)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.0(0.5, 2.0)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-1 Mobility (Function)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR{mean (95%CI)}	1.3(0.6- 2.6)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-3 Daily activities (Function	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.4(0.8, 2.8)	NS
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	DASH score (Function	BMI kg/m2 VS. continuous	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	-0.11 (-1.0 to 0.7)	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	BMI VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.93	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	BMI VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.98	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function	BMI VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.8	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	BMI VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	1.1	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-4 Pain or discomfor t (Pain)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.5(0.8, 2.9)	NS
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	Visual analogue scale (VAS in mm) (Pain)	BMI (kg/m2) VS. continuous	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	0.09 (0.01 to 0.22)	Increased BMI is associated with increased pain

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-2 Self care (QOL)	<25 VS. >25	335	12 mo	multivariate logistic regression (e.g. BMI, co morbidity)	OR(LL, UL)	1.5(0.6, 3.6)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Glasgow Outcome Scale (GOS) < 5 (QOL)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.5(0.7, 3.4)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Model B; EQol-vas (QOL)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.147	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	model B; EuroQol- utility (QOL)	<25 VS. >25	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	0.006	NS

Table 4: Comorbidities (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-5 Anxiety or depressio n (Anxiety)	no VS. yes	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.5(0.7- 3.1)	NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Chronic preinjury medical condition	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	28.5, 0.01	Chronic preinjury medical condition is associated with higher overall SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Head Injury symptom checklist (HISC) (Composi te)	no VS. YES	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.3(1.1, 5.1)	co-morbidity is an independent predictor of long-term functional consequences after major trauma
Souer, J. S., 2008	Low	Trauma w sport injury received surgical treatment for distal radius fra. (ORIF); ulnar fra. included	Modified Gartland and Werley (Composi te)	Radio-carpal arthritis VS. Continuous; range 0-23	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	18.16	Radio-carpal arthritis is an independent predictor of Modified Gartland and Wesley score
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Physical Functioni ng (Function	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.50 (- 1.14-0.14)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Role Physical (Function	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.27 (- 0.79-0.25)	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	Charlson Score VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	1.4	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	Charlson Score VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.5	Higher charlson score is associated with lower odds of a satisfactory PCS score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function	Charlson Score VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	1.3	NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function)	Chronic preinjury medical condition	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	26.1, 0.03	Chronic preinjury medical condition is associated with higher Physical Function SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking Speed of >=4 ft/sec (Function)	Chronic preinjury medical condition	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	0.48, 0.22	Not Significant

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function	Disease diagnosis - Yes VS. Disease diagnosis- No	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	-0.4 (-3.1 to 2.3)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-1 Mobility (Function)	NO VS. YES	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.5(1.2, 5.3)	co-morbidity is an independent predictor of long-term functional consequences after major trauma

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-3 Daily activities (Function	no VS. yes	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.5(1.3, 4.9)	co-morbidity is an independent predictor of long-term functional consequences after major trauma
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	SF-12 Physical Compone nt Scale (Function	One or more comorbid conditions VS. No comorbid conditions	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks; comorbidites)	Beta coef, p- value	-0.30, 0.02	1 or more comorbid conditions is associated with lower physical health at 1 year
Pezzin, L. E., 2000	Mod	Unilateral and bilateral amputees; average ISS: 18.5	SF-36 (Low PCS) (Function	Premorbid Illness	78	7.5 yrs	age, gender, race, time of injury, education, injury severity score, head injury, neck injury, premorbid illness, amputation level, postamputation surgeries	Multivari ate Logit Regressio n, Estimate, p-value	3.059, 0.20	Not Significant

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Mod	Unilateral and bilateral amputees; average ISS: 18.5	SF-36 (Low RP) (Function	Premorbid Illness	78	7.5 yrs	age, gender, race, time of injury, education, injury severity score, head injury, neck injury, premorbid illness, amputation level, postamputation surgeries	Multivari ate Logit Regressio n, Estimate, p-value	2.671, 0.06	Not Significant
Pape, H. C., 2010	Low	Multiple trauma, Avg age at injury 26.5; 2.7% paraplegia included; 35% femur & 29% tibia fracture	Physical Wellness (HASPO C) (Function	Premorbid score VS. Continuous	637	10 yrs	Multivariate logistic regression (age at injury, ISS, head trauma, foot fracture, LE amputation, ICU los, acetabulum fracture, MAIS-spine, hip fracture, knee fracture, 2+ fractures, premorbid score)	OR, CI	0.83 (0.54- 1.29)	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Mental Health (Mental Health)	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.25 (- 0.05-0.56)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Role Emotiona I (Mental Health)	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.36 (- 0.01- 0.72)	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Social Functioni ng (Mental Health)	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.05 (- 0.38-0.48)	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	Charlson Score VS. Continuous	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.54	Higher Charlson score is associated with lower odds of a satisfactory MCS score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial Function SIP (Mental Health)	Chronic preinjury medical condition	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	32.9, 0.10	Not Significant
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Disease diagnosis - Yes VS. Disease diagnosis - No	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	-2.6 (-4.9, - 0.3)	Presence of any pre- injury comorbidity is associated with worse MCS scores on SF-36
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Physical health problems VS. Continuous	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.99 (0.79, 1.23)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Physical health problems VS. Continuous	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	1.11 (0.79, 1.55)	NS
Pezzin, L. E., 2000	Mod	Unilateral and bilateral amputees; average ISS: 18.5	SF-36 (Low RE) (Mental Health)	Premorbid Illness	78	7.5 yrs	age, gender, race, time of injury, education, injury severity score, head injury, neck injury, premorbid illness, amputation level, postamputation surgeries	Multivari ate Logit Regressio n, Estimate, p-value	-1.748, 0.14	Not Significant
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Psychoact ive drug consumpt ion (Mental Health)	Psychiatric comorbidities VS. No psychiatric comorbidities	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	4 (1.6, 9.8)	increased psychiatric comorbidities is associated with increased psychoactive drug use
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Bodily Pain (Pain)	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.32 (- 0.68-0.05)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-4 Pain or discomfor t (Pain)	NO VS. YES	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.4(1.2, 5.0)	co-morbidity is an independent predictor of long-term functional consequences after major trauma
Pezzin, L. E., 2000	Mod	Unilateral and bilateral amputees; average ISS: 18.5	SF-36 (Low BP) (Pain)	Premorbid illness	78	7.5 yrs	age, gender, race, time of injury, education, injury severity score, head injury, neck injury, premorbid illness, amputation level, postamputation surgeries	Multivari ate Logit Regressio n, Estimate, p-value	0.417, 0.67	Not Significant
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Pain medicatio n consumpt ion (Pain)	Psychiatric comorbidities VS. No psychiatric comorbidities	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	1.7 (0.6, 5.2)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 General Health (QOL)	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.18 (- 0.59-0.24)	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Vitality (QOL)	>=1 VS. None	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	0.22 (- 0.14-0.58)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Medical comorbidities (does not specify)	463	2 yrs	age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety	Multivari ate logistic regressio n, p-value	p>0.2	Not Significant

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Medical comorbidities VS. unclear	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Model B; EQol-vas (QOL)	No VS. Yes	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.216	Comorbidity is associated with lower QOL
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	model B; EuroQol- utility (QOL)	No VS. Yes	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.0262	Comorbidities are associated with QOL
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Glasgow Outcome Scale (GOS) < 5 (QOL)	no VS. yes	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.7(0.8, 4.0)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-2 Self care (QOL)	NO VS. YES	335	12 mo	multivariate logistic regression (e.g. BMI, co morbidity)	OR(LL, UL)	4.7(1.7, 13.2)	co-morbidity is an independent predictor of long-term functional consequences after major trauma
Pezzin, L. E., 2000	Mod	Unilateral and bilateral amputees; average ISS: 18.5	SF-36 (Low VT) (QOL)	Premorbid Illness	78	7.5 yrs	age, gender, race, time of injury, education, injury severity score, head injury, neck injury, premorbid illness, amputation level, postamputation surgeries	Multivari ate Logit Regressio n, Estimate, p-value	0.523, 0.56	Not Significant
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Slower return to work (Return to activity)	One or more comorbid conditions VS. No comorbid conditions	152	6 mo	Multivariate cox regression (comorbidities, to fill the day, high initial pain, shouldn't work, social functioning, psychological distress, age, polytrauma, self employment, interactions)	Relative Rate Ratio, CI	0.44 (0.26- 0.72)	Comorbid conditions is associated with slower return to work

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Time off work (Return to activity)	One or more comorbid conditions VS. No comorbid conditions	152	6 mo	multivariate cox regression (coping, comorbidities, employment, polytrauma, social functioning, ISS, age, self-employment, education, compensation, high initial pain, recovery beliefs, interactions)	Relative Rate Ratio, CI	0.56 (0.35- 0.89)	Having comorbid conditions is associated with longer time off work
Pezzin, L. E., 2000	Mod	Unilateral and bilateral amputees; average ISS: 18.5	Return To Work (RTW) (Return to activity)	Premorbid Illness	76	7.5 yrs	age, gender, race, time of injury, education, injury severity score, head injury, neck injury, premorbid illness, amputation level, postamputation surgeries	Multivari ate Logit Regressio n, Estimate, p-value	-1.136, 0.28	Not Significant
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Return to work (Return to activity)	Psychiatric comorbidities VS. No psychiatric comorbidities	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	2.2 (0.9, 5.2)	NS

Table 5: Coping/Pain (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	12 month pain (VAS) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.66	NS
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	6 month pain (VAS) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.08 (0.04; 0.03)	Increased pain at 6mo leads to increased anxiety at 12mo
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	Pain Severity VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; P- value	0.19; <0.001	Higher Pain severity associated with worse anxiety scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Souer, J. S., 2008	Low	Trauma w sport injury received surgical treatment for distal radius fra. (ORIF); ulnar fra. included	Modified Gartland and Werley (Composi te)	Pain VS. Continuous; range 0-6	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	31.85	Pain is an independent predictor of Modified Gartland and Wesley score
Souer, J. S., 2008	Low	Trauma w sport injury recieved surgical treatment for distal radius fra. (ORIF); ulnar fra. included	DASH questionn aire (Composi te)	Pain VS. Continuous; range 1-5	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	61.16	Pain is a significant independent predictors of DASH scores
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	VAS Pain (3mo) VS. Continuous	327	12 mo	structural equation modeling (SEM) removing anxiety and depression mediators (education, insurance, gender, race, social support, self-efficacy)	p-value	0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	VAS Pain (6mo) VS. Continuous	327	24 mo	structural equation modeling (SEM) removing anxiety and depression mediators (education, insurance, gender, race, social support, self-efficacy)	p-value	0.51	NS
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Depressio n Scale (Depressi on)	12 month pain (VAS) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.85	NS
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Depressio n Scale (Depressi on)	6 month pain (VAS) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.06 (0.03; 0.1013)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	4-Item Depressio n Screen (Depressi on)	Pain interference VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=activity restriction)	Unstanda rdized Coef, Unstanda rdized 95% CI	0.14 (0.7- 0.23)	> pain interference is associated with more activity restriction and therefore higher depression
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	4-Item Depressio n Screen (Depressi on)	Pain interference VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=positive emotion)	Unstanda rdized Coef, Unstanda rdized 95% CI	0.22 (0.14- 0.31)	> pain interference is associated with lower levels of pos. emotion and therefore higher depression
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	Pain Severity VS. Continuous	775	12 mo	cross-laged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	0.27; <0.001	Pain severity is associated with worse Depression scores on HADS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	Physical dysfuncti on (Function)	Bereaving over death of friend or family in incident VS. No bereavement	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	0.74, 0.16	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Brief Approach/Avoidan ce Coping Questionnaire (BACQ) VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	0.17 (- 0.02-0.35)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function)	Brief Approach/Avoidan ce Coping Questionnaire (BACQ) VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	0.14 (- 0.08-0.39)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	American Shoulder and Elbow Surgeons Evaluatio n (Function	Pain Score VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar nephropathy, arthrosis, pain)	p-value	<0.001	pain score is associated with lower body function
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	Broberg and Morrey rating (Function	Pain score VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.001	pain score is associated with a lower B & M rating
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	Mayo Elbow Performa nce Index (Function	Pain Score VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.001	pain is associated with lower elbow performance index

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	SF 36; physical compone nt (Function)	Pain score VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.001	Pain score is associated with poor physical fitness
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	Disabiliti es of shoulder, arm and hand questionn aire (Function)	pain Score VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	P-value	<0.001	pain score is associated with UE disabilities.
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	Pain severity VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	0.42; <0.001	Increasing pain severity was associated with worse disability scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bot, A. G., 2011	Low	Radius/ulna diaphyseal fracture 37 (SM-15 simple,14 wedge,7 complex), 35 (SI-31 simple,4 wedge,)	Disability (measure d via DASH score) (Function	Pain VS. Continuous	71	21 yrs	Backward stepwise multiple linear regression (grip strength, pain, PCS, ipsilateral injury)	NR	NR	Pain is a significant predictor of disability
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	Physical dysfuncti on (Function)	Witnessing death in incident VS. Not witnessing death	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	1.57, 0.34	Witnessing death is associated with higher odds of physical disability
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Active problem- oriented coping VS. No active problem-oriented coping	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	1.19(0.59,2 .41)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >= 16	SF-36 Mental Health (Mental Health)	BACQ Coping Score at return home VS. Continuous	99	2 yrs	Multivariate linear regression (age at injury; BACQ coping at return home; mental health at return home; cognitive functioning at return home)	Beta coef, CI	1.23 (0.69- 1.77)	High BACQ coping scores are associated with better mental health at 2 years
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Brief Approach/Avoidan ce Coping Questionnaire (BACQ) VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	0.29 (- 0.04-0.61)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Brief Approach/Avoidan ce Coping Questionnaire (BACQ) VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	0.46 (0.13- 0.78)	Higher coping scores are associated with higher SF-36 MCS scores at 5 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	SF36; Mental compone nt (Mental Health)	pain Score VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	<0.001	pain score is associated with lower Mental health
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Sense of coherence VS. No sense of coherence	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	0.38(0.13,1 .10)	NS
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Psychoact ive drug consumpt ion (Mental Health)	VAS Pain VS. Continuous	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	1.7 (0.8, 4)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	VAS Pain (Pain)	12 month pain (VAS) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.45 (0.04; 0.0001)	increased pain at 12mo leads to increased pain at 24mo
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	VAS Pain (Pain)	6 month pain (VAS) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.45 (0.04; 0.0001)	increased pain at 6mo leads to increased pain at 12mo
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Pain at 3 mo (each additional 5 points) VS. No pain	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	0.88 (0.87, 0.90)	Every 5 addition point change in pain at 3 mo is associated with better pain outcome at 12 mo

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Pain at 3 mo (each additional point) VS. No Pain	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	0.97 (0.97, 0.98)	Every addition point change in pain at 3 mo is associated with better pain outcome at 12 mo
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Pain medicatio n consumpt ion (Pain)	VAS Pain VS. Continuous	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	1.7 (0.6, 4.6)	NS
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG1 Relations hip with others) (Post- traumatic growth)	Emotion-focused coping VS. No Emotion-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	-0.435	Higher emotion- focused coping is associated with negative relationships with others

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG2 Philosoph y of life) (Post- traumatic growth)	Emotion-focused coping VS. No Emotion-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	0.339	Higher emotion- focused coping is associated with better philosophy of life in veterans
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG3 Self Perceptio n) (Post- traumatic growth)	Emotion-focused coping VS. No emotion-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta- coefficien t	0.49	Higher emotion-focused coping is associated with better self-perception in veterans
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (Total) (Post-traumatic growth)	Emotion-focused coping VS. No Emotion-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta- coefficien t	0.194	Higher emotion- focused coping is associated with increased PTG in veterans

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG1 Relations hip with others) (Post-traumatic growth)	Problem-focused coping VS. No problem-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	0.417	Higher problem-focused coping is associated with better relationships of veterans with others
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG2 Philosoph y of life) (Posttraumatic growth)	Problem-focused coping VS. No Problem-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta coefficien t	0.393	Higher problem- focused coping is associated with better philosophy of life in veterans
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (PTG3 Self Perceptio n) (Post-traumatic growth)	Problem-focused coping VS. No problem-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta- coefficien t	0.498	Higher problem- focused coping is associated with better self- perception in veterans

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Tuncay, Tarik, 2015	Low	Traumatic injury Male veterans with limb loss (below/above knee)	Posttraum atic Growth Inventory (Total) (Post- traumatic growth)	Problem-focused coping VS. No Problem-focused coping	106	9 mo	Hierarchical multivariate variable regression (age,marital status,education,mo nthly income,time of amputation,time since amputation, coping)	beta- coefficien t	0.639	Higher problem- focused coping is associated with increased PTG in veterans
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >=16	PTSS-10 (PTSD)	BACQ Coping score at return home VS. Continuous	99	2 yrs	Multivariate linear regression (gender; age at injury; BACQ coping at return home; mental health at return home; cognitive functioning at return home; bodily pain at return home)	Beta coef, CI	-0.73 (- 1.02 0.44)	High BACQ coping scores are associated with lower PTSS-10 scores at 2 years
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	PTSD (PTSD)	Bereaving over death of friend or family in incident VS. No bereavement	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	0.026, 0.028	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Frieburg questionnaire of coping with illness VS. Continuous	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta (pvalue)	0.2 (<0.05)	problems with coping lead to increased PTSD
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	Primary Care PTSD Screen (PTSD)	Pain interference VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=positive emotion)	Unstanda rdized Coef, Unstanda rdized 95% CI	0.13 (0.06- 0.21)	Increase pain interference is associated with lower levels of pos. emotion and therefore higher PTSD
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	Primary Care PTSD Screen (PTSD)	Pain interference VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=activity restriction)	Unstanda rdized Coef, Unstanda rdized 95% CI	0.22 (0.13- 0.32)	Increase pain interference is associated with lower levels of activity and therefore higher PTSD

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	Pain Severity VS. Continuous	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	0.15; <0.001	Increasing pain severity was associated with worse PTSD scores
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	SF-36 Pain Sub scale 3 months VS. Pain	293	12 mo	Multiple logistic regression(Gender, Age, Injury characteristics, & Insurance status)	RR(LL, UL)	0.97(0.96, 0.98)	Lower SF-36 Pain sub-scale score is associated with high risk of PTSD symptoms
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	PTSD (PTSD)	Witnessing death in incident VS. Not witnessing death	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	0.086, 0.029	Witnessing death is associated with higher odds of PTSD

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Coping ability VS. Continuous	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.005	Higher coping scores are associated with a higher EQ-5D score
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	3 month pain (VAS) VS. Continuous	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	0.98 (0.98- 0.99)	Higher 3 month pain ratings is associated with lower RTW rates

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Time off work (Return to activity)	Should not work with pain (agree) VS. Should not work with pain (disagree)	152	6 mo	multivariate cox regression (coping, comorbidities, employment, polytrauma, social functioning, ISS, age, self-employment, education, compensation, high initial pain, recovery beliefs, interactions)	Relative Rate Ratio, CI	0.49 (0.31- 0.77)	Compared to disagreement, agreeing that one should not work with pain is related to longer time off
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Return to work (Return to activity)	VAS Pain VS. Continuous	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	2.2 (0.9, 5)	NS

Table 6: Depression (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	12 month depression (BSI) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.95	NS
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Anxiety Scale (Anxiety)	6 month depression (BSI) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	p-value	0.84	NS
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	Depression (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	BSI Depressive distress (12mo) VS. Continuous	327	24 mo	structural equation modeling (education, insurance, gender, race, social support, self-efficacy)	p-value	<0.01	increased depression leads to decreased function
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	BSI Depressive distress (3mo) VS. Continuous	327	24 mo	structural equation modeling (education, insurance, gender, race, social support, self-efficacy)	p-value	0.03	increased depression leads to decreased function
Wegener, S. T., 2011	Low	high energy trauma below distal femur; majority fracture	Sickness impact profile (SIP) (Composi te)	BSI Depressive distress (6mo) VS. Continuous	327	24 mo	structural equation modeling (education, insurance, gender, race, social support, self-efficacy)	p-value	<0.01	increased depression leads to decreased function

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Depressio n Scale (Depressi on)	12 month depression (BSI) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.82 (0.02; 0.0001)	increased depression at 12mo leads to increased depression at 24mo
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	Brief Symptom Inventory (BSI) Depressio n Scale (Depressi on)	6 month depression (BSI) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	Standardi zed regressio n weight (SE; p- value)	0.77 (0.03; 0.0001)	increased depression at 6mo leads to increased depression at 12mo
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	Depression (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; p value	0.31; <0.001	Depression at 3 months is associated with worse depression scores at 12 mnths

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	CES-D Scale >=16 (Depressi on)	Depression at baseline VS. No depression at baseline	84	6 mo	Multivariate logistic regression (marital status, education, baseline depression, max AIS score)	OR, CI, P-value	4.77 (1.39- 16.4)	Depression at baseline is associated with higher odds of depression at 6 months
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Depression/Anxiety VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	0.49	increased depression/anxi ety is associated with post- treatment depression at 1 year
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	Depression (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Activity of Daily Living (ADL) (Function)	Depression VS. No depression	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL,UL)	3.34 (1.79, 6.21)	Depression is associated with impaired ADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Instrumen tal Activities of Daily Living (Function)	Depression VS. No Depression	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL,UL)	5.81 (3.60, 9.38)	Depression is associated with impaired IADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Physical Compone nts Summary (PCS) (Function	Depression VS. No Depression	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	OR; (LL,UL)	-5.41 (- 7.62, - 3.19)	Depression is associated with lower PCS scores
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	SF-12 Physical Compone nt Scale (Function)	Depressive symptoms at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks; comorbidites)	Beta coef, p- value	-0.32, 0.01	Higher depressive symptoms at 4 weeks is associated with lower physical health scores at 1 year

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	Depressive symptoms measured by CES-D VS. Continuous	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high school-yes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	0.51; 0.22; 0.30; 0.099; (- .010 to 1.1)	NS
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Mental Compone nts Summary (Mental Health)	Depression VS. No Depression	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL,UL)	-18.92 (- 20.30, - 16.35)	Depression is associated with lower MCS scores
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	VAS Pain (Pain)	12 month depression (BSI) VS. Continuous	545	24 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.53	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2013	High	High-energy trauma injuries below distal femur; GCS >15; 77% male	VAS Pain (Pain)	6 month depression (BSI) VS. Continuous	545	12 mo	Multivariate regression (age, gender, LOS, pain, self efficacy, social support, education, amputee, ISS)	P-value	0.56	NS
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Depression before Injury- did not take medication VS. No Depression	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	1.10 (0.99, 1.23)	NS
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Depression before Injury- took medication VS. No Depression	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	0.92 (0.84 , 1.00)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Intensity - Brief Pain Inventory (Pain)	Depressive symptoms at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	0.49, <0.001	Higher depressive symptoms at 4 weeks is associated with higher pain scores at 1 year
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Interferen ce - Brief Pain Inventory (Pain)	Depressive symptoms at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	0.51, <0.001	Higher depressive symptoms at 4 weeks is associated with higher pain interference at 1 year
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	Depression (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	Pre-injury depression VS. Post- injury depression	293	12 mo	Multiple logistic regression(Gender, Age, Injury characteristics, & Insurance status)	RR(LL, UL)	1.33(1.15, 1.54)	Pre injury depression is associated with high risk of PTSD symptoms

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	BSRS-5 Depression Score VS. Continuous	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	-0.024	Higher BRSRS- 5 scores are associated with lower EQ-5D score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Depression	463	2 yrs	age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety	Multivari ate logistic regressio n, p-value	p<0.05	No depression results in an increased odd of satisfaction

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not productive (Return to activity)	Depression VS. No Depression	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL,UL)	2.43 (1.65, 3.59)	Depression is associated with being non productive

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not working (Return to activity)	Depression VS. No depression	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL,UL)	2.98 (1.41, 6.31)	Depression is associated with being non working

Table 7: Education (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	Education Level VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	-0.13	high education level is associated with low Anxiety score
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-5 Anxiety or depressio n (Anxiety)	Higher VS. primary School	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	3.1(1.7- 7.0)	higher education is associated with lower Anxiety or depression
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	High school graduate VS. Some college	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	8.7	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	High School Graduate VS. Some college	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	9.9	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Head Injury symptom checklist (HISC) (Composi te)	HIGHER VS. primary school	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	4.5(1.5, 13.0)	higher education is associated with better functioning after trauma
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Some college VS. Less than high school	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	19.4	Some college education is associated lower overall SIP score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Some college VS. Less than high school	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	22.5	Some college education is associated with lower overall SIP scores at 1 year
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	No college education	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	31.6, 0.02	Compared to having some college edu, no college edu is associated with higher overall SIP
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Education VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	-10	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	CES-D Scale >=16 (Depressi on)	High (secondary) education VS. Low education	84	6 mo	Multivariate logistic regression (marital status, education, baseline depression, max AIS score)	OR, CI, P-value	0.34 (0.11- 1.08), 0.067	NS
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	CES-D Scale >=16 (Depressi on)	Higher education VS. Low education	84	6 mo	Multivariate logistic regression (marital status, education, baseline depression, max AIS score)	OR, CI, P-value	3.44 (0.56- 21.2), 0.183	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function	11 yrs and below VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-2.2 (-5.1- 0.7)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function	12 yrs of schooling VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-1.6 (-4.9- 1.6)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function	Certificate/Diploma VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-0.9 (-4.4- 2.7)	NS
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function)	Did not finish high school VS. Degree +	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef (CI)	0.1 (-2.8-3.1)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function)	Diploma VS. Degree +	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef (CI)	1.6 (-1.0- 4.2)	NS
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	Education beyond high school unknown VS. Known education beyond high school	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high schoolyes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	-20; -0.15; 15; 0.18; (- 51 to 9.9)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	Education beyond high school VS. Education not beyond high school	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high schoolyes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	-3.1; - 0.072; 4.8; 0.52; (-13 to 6.6)	NS
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	DASH score (Function)	Education in yrs VS. continuous	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	1.90 (-0.38 to 4.15)	NS
MacDerm id, J. C., 2002	Mod	All pts had distal radius fractures; 59% AO C fractures, 24% B, and 17% A	Patient Rated Wrist Evaluatio n (Function)	Education VS. Continuous	120	6 mo	Multivariate linear regression (injury compensation, education, prereduction radial shortening, age, sex, AO fracture type, postreduciton radial shortening)	None	None	Education level is associated with increased PRWE scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function	Finished high school VS. Degree +	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef (CI)	-0.7 (-3.8- 2.2)	NS
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	SF-12 Physical Compone nt Scale (Function	Greater than high school VS. high school education or less	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks; comorbidites)	Beta coef, p- value	0.17, 0.17	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	High Education VS. Low Education	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	1.63 (- 1.13-4.39)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	High Education VS. Low Education	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	1.96 (0.28- 4.20)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	High Education VS. Low Education	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	3.16 (0.40- 5.91)	Higher education is associated with high SF-36 PCS scores at 5 years
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 PCS Score (Function	High school education VS. No high school education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.369	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Physical Score (Function	High school education VS. No high school education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.944	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Vitality Score (Function	High school education VS. No high school education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.457	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	High school graduate VS. Some college	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	3.1	NS
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	High School Graduate VS. Some college	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	2	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	High school graduate VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.5	Subjects with LE trauma who are HSGs are 2.5 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	High school graduate VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2	Subjects with LE trauma who are HSGs are 2.0 times more likely to have disability
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	WHODA S 2.0 >=25 (Function)	Higher Education VS. low education	89	6 mo	Multivariate logistic regression (marital status, education, baseline physical disability, max AIS score)	significan ce		NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-1 Mobility (Function)	higher VS. primary school	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.1(0.9, 5.2)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-3 Daily activities (Function	higher VS. primary school	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics))	OR(LL, UL)	1.8(0.8, 4.0)	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Less than high school VS. Some college	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	12.4	NS
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Less than High school VS. Some college	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	10.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Less than High school VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	10	Subjects with LE trauma who are LSGs are 10.0 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Less than High school VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.5	Subjects with LE trauma who are LSGs are 2.5 times more likely to have disability
Kugelman , D. N., 2018	Mod	unclear trauma/injuries pts who received operative treatment for a long bone fracture non-union	Total SMFA score (Function)	Lower education VS. Higher education	329	12 mo	Multivariate linear regression (age, gender, race, income, education, smoking, diabetes, injury characteristics, non-union characteristics)	Beta (CI)	-0.154 (- 10.96 0.0014)	Lower education is associated with lower functional scores at 12 months

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Kugelman , D. N., 2018	Mod	unclear trauma/injuries pts who received operative treatment for a long bone fracture non-union	Total SMFA score (Function	Lower education VS. Higher education	329	6 mo	Multivariate linear regression (age, gender, race, income, education, smoking, diabetes, injury characteristics, non- union characteristics)	p-value	0.176	NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function	No college education	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	17.3, 0.19	Not Significant
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking Speed >= 4ft/sec (Function)	No college education	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	0.38, 0.13	Not Significant

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 PCS Score (Function	Some college education VS. No college education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.202	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Physical Score (Function	Some college education VS. No college education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-1.574	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Vitality Score (Function	Some college education VS. No college education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.165	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	11 yrs and below VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	1.4 (-1.4- 4.2)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	12 yrs of schooling VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	2.3 (-0.8- 5.5)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	Certificate/Diploma VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	3.0 (-0.5- 6.4)	NS
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Did not finish high school VS. Degree +	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	-2.2 (-4.7- 0.4)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Diploma VS. Degree +	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	-0.3 (-2.5- 2.0)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Education VS. Continuous	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	1.32 (0.81, 2.15)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Education VS. Continuous	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.72 (0.35, 1.5)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Finished high school VS. Degree +	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	0.3 (-2.3- 2.9)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	High Education VS. Low Education	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	1.86 (- 1.06-4.77)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	High Education VS. Low Education	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	1.76 (- 1.43-4.96)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	High Education VS. Low Education	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	3.43 (0.57- 6.29)	Higher education is associated with high SF-36 MCS scores at 5 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Emotiona 1 Score (Mental Health)	High school education VS. No high school education	78	7 yrs	Mulivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.387	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	High school graduate VS. Some college	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	14	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	High school graduate VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.5	Subjects with LE trauma who are HSGs are 2.5 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	High school graduate VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.5	Subjects with LE trauma who are HSGs are 2.5 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	High school graduate VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.5	Subjects with LE trauma who are HSGs are 2.5 times more likely to have disability
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	Less than high school VS. Some college	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	42	Less than high school education is associated with higher mental SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Less than High school VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	5	Subjects with LE trauma who are LSGs are 5.0 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Less than High school VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	10	Subjects with LE trauma who are LSGs are 10.0 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Less than High school VS. Some college	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	5	Subjects with LE trauma who are LSGs are 5.0 times more likely to have disability
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial SIP (Mental Health)	No college education	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	59.0, 0.00	Compared to having some college edu, no college edu is associated with higher psychosocial SIP
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Emotiona 1 Score (Mental Health)	Some college education VS. No college education	78	7 yrs	Mulivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-1.167	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	11 yrs and below VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	2.3 (0.8- 7.3)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	12 yrs of schooling VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	2.8 (0.7- 10.4)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	Certificate/Diploma VS. Tertiary plus	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	2.1 (0.5- 8.2)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	Visual analogue scale (VAS in mm) (Pain)	Education in yrs VS. continuous	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	-0.24 (05 to 0.04)	NS
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Intensity - Brief Pain Inventory (Pain)	Greater than high school VS. high school education or less	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	-0.31, 0.01	Greater than high school education is associated with lower pain at 1 year
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Interferen ce - Brief Pain Inventory (Pain)	Greater than high school VS. high school education or less	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	-0.18, 0.17	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Bodily Pain Score (Pain)	High school education VS. No high school education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	1.864	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-4 Pain or discomfor t (Pain)	HIGHER VS. PRIMARY SCHOOL	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.7(0.7, 4.1)	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Bodily Pain Score (Pain)	Some college education VS. No college education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.739	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	IES-R >26 (PTSD)	Higher education VS. Low education	86	6 то	Multivariate logistic regression (marital status, education, baseline PTSD, max AIS score)	significan ce		NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	<9 yrs of education VS. >12 yrs of education	4643	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.013	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	9-12 yrs of education VS. >12 yrs of education	4643	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.012	NS

Reference Quali	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Education VS. unclear	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Model B; EQol-vas (QOL)	Higher VS. primary School	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.182	higher education is associated with QOL
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Glasgow Outcome Scale (GOS) < 5 (QOL)	higher VS. primary school	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.4(0.6, 3.6)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-2 Self care (QOL)	higher VS. primary school	335	12 mo	multivariate logistic regression (e.g. BMI, co morbidity)	OR(LL, UL)	1.1(0.4, 2.9)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	model B; EuroQol- utility (QOL)	Higher VS. Primary School	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.132	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs.Fast RTW (Return to activity)	<9 VS. >12	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.67(0.35, 1.29)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs.Fast RTW (Return to activity)	<9 VS. 9-12	576	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.06(0.62, 1.82)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	>12 VS. <9	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.32(0.16, 0.64)	Higher eduction is associated with Average RTW(compared to slow RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	>12 VS. <9	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.21(0.09, 0.50)	Higher education is associated with fast RTW. (compare to slow RTW)
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	>12 yrs education VS. <10 yrs education	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	2.09 (1.07, 5.67)	>12 years education leads to faster RTW

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	10-12 yrs education VS. <10 yrs education	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	1.41 (0.66, 3.02)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	9-12 VS. <9	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.53(0.32, 0.85)	Higher education is associated with Average RTW(compared to slow RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	9-12 VS. <9	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.56(0.30, 1.05)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Time off work (Return to activity)	Above university education and high initial pain VS. Below university education and high initial pain	152	6 mo	multivariate cox regression (coping, comorbidities, emplyment, polytrauma, social functioning, ISS, age, self-employment, education, compensation, high initial pain, recovery beliefs, interactions)	Relative Rate Ratio, CI	1.18 (1.55- 13.09)	Compared to pts w/low education, those with high education had short time off work
Soberg, H. L., 2011	Low	patients with multiple traumatic injuries	Return to Work (Return to activity)	college education VS. high school education or lower	75	5 yrs	logistic regression (gender, age, college education, blue vs white collar job, New Injury Severity Score, physical function at return to home, pain at return home, social functioning at return home, cognitive function at return home, cognitive functioning in hospital-rehab)	OR (LL, UL)	21.94 (3.51– 137.22)	higher education levels are associated with higher odds of returning to work

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Reduced Hours (Return to activity)	High school education VS. No high school education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	1.071	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Return to Work (Return to activity)	High school education VS. No high school education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.969	NS
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	High school graduate VS. Less than high school	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	0.8(0.5,1.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	High school graduate VS. Less than high school	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.86 (1.20- 2.86)	Being a high school graduate is associated with higher return to work rates
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	High VS. low	97	2 yrs	Cox regression(gender,age,professio n,NISS,LOS,locus of health control,function)	RR(LL,U L)	4.14(1.99,8 .61)	Higher education is associated with increased probability of RTW
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Some college VS. Less than high school	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	3.02 (1.92- 4.74)	Some college education is associated with higher return to work rates

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Reduced Hours (Return to activity)	Some college education VS. No college education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.341	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Return to Work (Return to activity)	Some college education VS. No college education	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	1.024	NS
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Some college VS. Less than high school	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.8(1.2,2.9	Individuals with LL fractures with some college education are more likely to RTW

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Ponsford, J., 2008	Low	Severe work/MVA ortho trauma pts with majority of lower extremity fractures	Return to Work (Return to activity)	yrs of Education VS. Continuous	149	2 yrs	Multivariate regression analysis(Age, Gender,Education, & anxiety level)	Beta Coefficie nt	0.93	NS

Table 8: Gender (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	Gender VS. unclear; likely male reference	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts	0	NS
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	male VS. female	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	0.13	Female have more anxiety score compared to male
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-5 Anxiety or depressio n (Anxiety)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	3.1(1.4, 6.8)	anxiety level in male is high compare to female

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Female	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	17.1, 0.31	Not Significant
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Head Injury symptom checklist (HISC) (Composi te)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.0(0.8, 5.0)	NS
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	Gender VS. unclear; likely male reference	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	07, <0.05	gender is associated with depression

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Male VS. Female	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	0.07	NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function	Female	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	20.2, 0.25	Not Significant
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking Speed >= 4ft/sec (Function)	Female	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	0.16, 0.02	Compared with males, being female is associated with greater walking speed

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	DASH score (Function	Female sex VS. Male	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	4.78 (-2.16 to 11.7)	NS
Kwok, I. H. Y., 2011	Low	Unclear trauma/injury Pts with distal radial fractures	Disabiliti es of shoulder, arm and hand questionn aire (DASH) (Function)	Female VS. Male	108	2 yrs	Multiple linear regression analysis (age, gender, fracture type, plate, grip, pain, function, ROM, length of FU)	r correlatio n coefficien t (p- value)	0.056 (0.286)	NS
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function	Female VS. Male	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	-0.03; (-2.6 to 2.0)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function	Female VS. Male	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-2.4 (-5.4- 0.7)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function)	Female VS. Male	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	0.24 (- 3.91-4.39)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function)	Female VS. Male	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	-0.41 (- 3.49-2.67)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Female VS. Male	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	-0.40 (- 3.51-2.70)	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Female VS. Male	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2	Females with LE trauma undergoing treatment are 2.0 times likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Female VS. Male	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.3	Females with LE trauma undergoing treatment are 2.3 times likely to have disability
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	Mayo Elbow Performa nce Index (Function)	Gender VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	NA	NS
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	SF 36; physical compone nt (Function	Gender VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	NA	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	American Shoulder and Elbow Surgeons Evaluatio n (Function	Gender VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-vlaue	NA	NS
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	Broberg and Morrey rating (Function	Gender VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	NA	NS
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	Disabiliti es of shoulder, arm and hand questionn aire (Function)	Gender VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	P-value	NA	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	Gender VS. unclear; likely male reference	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts; p value	-0.07; <0.05	gender is associated with disability
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-3 Daily activities (Function)	male VS. female	335	12 mo	multivariate logistic regression (e.g. BMI, co morbidity)	OR(LL, UL)	1.1(0.5, 2.3)	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Physical Score (Function)	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.243	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Vitality Score (Function)	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-1.003	NS
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	Physical dysfuncti on (Function)	Male VS. Female	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	0.98, 0.27	NS
Soberg, H. L., 2015	Low	severe multiple trauma injuries; 69% extremity, 39% spine, 61% head	SF-36 Physical Compone nt Score (Function	Male VS. Female	58	10 yrs	Multivariate regression (age, sex, injury factors, function, coping)	Beta (p- value)	0.03 (0.766)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 PCS Score (Function	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	4.021	Males have higher odds of a low PCS score than female
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Role Physical (Function)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.81 (-1.3- -0.31)	Compared to females, males have lower SF- 36 Role- Physical scores at 1 year
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-1 Mobility (Function)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.2(0.6, 2.8)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacDerm id, J. C., 2002	Mod	All pts had distal radius fractures; 59% AO C fractures, 24% B, and 17% A	Patient Rated Wrist Evaluatio n (Function)	Male VS. Female	120	6 mo	Multivariate linear regression (injury compensation, education, prereduction radial shortening, age, sex, AO fracture type, post reduction radial shortening)	None	None	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Physical Functioni ng (Function	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.54 (-0.2- 0.08)	NS
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	Male VS. Female	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high schoolyes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	-7.3; -0.21; 3.9; 0.062; (-15 to 0.40)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial SIP (Mental Health)	Female	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	42.6, 0.12	Not Significant
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Female gender VS. Male gender	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.42 (0.18, 0.98)	Female gender leads to increased risk of low mental health in trauma pts with associated TBI
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Female gender VS. Male gender	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.54 (0.17, 1.72)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Female VS. Male	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	2.15(0.52,8 .77)	NS
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Female VS. Male	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	0.7; (-1.3 to 2.7)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	Female VS. Male	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-1.6 (-4.6- 1.3)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Female VS. Male	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	-1.67 (- 4.48-1.14)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Female VS. Male	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	-0.45 (- 3.42-2.53)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Female VS. Male	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	-4.24 (- 7.05 1.43)	Compared to males, females are associated with lower SF-36 MCS scores at 5 years
Doornber g, J. N., 2005	Low	ortho trauma, 52% pts with high energy injury,intra-articular fracture of elbow	SF36; Mental compone nt (Mental Health)	Gender VS. Continuous	104	58 mo	multivariate regression analysis (age, sex, dominant side, fracture, time since op, subsequent op, arc, ulnar neuropathy, arthrosis, pain)	p-value	NA	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Emotiona 1 Score (Mental Health)	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-1.563	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2015	Low	severe multiple trauma injuries; 69% extremity, 39% spine, 61% head	SF-36 Mental Compone nt Score (Mental Health)	Male VS. Female	58	10 yrs	Multivariate regression (age, sex, injury factors, function, coping)	Beta (p- value)	-0.11 (0.202)	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Role Emotiona I (Mental Health)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.49 (- 0.82 0.11)	Compared to females, males have lower SF- 36 Role- Emotional scores at 1 year
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Social Functioni ng (Mental Health)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.49 (- 0.90 0.07)	Compared to females, males have lower social functioning at 1 year.
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Mental Health (Mental Health)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.21 (- 0.51-0.09)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Wen, P. S., 2018	Low	unilateral lower extremity amputation post 2010 earthquake injuries; all Haitian	TAPES instrumen t- Pyschoso cial adjustmen t (Other PRF)	women VS. men	140	NR	Multiple regression analysis; (Phantom pain; Gender; LCI)	standardi zed coeff; p value	0.29; 0.003	Women are associated with better pyschosocial adjustment
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	Female VS. Male	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	1.1 (0.3- 3.4)	NS
Ponsford, J., 2008	Low	Severe work/MVA ortho trauma pts with majority of lower extremity fractures	SCL-90 Global Severity Scores (Pain)	Female VS. Male	149	2 yrs	Multivariate regression analysis(Age, Gender,Education, & anxiety level)	Beta Coefficie nt	-0.23	Female gender is associated with higher pain in daily functions.
Rivara, F. P., 2008	Mod	Injured pts from 18 trauma and 51 large non- trauma pts; At least 1 injury with ISS >=15	Pain; Chronic Pain Grade Scale in abst (Pain)	Female VS. Male	304 7	12 mo	Poisson Regression; (body part injured; age, sex, depression before injury, ICU, surgery, pain at 3 months)	IRR; (UL, LL)	1.06 (1.00- 1.12)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	Visual analogue scale (VAS in mm) (Pain)	Female VS. Male	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	1.03 (0.17 to 1.9)	Female gender is associated with increased pain
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Bodily Pain Score (Pain)	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.143	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-4 Pain or discomfor t (Pain)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	2.1(0.9, 4.7)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Bodily Pain (Pain)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.22 (- 0.57-0.13)	NS
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	female VS. male	293	12 mo	Multiple logistic regression(Gender, Age, Injury characteristics, & Insurance status)	RR(LL, UL)	1.09(0.92, 1.30)	NS
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS>=16	PTSS-10 (PTSD)	Female VS. Male	99	2 yrs	Multivariate linear regression (gender; age at injury; BACQ coping at return home; mental health at return home; cognitive functioning at return home; bodily pain at return home)	Beta coef, CI	7.02 (2.68- 11.36)	Being female is associated with higher PTSS-10 scores at 2 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Female VS. Male	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta	0.11	NS
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	Gender VS. unclear; likely male reference	775	12 mo	cross-lagged longitudinal panel design with covariates; (Age; Gender; Injury Severity score; Days in hospital; Pain severity)	Standardi zed path coefficien ts	-0.01	NS
Ni, Jun, 2013	Low	Earthquake-related fracture victims who had well recovery; avg age 53.96	PTSD (PTSD)	Male VS. Female	459	50 mo	Multivariate logistic regression (male, married, age, education, income, bereavement, witnessed death, fearfulness, low income, rehab)	OR, SE	-0.094, 0.036	Being male is associated with lower odds of PTSD

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-2 Self care (QOL)	MALE VS. female	335	12 mo	multivariate linear regression (e.g. BMI, co morbidity)	OR(LL, UL)	0.9(0.3, 2.4)	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Male VS. Female	464 3	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.01	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Glasgow Outcome Scale (GOS) < 5 (QOL)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	0.9(0.4, 2.3)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Model B; EQol-vas (QOL)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.049	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	model B; EuroQol- utility (QOL)	male VS. female	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	-0.001	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Male VS. Female	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 General Health (QOL)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.24 (- 0.64-0.16)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Abraham, C. M., 2014	Mod	66% ISS >25; includes head/neck/thorax inj; car/motorcycle cause; lvl 1 trauma center pts	SF-36 Vitality (QOL)	Male VS. Female	115	1 yrs	multivariate linear regression (age, sex, comorbidities, ISS, CAM-ICU, depression, PTSD)	Beta coef, CI	-0.11 (- 0.46-0.25)	NS
Schnyder, U., 2003	Mod	Victims of accidental trauma, excluding pts w/ severe head trauma and mental illness; avg ISS 22.1	Number of days of leaves taken (Return to activity)	Being Female VS. Male	100	12 mo	Multivariate linear regression (age, accident type, impact, self- appraisal, ISS, gender)	beta coefficien t	0.08	NS
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	Female VS. Male	81	6 то	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	1.69 (0.96, 2.97)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs. Fast RTW (Return to activity)	Male VS. female	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.64(0.41, 1.00)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Male VS. Female	627	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.98(0.64, 1.49)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Male VS. Female	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.63(0.36, 1.08)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Reduced Hours (Return to activity)	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.108	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Return to Work (Return to activity)	Male VS. Female	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-1.087	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Male VS. Female	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.39 (0.96- 2.01)	NS
Rusch, M. D., 2003	Mod	Hand/UE pts; required tx by hand surgeon; 20 crush, 4 degloving; 51 amputations	RTW status (Return to activity)	Male VS. Female	92	6 mo	Logistic regression (age, sex, causal attributions, litigation status, months with employers)	significan ce	NR	NS
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	women VS. men	97	2 yrs	Cox regression (Age,education,prof ession,NISS,LOS,lo cus of health control,function)	RR(LL,U L)	1.79(0.78,4 .09)	NS

Table 9: Mental Health (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	Neuroticism VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	0.29	High neuroticism is associated with adverse mental changes after fall
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Neuroticism VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	0.21	High neuroticism is associated with high depression symptoms

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; PCS (Function	Behavioral Disorder- Yes VS. Behavioral Disorder- No	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	0.1; (-4.2 to 4.3)	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	No Presence of psychiatric history VS. Presence of psychiatric history	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	2.9	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	No Presence of psychiatric history VS. Presence of psychiatric history	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	12	No presence of psychiatric history is associated with higher odds of satisfactory PCS score
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function	No presence of psychiatric history VS. Presence of psychiatric history	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	6.3	No presence of psychiatric history is associated with higher odds of satisfactory SST score
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	PCS measuring pain catastrophe VS. Continuous; ordinal 0-10	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high school-yes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	0.64; 0.29; 0.32; 0.05; (0.0030 to 1.3)	increased PCS is associated with worse SMFA score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Physical Compone nts Summary (PCS) (Function	PTSD and Depression VS. No PTSD & Depression	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL,UL)	-7.75 (- 9.60, - 5.89)	Presence of both PTSD & Depression is associated with decreased PCS scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Activity of Daily Living (ADL) (Function)	PTSD and Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL,UL)	6.66 (3.48, 12.74)	Presence of both PTSD & Depression is associated with impaired ADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Instrumen tal Activities of Daily Living (Function)	PTSD and Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL,UL)	10.20 (5.32, 19.57)	Presence of both PTSD & Depression is associated with impaired IADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Activity of Daily Living (ADL) (Function)	PTSD or Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL,UL)	4.89 (3.61, 6.62)	Presence of either PTSD or Depression is associated with impaired ADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Instrumen tal Activities of Daily Living (Function)	PTSD or Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL,UL)	5.00 (4.17, 6.01)	Presence of either PTSD or Depression is associated with impaired IADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Physical Compone nts Summary (PCS) (Function	PTSD or Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL,UL)	-7.93 (- 9.12, - 6.74)	Presence of either PTSD or Depression is associated with decreased PCS scores
Andrew, N. E., 2012	Low	Orthopedic trauma pts; 23% isolated UE; 28% isolated LE; 18% multiple ortho injury	SF- 36; MCS (Mental Health)	Behavioral Disorder- Yes VS. Behavioral Disorder- No	317	12 mo	Multivariate linear regression (sporting group, age, sex, education level, ISS>15, Injury patterns, preexisting health problems, preexisting mental health problems, inhospital complications, days spent in engaging in pre-injury vigorous activity)	Coef; (UL, LL)	-5.7; (-9.4, -1.9)	Presence of behavioral disorder is related to worse MCS score on SF- 36
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Biographical risk factors VS. No biographical risk factors	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	1.51(1.02,2 .24)	Higher number of biographical RFs is associated with increased psychiatric morbidity

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Cognitive problems VS. No cognitive problems	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	5.74 (2.41, 13.67)	Cognitive problems lead to increased risk of low mental health in trauma pts with associated TBI
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Cognitive problems VS. No cognitive problems	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	2.9 (0.52, 16.04)	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	No presence of psychiatric history VS. Presence of psychiatric history	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	39	No presence of psychiatric history is associated with higher odds of satisfactory SST score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Mental Compone nts Summary (Mental Health)	PTSD and Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL,UL)	-24.61 (- 26.24, - 22.99)	Presence of both PTSD & Depression is associated with decreased MCS scores
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Mental Compone nts Summary (Mental Health)	PTSD or Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL,UL)	-14.10(- 15.23, 12.97)	Presence of either PTSD or Depression is associated with decreased MCS scores
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >=16	SF-36 Mental Health (Mental Health)	SF-36 Mental Health at 1 year VS. Continuous	99	2 yrs	Multivariate linear regression (BACQ coping at return home; mental health at 1 year)			Higher SF-36 MH scores at 1 year are associated with higher mental health at 2 years
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >=16	SF-36 Mental Health (Mental Health)	SF-36 Mental Health at return home VS. Continuous	99	2 yrs	Multivariate linear regression (age at injury; BACQ coping at return home; mental health at return home; cognitive functioning at return home)	Beta coef, CI	0.35 (0.19- 0.51)	Higher SF-36 MH scores at return home are associated with higher mental health at 2 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Stress attributable to life events VS. No Stress attributable to life events	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	1.08(0.96,1 .21)	NS
Clay, F. J., 2010 (a)	Low	>=1 ortho injury (fracture, tear, avulsion, etc); 77% fracture; mostly extremity injuries	Presence of Pain (Pain)	Psychological distress VS. No psychological distress	150	6 mo	multivariate logistic regression (age, gender, education, prior pain, comorbid conditions, need for surgery, pain at 2 weeks, psychological distress, external attributions, lower extremity injury, injured at work, compensable status, interactions)	OR, CI	7.9 (2.8- 22.2)	Psychological distress is associated with presence of pain at 6 months
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Sense of coherence score VS. Continuous	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta	-0.07	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	Sf-26 Mental health Subscale 3 months VS. Continuous	293 1	12 mo	Multiple logistic regression (Gender, Age, Injury characteristics, & Insurance status)	RR (LL, UL)	0.97(0.96, 0.98)	Lower Sf-36 Mental health is associated with high risk of PTSD symptoms
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >=16	PTSS-10 (PTSD)	SF-36 Mental Health at 1 year VS. Continuous	99	2 yrs	Multivariate linear regression (gender; BACQ coping at return home; mental health at 1 year; cognitive functioning at 1 year;)			High SF-36 scores at 1 year were associated with low PTSS- 10 scores at 2 years
Soberg, H. L., 2010	Low	Polytrauma pts; includes concurring head and spinal injuries; NISS >=16	PTSS-10 (PTSD)	SF-36 Mental Health at return home VS. Continuous	99	2 yrs	Multivariate linear regression (gender; age at injury; BACQ coping at return home; mental health at return home; cognitive functioning at return home; bodily pain at return home)	Beta coef, CI	-0.13 (- 0.23 to - 0.03)	Higher SF-36 MH scores at return home are associated with lower PTSS-10 scores at 2 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Stress (attributable to life events in the last 2 yrs) VS. No stress	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta	0.01	NS
Ponzer, S., 1997	Low	Women with trauma injuries (60% extremity, pelvis, spine)	Disability in work, family, household , social life, or leisure (QOL)	VAS Mental health scale >50mm VS. VAS Mental health scale <50mm	93	1 yrs	Logistic regression (max AIS, VAS physical, VAS mental, previous injury frequency)	OR (LL, UL)	4.3 (1.5- 12.6)	VAS mental health scale >50/100 increases risk of disability
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	BSRS-5 (4-20) VS. Continuous	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.05(0.99, 1.11)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	BSRS-5 (4-20) VS. Continuous	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.11(1.03,1 .20)	Lower score on the BSRS-5 is associated with Slow RTW(compare to Fast RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	BSRS-5 (4-20) VS. Continuous	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.06(0.99, 1.13)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2011	Low	patients with multiple traumatic injuries	Return to Work (Return to activity)	cognitive functioning during hospital/rehab period VS. Continuous (higher scores equal worse cognitive function)	75	5 yrs	logistic regression (gender, age, college education, blue vs white collar job, New Injury Severity Score, physical function at return to home, pain at return home, social functioning at return home, cognitive function at return home, cognitive functioning in hospital-rehab)	OR (LL, UL)	0.99 (0.99– less than 1.00)	worse cognitive dysfunction during hospital stay/rehab is related lower odds of returning to work
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	Cognitive functioning VS. No/Low Cognitive functioning	97	2 yrs	Cox regression(gender,age,educatio n,profession,ISS,LO S, health control,function)	RR(LL,U L)	1.01(0.41,2 .43)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not productive (Return to activity)	PTSD and Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL,UL)	3.44 (2.00, 5.91)	Presence of both PTSD and depression is associated with being non productive

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not working (Return to activity)	PTSD and Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL,UL)	5.57 (2.51, 12.37)	Presence of both PTSD and depression is associated with being non working

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not productive (Return to activity)	PTSD or Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL,UL)	2.32 (1.85, 2.92)	Presence of either PTSD or Depression is associated with being non productive

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not working (Return to activity)	PTSD or Depression VS. No PTSD or Depression	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL,UL)	3.20 (2.46, 4.16)	Presence of either PTSD or Depression is associated with being non working

	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2011	Low	patients with multiple traumatic injuries	Return to Work (Return to activity)	sf36 social functioning VS. Continuous	75	5 yrs	logistic regression (gender, age, college education, blue vs white collar job, New Injury Severity Score, physical function at return to home, pain at return home, social functioning at return home, cognitive function at return home, cognitive functioning in hospital-rehab)	OR (LL, UL)	1.02 (0.99–1.06)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2011	Low	patients with multiple traumatic injuries	Return to Work (Return to activity)	WHODAS II cognitive functioning at time of return home VS. Continuous	75	5 yrs	logistic regression (gender, age, college education, blue vs white collar job, New Injury Severity Score, physical function at return to home, pain at return home, social functioning at return home, cognitive function at return home, cognitive functioning in hospital-rehab)	OR (LL, UL)	1.01 (0.96– 1.08)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs.Fast RTW (Return to activity)	WHO-QOL score; Psychological (4- 20) VS. Continuous	576	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.15(1.01, 1.30)	Lower psychological score is associated with slower RTW(compared to fast RTW)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	WHO-QOL score; Psychological (4- 20) VS. Continuous	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.06(0.94, 1.19)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	WHO-QOL score; Psychological (4-20) VS. Continuous	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.22(1.04, 1.41)	Lower psychological score is associated with Slow RTW(compare to Fast RTW)

Table 10: Other Factors (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Nonwhite race VS. White Race	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	34	Nonwhite race is associated with higher overall SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Nonwhite Race VS. White Race	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	32.3	Nonwhite race is associated with higher overall SIP scores
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Nonwhite race VS. White Race	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	28.1	Nonwhite race is associated with higher physical SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Nonwhite Race VS. White Race	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	32.8	Nonwhite race is associated with higher physical SIP scores
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Race-Non White VS. Race-White	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	3.1	LE trauma subjects who are Non Whites are 3.1 time more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 PCS Score (Function	White VS. Non-white	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-3.07	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Physical Score (Function	White VS. Non-white	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	1.478	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Vitality Score (Function)	White VS. Non-white	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.405	NS
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Psychoact ive drug consumpt ion (Mental Health)	INTERMED score >20 VS. INTERMED <21	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	3.9 (1.6, 9.4)	lower complexity score on INTERMED leads to less psychoactive drug use
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	Nonwhite race VS. White Race	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	47	Nonwhite race is associated with higher mental SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Race-Non White VS. Race-White	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.4	LE trauma subjects who are Non-Whites are 2.4 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Race-Non White VS. Race-White	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.3	LE trauma subjects who are non-whites are 2.3 time more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Role Emotiona 1 Score (Mental Health)	White VS. Non-white	78	7 yrs	Mulivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-1.484	Being white is associated with lower odds of a poor RE score
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Pain medicatio n consumpt ion (Pain)	INTERMED score >20 VS. INTERMED <21	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	15 (2, 122)	higher complexity score on INTERMED leads to more pain medication use
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Low SF- 36 Bodily Pain Score (Pain)	White VS. Non-white	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	2.326	Being white is associated with lower odds of a low BP score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Number of biographical risk factors VS. Continuous	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta (p value)	0.24 (<0.05)	More biographical risk factors leads to increased PTSD
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Return to work (Return to activity)	INTERMED score >20 VS. INTERMED <21	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	3.2 (1.3, 7.9)	lower complexity score on INTERMED is more likely to return to work
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Reduced Hours (Return to activity)	White VS. Non-white	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-2.472	Being white is associated with lower odds of reduced hours

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Return to Work (Return to activity)	White VS. Non-white	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	1.595	Being white is associated with higher odds of return to work
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	White VS. Non-white	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.82 (1.23- 2.70)	Being white is associated with higher rates of RTW.
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs. Fast RTW (Return to activity)	WHO-QOL score; Physical (4-20) VS. Continuous	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.95(0.83, 1.09)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	WHO-QOL scores; Environmental (4- 20) VS. Continuous	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.93(0.82,1 .07)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	WHO-QOL scores; Environmental (4-20) VS. Continuous	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.93(0.79, 1.10)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	WHO-QOLscore; Environmental(4-20) VS. Continuous	576	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.00(0.87, 1.14)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Nonwhite race	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	59.8, 0.001	Compared to whites, nonwhite is associated with higher overall SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function	Nonwhite race	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	55.8, 0.001	Compared to whites, nonwhite is associated with higher physical function SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking Speed >= 4ft/sec (Function)	Nonwhite race	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	0.27, 0.08	Not Significant

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial SIP (Mental Health)	Nonwhite race	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	99.5, 0.001	Compared to whites, nonwhite is associated with higher psychosocial SIP scores

Table 11: Personal View (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	Self-efficacy VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	-0.12	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.6	Higher self- efficacy scores are associated with lower overall SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.6	Higher self- efficacy scores are associated with lower overall SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Self-efficacy score	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	-0.02, 0.001	Higher self- efficacy scores are associated with lower overall SIP scores
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	4-Item Depressio n Screen (Depressi on)	Resilience VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=Activity restriction)	Unstanda rdized Coef, Unstanda rdized 95% CI	-0.01 (- 0.02 0.04)	> positive resiliency is associated with less activity restriction and therefore lower depression
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	4-Item Depressio n Screen (Depressi on)	Resilience VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=positive emotion)	Unstanda rdized Coef, Unstanda rdized 95% CI	-0.06 (- 0.08 0.04)	> positive resiliency is associated with higher positive emotion and therefore lower depression

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Self efficacy VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	-0.18	low self efficacy is associated with high depression symptoms
Vrancean u, A. M., 2014	Low	MS fractures- 6(minor),78(moderate),40(serious),12(severe, open fractures-9%), AIS score=2.5(0.7)	Disability (Function)	Catastrophic thinking(measured via PCS) VS. Unclear	136	8 mo	Linear Regression Model(multiple injuries, opioid use,AIS scores,catastrophic thinking,pain anxiety)			Catastrophic thinking is a significant predictor of degree of disability
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	SF-12 Physical Compone nt Scale (Function	Fear of movement at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks; comorbidites)	Beta coef, p- value	0.15, 0.34	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Mobility (ROM goniomet er) (Function)	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	0.37 (0.13, 1.02)	NS
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Handgrip strength/ Heel rise (Function	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	0.69 (0.25, 1.92)	NS
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Recovery (increased mobility and strength) (Function	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	0.71 (0.25, 1.99)	NS
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Handgrip strength/ Heel rise (Function	High pain catastrophizing scale (PCS 0-3 months)) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	5.87 (1.45, 23.73)	high levels of catastrophizing leads to decreased functional strength
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Mobility (ROM goniomet er) (Function	High pain catastrophizing scale (PCS 0-3 months)) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	1.88 (0.7, 5.07)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Recovery (increased mobility and strength) (Function	High pain catastrophizing scale (PCS 0-3 months)) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	2.52 (0.74, 8.58)	NS
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	SF-12 Physical Compone nt Scale (Function	Pain catastrophizing at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks; comorbidites)	Beta coef, p- value	-0.31, 0.11	NS
Bot, A. G., 2011	Low	Radius/ulna diaphyseal fracture 37 (SM-15 simple,14 wedge,7 complex), 35 (SI-31 simple,4 wedge,)	Disability (measure d via DASH score) (Function	Pain Catastrophizing Scale VS. Continuous	71	21 yrs	Backward stepwise multiple linear regression (grip strength, pain, PCS, ipsilateral injury)	NR	NR	Increasing PCS is a predictor of disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	Self efficacy- Average VS. Self efficacy-high	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.5	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	Self efficacy-Low VS. Self efficacy- high	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self-efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.2	Subjects with LE trauma who have low SE are 2.2 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.7	Higher self- efficacy scores are associated with lower physical SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.6	Higher self- efficacy scores are associated with lower physical SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function	Self-efficacy score	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	-0.01, 0.02	Higher self- efficacy scores are associated with lower Physical Function SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking speed of >=4ft/sec (Function)	Self-efficacy score	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	1.01	Not Significant
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	Self-efficacy- Average VS. Self- efficacy-High	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	1.2	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	Self-efficacy-Low VS. Self-efficacy- High	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.2	Subjects with LE trauma who have low SE are 2.2 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Impact of event (measures via IES) VS. No impact of event	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	1.06(0.99,1 .14)	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	Self-efficacy (Inventory of Socially Supported Behaviors) VS. Continuous	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.7	Higher self- efficacy scores are associated with lower mental SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial Function SIP (Mental Health)	Self-efficacy score	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	-0.3, 0.001	Higher self- efficacy scores are associated with lower psychosocial function SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Self-efficacy- Average VS. Self- efficacy-High	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	1.1	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Self-efficacy-Low VS. Self-efficacy- High	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.5	LE trauma subjects with low self- efficacy are 2.5 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD,dep ression and anxiety) (Mental Health)	Subjective appraisal of accident severity VS. No subjective appraisal of accident severity	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	1.95(0.65,5 .85)	NS
Vrancean u, A. M., 2014	Low	MS fractures-6(minor),78(moderate),40(serious),12(severe, open fractures-9%), AIS score=2.5(0.7)	Pain at rest (Pain)	Catastrophic thinking(measured via PCS) VS. Unclear	136	8 mo	Linear Regression Model(multiple injuries, opioid use,AIS scores,catastrophic thinking,pain anxiety)			Catastrophic thinking is a significant predictor of degree of pain at rest
Vrancean u, A. M., 2014	Low	MS fractures-6(minor),78(moderate),40(serious),12(severe, open fractures-9%), AIS score=2.5(0.7)	Pain during activity (Pain)	Catastrophic thinking(measured via PCS) VS. Unclear	136	8 mo	Linear Regression Model(multiple injuries, opioid use,AIS scores,catastrophic thinking,pain anxiety)			Catastrophic thinking is a significant predictor of degree of pain during activity

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Clay, F. J., 2010 (a)	Low	>=1 ortho injury (fracture, tear, avulsion, etc); 77% fracture; mostly extremity injuries	Presence of Pain (Pain)	External attributions and high pain intensity VS. External attributions and mild pain	150	6 то	multivariate logistic regression (age, gender, education, prior pain, comorbid conditions, need for surgery, pain at 2 weeks, psychological distress, external attributions, lower extremity injury, injured at work, compensable status, interactions)	OR	13.5	External attributions and high pain intensity are associated with presence of pain at 6 months
Clay, F. J., 2010 (a)	Low	>=1 ortho injury (fracture, tear, avulsion, etc); 77% fracture; mostly extremity injuries	Presence of Pain (Pain)	External attributions of responsibility VS. No external attributions of responsibility	150	6 mo	multivariate logistic regression (age, gender, education, prior pain, comorbid conditions, need for surgery, pain at 2 weeks, psychological distress, external attributions, lower extremity injury, injured at work, compensable status, interactions)	OR, CI	12.1 (2.4- 60.4)	External attributions are associated with the presence of pain at 6 months

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Intensity - Brief Pain Inventory (Pain)	Fear of movement at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	-0.11, 0.32	NS
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Interferen ce - Brief Pain Inventory (Pain)	Fear of movement at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	0.004, 0.98	NS
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Numeric rating scale (NRS pain) (Pain)	High modified fear- avoidance belief questionnaire (MFABQ 0-3 months) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	3.21 (1.03, 9.89)	fear avoidance beliefs increases risk of pain

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Steven, J. L., 2010	Low	Acute injury of single distal radius or ankle fracture adult patients	Numeric rating scale (NRS pain) (Pain)	High pain catastrophizing scale (PCS 0-3 months)) VS. Continuous	70	9 mo	Logistic regression (age, gender)	OR (90% CL)	1.92 (0.63, 5.83)	NS
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Interferen ce - Brief Pain Inventory (Pain)	Pain catastrophizing at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	0.38, 0.03	Higher pain catastrophizing at 4 weeks is associated with higher pain interference at 1 year
Archer, K. R., 2015	Low	All lower extremity fracture pts; 40% of pts had concurring polytrauma	Pain Intensity - Brief Pain Inventory (Pain)	Pain catastrophizing at 4 weeks VS. Continuous	110	1 yrs	Hierarchical linear regression (age, education, pain catastrophizing at 4 weeks, fear of movement at 4 weeks, depressive symptoms at 4 weeks)	Beta coef, p- value	0.67, <0.001	Higher pain catastrophizing at 4 weeks is associated with higher pain scores at 1 year

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Impact of Event Scale (Intrusion subscale) VS. Continuous	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta (pvalue)	0.23 (<0.05)	Higher IES intrusion score leads to increased PTSD
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	Primary Care PTSD Screen (PTSD)	Resilience VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=Activity restriction)	Unstanda rdized Coef, Unstanda rdized 95% CI	-0.01 (- 0.03 to - 0.003)	Greater positive resiliency is associated with less activity restriction and therefore lower PTSD
Walsh, M. V., 2016	Mod	Limb loss due to traumatic injury; 92.5% injury on 1 side of body, 119 had hand amputation	Primary Care PTSD Screen (PTSD)	Resilience VS. Continuous	202	Post-Op	Multivariate Linear Regression (mediator=Positive emotion)	Unstanda rdized Coef, Unstanda rdized 95% CI	-0.03 (- 0.05 0.02)	Greater positive resiliency is associated with greater positive emotion and therefore lower PTSD

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Personality profile VS. unclear	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Self-efficacy VS. Continuous	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.001	NS
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	A little self- efficacy of RTW VS. No self- efficacy of RTW	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	2.71 (1.23, 5.98)	A little self- efficacy leads to faster RTW
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Average self- efficacy VS. Low self-efficacy	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	2.58 (1.68- 3.95)	Average self- efficacy is associated with higher return to work rates

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Rusch, M. D., 2003	Mod	Hand/UE pts; required tx by hand surgeon; 20 crush, 4 degloving; 51 amputations	RTW status (Return to activity)	Causal attributions VS. No Causal attributions	92	6 mo	Logistic regression (age, sex, causal attributions, litigation status, months with employers)	OR(LL,U L)	7.28(2.41, 21.92)	Causal attributions are associated with poor RTW status
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	High job involvement (motivation/satisfac tion) VS. Low job involvement (motivation/satisfac tion)	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.44 (1.07- 1.92)	Higher job involvement is associated with higher return to work rates
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	High self-efficacy of RTW VS. No self-efficacy	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	2.23 (0.74, 6.70)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	High self-efficacy VS. Low self- efficacy	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	3.88 (2.45- 6.16)	High self- efficacy is associated with higher return to work rates
Schnyder, U., 2003	Mod	Victims of accidental trauma, excluding pts w/ severe head trauma and mental illness; avg ISS 22.1	Number of days of leaves taken (Return to activity)	Impact of Event Scale Intrusion VS. Continuous	100	12 mo	Multivariate linear regression (age, accident type, impact, self- appraisal, ISS, gender)	beta coefficien t	0.12	NS
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	Moderate self- efficacy of RTW VS. No self- efficacy of RTW	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	0.86 (0.29, 2.59)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	Powerful others locus of health control VS. No powerful others locus of health control	97	2 yrs	Cox regression(gender,age,educatio n,profession,ISS,LO S control,function)	RR(LL,U L)	0.96(0.88,1 .04)	NS
Schnyder, U., 2003	Mod	Victims of accidental trauma, excluding pts w/ severe head trauma and mental illness; avg ISS 22.1	Number of days of leaves taken (Return to activity)	Self appraisal of accident severity VS. Continuous	100	12 mo	Multivariate linear regression (age, accident type, impact, self- appraisal, ISS, gender)	beta coefficien t	0.35	Higher self appraisal of accident severity is associated with more days of leave taken
Schnyder, U., 2003	Mod	Victims of accidental trauma, excluding pts w/ severe head trauma and mental illness; avg ISS 22.1	Number of days of leaves taken (Return to activity)	Self appraisal of coping abilities VS. Continuous	100	12 mo	Multivariate linear regression (age, accident type, impact, self- appraisal, ISS, gender)	beta coefficien t	-0.23	Higher self- appraisal of coping ability is associated with less days of leave taken

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Self -efficacy to RTW; high chance VS. No chance	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.34(0.17, 0.69)	high chance in self efficacy is associated with average RTW (compared to slow RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Self -efficacy to RTW; high chance VS. no chance	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.20(0.09, 0.47)	high chance in self efficacy is associated with fast RTW (compared to slow RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Self -efficacy to RTW; moderate chance VS. No chance	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.52(0.34, 0.80)	moderate chance in self efficacy is associated with average RTW (compared to Slow RTW)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Self -efficacy to RTW; moderate chance VS. No chance	405	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.29(0.17, 0.51)	moderate chance in self efficacy is associated with faster RTW (compared to Slow RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	Self-efficacy of RTW in 1 month High chance VS. No chance	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.60(0.33, 1.09)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	Self-efficacy of RTW in 1 month Moderate chance VS. No chance	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.56(0.35, 0.89)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2008	Low	85% trauma injuries; 60% high energy; all non-workers comp	Return to work (days) (Return to activity)	Very high self- efficacy of RTW VS. No self- efficacy	81	6 mo	Cox proportional hazard regression analysis (sex, age, education, self efficacy, injury energy, hospitalization days)	OR (LL, UL)	4.88 (2.31, 10.31)	Very high self- efficacy leads to faster return to work

Table 12: Physical Health (PICO 1)

Reference	Qualit	Patient Characteristics	Outcome	Factor VS.	Grp	Duration	Adjustment	Statistic	Result	Significance
	у			Reference	N		110,000,000		1100 00.10	218
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	WHODAS II- Disability (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS
Souer, J. S., 2008	Low	Trauma w sport injury received surgical treatment for distal radius fra. (ORIF); ulnar fra. included	DASH questionn aire (Composi te)	Arc of forearm rotation VS. Continuous; range unclear	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	27.34	Arc of forearm rotation is a significant independent predictors of DASH scores
Souer, J. S., 2008	Low	Trauma w sport injury received surgical treatment for distal radius fra. (ORIF); ulnar fra. included	Modified Gartland and Werley (Composi te)	Flexion arc VS. Continuous; range unclear	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	18.64	Flexion arc is an independent predictor of Modified Gartland and Wesley score
Souer, J. S., 2008	Low	Trauma w sport injury received surgical treatment for distal radius fra. (ORIF); ulnar fra. included	Mayo Wrist score (Composi te)	Flexion/ Extension VS. Continuous; range 0-25	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	7.41	Flexion extension is a significant independent indicator of Mayo Wrist Score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Souer, J. S., 2008	Low	Trauma w sport injury received surgical treatment for distal radius fra. (ORIF); ulnar fra. included	Mayo Wrist score (Composi te)	Grip strength VS. Continuous; range 0-25	84	22 mo	Multivariate analysis of variance (unclear factors)	F statistic	23.7	Grip strength is an independent predictor of Mayo Wrist score
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	WHODAS II- Disability (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function	Other pain condition VS. No other pain condition	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high school-yes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	16; 0.31; 5.9; 0.01; (4.3 to 28)	Presence of another pain condition is associated with higher SMFA total scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	WHODA S 2.0 >=25 (Function)	Baseline Physical disability VS. No baseline physical disability	89	6 то	Multivariate logistic regression (marital status, education, baseline physical disability, max AIS score)	OR, CI, P-value	0.5 (0.08- 2.94), 0.420	NS
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	Other pain condition not known VS. Other pain condition known	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high school-yes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	-23; -0.17; 15; 0.13; (- 54 to 6.8)	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Poor pre-injury health status VS. Good/excellent pre- injury status	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.4	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Poor pre-injury health status VS. Good/excellent pre- injury status	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.6	Subjects with LE trauma with poor PIHS are 1.6 times likely to have disability
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	WHODAS II- Disability (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; p value	0.26; <0.001	Disability at 3 months was associated with worse disability scores at 12 months
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Pre-injury health status-Poor VS. Pre-injury health status-Good or excellent	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.5	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	intentional Injury VS. Continuous	293	12 mo	Multiple logistic regression(Gender, Age, Injury characteristics, & Insurance status)	RR(LL, UL)	1.32(1.04, 1.67)	Intentional injury is associated with high PTSD symptoms compared to natural injury
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	WHODAS II- Disability (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	NR	NR	NS
Ponzer, S., 1997	Low	Women with trauma injuries (60% extremity, pelvis, spine)	Disability in work, family, household , social life, or leisure (QOL)	VAS Physical health scale >50mm VS. VAS Physical health scale <50mm	93	1 yrs	Logistic regression (max AIS, VAS physical, VAS mental, previous injury frequency)	OR (LL, UL)	3.8 (1.1, 13)	VAS physical health scale >50/100 increases risk of disability
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	3-month physical SIP score VS. Continuous	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	0.97 (0.96- 0.98)	Higher 3-month physical SIP scores are associated with lower RTW rates

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	Physical functioning VS. No/Low Physical functioning	97	2 yrs	Cox regression (gender,age,educatio n,profession,ISS,LO S, health control,function)	RR (LL, UL)	1.01(0.99,1 .02)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	WHO-QOL score; Physical (4-20) VS. Continuous	627	2 yrs	Multinomial logistic regression (Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self-efficacy to RTW, Injury energy, Injury severity, injury part).	OR (LL, UL)	0.94(0.83, 1.06)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	WHO-QOL score; Physical (4-20) VS. Continuous	405	2 yrs	Multinomial logistic regression (Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, selfefficacy to RTW, Injury energy, Injury severity, injury part).	OR (LL, UL)	0.89(0.76, 1.05)	NS

Table 13: PTSD (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Anxiety- HADS (Anxiety)	PTSD (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; P- value	0.54; <0.001	PTSD at 3 months was associated with worse anxiety scores at 12 months
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	Depressio n - HADS (Depressi on)	PTSD (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; p value	0.22; <0.001	PTSD at 3 mo is associated with worse depression scores at 12 months
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	WHODA S II- Disability (Function)	PTSD (3mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; p value	0.22; <0.001	PTSD at 3 months was associated with worse PTSD scores at 12 months

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Activity of Daily Living (ADL) (Function)	PTSD VS. No PTSD	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL, UL)	5.37 (3.93, 7.35)	PTSD is associated with impaired ADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Instrumen tal Activities of Daily Living (Function)	PTSD VS. No PTSD	270 7	12 mo	Multivariate logistic regression; (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, # of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center vs non-trauma center hospital status, intensive care unit admission, mechanical ventilation, intubation, inpatient length of stay; ISS; MAXAIS; individual AIS by body region; pre-injury ADLs & IADLs)	OR; (LL, UL)	5.32 (4.06, 6.97)	PTSD is associated with impaired IADL

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Physical Compone nts Summary (PCS) (Function	PTSD VS. No PTSD	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL, UL)	-7.76 (- 8.76, - 6.77)	PTSD is associated with lower PCS scores
Nota, S. P., 2015	Mod	ortho outpatients with fractures, tendon or ligament injuries	Short Musculos keletal Functiona l Assessme nt (SMFA) Total (Function)	SVL measuring PTSD VS. Continuous	65	NR	Multivariate linear regression; (CES-D SVL; PCS; ISS; Gender; Age; Surgery; Additional surgery; Other pain-yes; Other pain-NK; Education beyond high school-yes; education beyond high school-NK)	Coef; Beta; SE; p-value; 95 % CI	0.032; 0.036; 0.14; 0.83; (-0.26 to 0.32)	NS
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	SF- 36; Mental Compone nts Summary (Mental Health)	PTSD VS. No PTSD	270 7	12 mo	Multivariate linear regression (ISS; MAXAIS; baseline health status)	Beta Coeff; (LL, UL)	-15.90 (- 16.91, - 14.90)	PTSD is associated with lower PCS scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Liedl, A., 2010	Low	traumatic injury pts; unclear location; exclude TBI	VAS pain (Pain)	CAPS arousal (3mo) VS. Continuous	824	12 mo	Multivariate regression (re- experiencing, avoidance, arousal, pain)	coefficien t (p- value)	0.09 (<0.05)	increased arousal at 3mo is associated with increased pain at 12mo
Liedl, A., 2010	Low	traumatic injury pts; unclear location; exclude TBI	VAS pain (Pain)	CAPS avoidance (3mo) VS. Continuous	824	12 mo	Multivariate regression (re- experiencing, avoidance, arousal, pain)	p-value	>0.05	NS
Liedl, A., 2010	Low	traumatic injury pts; unclear location; exclude TBI	VAS pain (Pain)	CAPS re- experiencing (3mo) VS. Continuous	824	12 mo	Multivariate regression (re- experiencing, avoidance, arousal, pain)	coefficien t (p- value)	0.1 (<0.05)	increased re- experiencing at 3mo is associated with increased pain at 12mo
Schweinin ger, S., 2015	Low	Major traumatic TBI injury Hospital pts; at least 24 hrs admission; longitudinal study	CAPS- PTSD (PTSD)	PTSD (3 mo) VS. Continuous	775	12 mo	cross-lagged longitudinal panel design (unclear factors)	Standardi zed path coefficien ts; p value	0.54; <0.001	PTSD at 3 mo is associated with worse PTSD scores at 12 months
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	IES-R >26 (PTSD)	PTSD at baseline VS. No PTSD at baseline	86	6 то	Multivariate logistic regression (marital status, education, baseline PTSD, max AIS score)	OR, CI, P-value	3.23 (1.25- 8.33), 0.015	PTSD at baseline is significantly associated with higher odds of PTSD at 6 months

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not productive (Return to activity)	PTSD VS. No PTSD	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury drug abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL, UL)	2.47 (1.88, 3.26)	PTSD is associated with being nonproductive

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatzick, D., 2008	Low	patients treated for moderate to severe trauma injury with AIS score >= 3	Not working (Return to activity)	PTSD VS. No PTSD	270 7	12 mo	Multivariate logistic regression (gender, marital status, education, income, insurance status, ethnicity/ racial background, age, injury type, number of chronic pre injury medical conditions, highest recorded ED heart rate, pre-injury health status, pre-injury alcohol abuse/dependence, pre-injury cigarette smoking, pre-injury depression, trauma center versus non trauma center hospital status, ICU admission, mechanical ventilation, intubation, and inpatient length of stay; ISS; MAXAIS; individual AIS by body region; preinjury productive activity)	OR; (LL, UL)	3.56 (2.41, 5.26)	PTSD is associated with being non-working

Table 14: Socioeconomic Status (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	occupational level VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self- efficacy, Neuroticism & mastery)	Beta coefficien t	0	NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Income level at or below poverty level	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Income level at or below poverty level VS. Near or above poverty level	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	12.3	Income level at or below poverty line is associated with higher overall SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Income level at or below poverty level VS. Near or above poverty level	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	11.8	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Lawyer hired VS. No lawyer hired	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	23.1	Hiring a lawyer is associated with higher overall SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Lawyer hired VS. No lawyer hired	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	14.1	Hiring a lawyer is associated with higher overall SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-2.9	NS
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.9	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 13-24 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	10.6	No health insurance or public health 13-24 mo after inj is associated with higher SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 13-24 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	12.5	No health insurance or public health 13-24 mo after inj is associated with higher SIP scores
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 4-6 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	9.5	No health insurance or public health 4- 6 mo after inj is associated with higher SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 4-6 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	11.4	No health insurance or public health 4- 6 mo after inj is associated with higher SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 7-12 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	21.9	No health insurance or public health 7- 12 mo after inj is associated with higher SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	No health insurance or public health ins 7-12 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	17.8	No health insurance or public health 7- 12 mo after inj is associated with higher SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	No insurance or public insurance	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	Occupation level VS. Continuous	181	12 mo	Multivariate Regression Analysis (Depression, Sex, Age, Education, Occupation, social Support, Self- efficacy, Neuroticism & mastery)	Beta coefficien t	-0.06	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Blue-collar employment VS. White-collar employment	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	-2.23 (- 5.51-1.05)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Blue-collar employment VS. White-collar employment	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	-1.64 (- 4.59-1.32)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Blue-collar employment VS. White-collar employment	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	-1.70 (- 4.47-1.07)	NS
Hebert, J. S., 2006	Low	Unclear etiology; Population with LE amputation, average age 34,96.6%, males	TD (total disability) (Function)	Gross income VS. categorical	88	2 yrs	Multivariate linear regression (age, level of amputation,no. of surgical procedures,days of stay, gender, interaction terms)	F-value	0.7	NS
Kugelman , D. N., 2018	Mod	unclear trauma/injuries pts who received operative treatment for a long bone fracture non-union	Total SMFA score (Function)	Income <50,000 VS. Income >50,000	329	6 то	Multivariate linear regression (age, gender, race, income, education, smoking, diabetes, injury characteristics, non-union characteristics)	p-value	0.558	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function SIP (Function	Income level at or below poverty level	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking speed of >=4 ft/sec (Function)	Income level at or below poverty level	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Income level at or below poverty level VS. Near or above poverty level	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	10.7	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Income level at or below poverty level VS. Near or above poverty level	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	8.3	NS
MacDerm id, J. C., 2002	Mod	All pts had distal radius fractures; 59% AO C fractures, 24% B, and 17% A	Patient Rated Wrist Evaluatio n (Function)	Injury compensation via legal case VS. No injury compensation	120	6 mo	Multivariate linear regression (injury compensation, education, prereduction radial shortening, age, sex, AO fracture type, postreduciton radial shortening)	None	None	Injury compensation is associated with higher PRWE scores
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Lawyer hired VS. No lawyer hired	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	17.7	Hiring a lawyer is associated with higher physical SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Lawyer hired VS. No lawyer hired	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	16.5	Hiring a lawyer is associated with higher physical SIP scores
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	Medicaid insurance VS. Workers Comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	4	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	Medicaid insurance VS. Workers Comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	8	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function)	Medicaid VS. Workers comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	2.1	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function)	Medicare VS. Workers comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.44	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	Medicare VS. Workers Comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.64	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	Medicare VS. Workers Comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	9.5	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-5.4	NS
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-1.8	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 13-24 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	4.3	No health insurance or public health 13-24 mo after inj is associated with higher physical SIP score
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 13-24 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	5.9	No health insurance or public health 13-24 mo after inj is associated with higher physical SIP score
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function	No health insurance or public health ins 4-6 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	6.5	No health insurance or public health 4- 6 mo after inj is associated with higher physical SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 4-6 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	8	No health insurance or public health 4- 6 mo after inj is associated with higher physical SIP scores
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 7-12 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	18.4	No health insurance or public health 7- 12 mo after inj is associated with higher physical SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	No health insurance or public health ins 7-12 mos after injury VS. Private insurance	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	19.6	No health insurance or public health 7- 12 mo after inj is associated with higher physical SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function of SIP (Function)	No insurance or public insurance	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			NS
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking speed (>=4 ft/sec) (Function)	No insurance or public insurance	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Poverty status-Poor VS. Poverty Status- Near-poor or Non- poor	413	84 mo	Logistic Regression (type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.1	LE trauma subjects who are poor are 2.1 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	Private Insurance VS. Workers Comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	2	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	Private Insurance VS. Workers Comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	11.4	Private insurance is associated with higher odds of a satisfactory PCS score
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function)	Private insurance VS. Workers comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	2.5	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	DASH score (Function	Workers' compensation VS. No workers' compensation	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coefficien t; confidenc e intervals	16.5 (8.7 to 24.3)	Workers' comp leads to decreased function
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Psychoact ive drug consumpt ion (Mental Health)	accident at work VS. accident not at work	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	2.2 (1, 5)	NS
Gunaward ena, N., 2007	Low	All military unilateral amputees; average age 26.2 years old; land mine most frequent case of injury	Presence of Psycholo gical Distress - BSI Scale (Mental Health)	Being employed in the army	461	3 yrs	<30 y/o, employed in army, lesser extent of prosthetic use outdoors, threatened with arms, witnessed war			Those who are employed in the army have higher odds of psychological distress
Gunaward ena, N., 2007	Low	All military unilateral amputees; average age 26.2 years old; land mine most frequent case of injury	Presence of Psycholo gical Distress - GHQ Scale (Mental Health)	Being employed in the army	461	3 yrs	<30 y/o, employed in army, lesser extent of prosthetic use outdoors, threatened with arms, witnessed war			Those who are employed in the army have higher odds of psychological distress

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Blue-collar employment VS. White-collar employment	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	1.97 (- 1.01-4.96)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Blue-collar employment VS. White-collar employment	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	1.2 (-1.69- 4.34)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Blue-collar employment VS. White-collar employment	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	1.02 (- 2.03-4.08)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Employed VS. Not employed	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL, UL)	0.8 (0.34, 1.88)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Employed VS. Not employed	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL, UL)	1.03 (0.31, 3.44)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial Function SIP (Mental Health)	Income level at or below poverty level	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	Income level at or below poverty level VS. Near or above poverty level	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	29	Income at or below poverty level is associated with higher mental SIP scores
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Involvement with legal system-Yes VS. Involvement with legal system-No	413	84 mo	Logistic Regression (type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.1	LE trauma subjects who are involved with legal system are 2.1 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	Lawyer hired VS. No lawyer hired	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	35	Hiring a lawyer is associated with higher mental SIP scores
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	Medicaid VS. Workers comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	28	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	Medicare VS. Workers comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	5.8	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	No health insurance or public health ins 0-3 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	3.6	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	No health insurance or public health ins 13-24 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	0.4	No health insurance or public health 13-24 mo after inj is associated with higher mental SIP score
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	No health insurance or public health ins 4-6 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	13.1	No health insurance or public health 4- 6 mo after inj is associated with higher mental SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	No health insurance or public health ins 7-12 mos after injury VS. Private insurance	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	21.2	No health insurance or public health 7- 12 mo after inj is associated with higher mental SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial Function of SIP (Mental Health)	No insurance or public insurance	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy			
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Poverty status-Poor VS. Poverty Status- Near-poor or Non- poor	413	84 mo	Logistic Regression (type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2	LE trauma subjects who are poor are 2.0 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Poverty status-Poor VS. Poverty Status- Near-poor or Non- poor	413	84 mo	Logistic Regression (type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.4	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	Private insurance VS. Workers comp/MV	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.34	NS
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Psychoact ive drug consumpt ion (Mental Health)	unqualified work VS. qualified work	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	0.9 (0.4, 2.1)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Pain medicatio n consumpt ion (Pain)	accident at work VS. accident not at work	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	3.4 (1.1, 10.4)	accident at work leads to more pain medication use
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Pain medicatio n consumpt ion (Pain)	unqualified work VS. qualified work	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	3.8 (1.3, 10.7)	unqualified workers are associated with more pain medication use
Walsh, M., 2010	Mod	patient has fracture of the distal part of the radius, skeletal maturity	Visual analogue scale (VAS in mm) (Pain)	Workers' compensation VS. No workers' compensation	496	NR	Multivariate linear regression (Age, Race; Education; BMI; Gender; OTA classification; High velocity; Workers comp; op treatment)	Beta coffecient ; confidenc e intervals	3.1 (2.15 to 4.1)	Workers' comp leads to increased pain

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Zatziek, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	No insurance VS. Private Insurance	293	12 mo	Multiple logistic regression (Gender, Age, Injury characteristics, & Insurance status)	RR (LL, UL)	1.46(0.98, 2.16)	NS
Zatzick, D. F., 2007	Low	Majority pts injury associated with Malice, MVA, & work injuries	PTSD Checklist symptoms (PTSD)	Public insurance VS. Private Insurance	293	12 mo	Multiple logistic regression (Gender, Age, Injury characteristics, & Insurance status)	RR (LL, UL)	1.30(0.86, 1.95)	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Farming/forestry/fi shing occupation VS. Housewife occupation	464 3	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.006	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Insurance Status	463	2 mo	age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety			

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Low economic burden VS. High economic burden	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.008	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Moderate economic burden VS. High economic burden	464 3	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	-0.003	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Part-time occupation VS. Housewife occupation	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.016	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Poverty status VS. No poverty	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Pre-injury job VS. unclear	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
O'Toole, R. V., 2008	Mod	LEAP data; limb-threatening lower-extremity injures	Patient Satisfacti on (QOL)	Pre-injury work status VS. unclear	463	2 yrs	Multivariate logistic regression (age, gender, education, poverty status, race, insurance, personality profile, medical comorbidites, preinjury work status, preinjury job type, mechanism of injury, open fracture type, severity of bone or skin damage, severity of nerve damage, reconstruction or amputation, timing of initial debridement, timing of admission, timing of definite soft tissue coverage, return to work, SIP, walking speed, pain intensity, major complication, less anxiety)	p-value	>0.2	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Repairs personnel/operators /laborers occupation VS. Housewife occupation	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	-0.003	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Returned to work after injury VS. Did not return to work after injury	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.53	Returning to work after injury is associated with higher EQ-5D score.

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	White-collar occupation VS. Housewife occupation	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	-0.002	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Workers Comp Coverage VS. No workers comp coverage	464	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	0.002	NS
Hebert, J. S., 2006	Low	Unclear etiology; Population with LE amputation, average age 34,96.6%, males	failure to RTW (Return to activity)	\$25,001- 50,000/annum (gross income) VS. <\$25,000/annum	88	2 yrs	Multivariate logistic regression (Gross income, amputation level, age, gender)	OR(CI)	0.21(0.05,0 .90)	Having annual income of \$25,00-50K1 is associated with high likelihood of RTW

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hebert, J. S., 2006	Low	Unclear etiology; Population with LE amputation, average age 34,96.6%, males	failure to RTW (Return to activity)	>75,000/annum (gross income) VS. <\$25,000/annum	88	2 yrs	Multivariate logistic regression (Gross income, amputation level, age, gender)	OR(CI)	0.00(0.00,0	Having annual income of >\$ 75K is associated with high likelihood of RTW
Hebert, J. S., 2006	Low	Unclear etiology; Population with LE amputation, average age 34,96.6%, males	failure to RTW (Return to activity)	50,001- 75,000/annum (gross income) VS. <\$25,000/annum	88	2 yrs	Multivariate logistic regression (Gross income, amputation level, age, gender)	OR(CI)	0.54(0.11- 2.67)	Having annual income of \$50,001-75K is associated with high likelihood of RTW
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Return to work (Return to activity)	accident at work VS. accident not at work	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	2.1 (1.4, 8)	NS
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Blue collar job VS. White collar job	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self-efficacy, job tenure, job involvement, 3-month pain, 3 month SIP score)			NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Time off work (Return to activity)	Blue Collar Worker VS. White Collar Worker	152	6 mo	multivariate cox regression (coping, comorbidities, employment, polytrauma, social functioning, ISS, age, self- employment, education, compensation, high initial pain, recovery beliefs, interactions)	Relative Rate Ratio, CI	0.52 (0.32- 0.84)	Blue collar employment is associated with longer time off work
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Slower return to work (Return to activity)	Comorbid conditions and self- employment VS. Comorbid conditions and not sef-employed	152	6 mo	Multivariate cox regression (comorbidities, to fill the day, high initial pain, shouldn't work, social functioning, psychological distress, age, polytrauma, self-employment, interactions)	Relative Rate Ratio, CI	7.14 (1.62- 31.48)	Self-employed pts with comorbid conditions has faster return to work

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Reduced Hours (Return to activity)	Job scale at time of injury VS. Continuous	78	7 yrs	Multivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	-0.007	NS
Pezzin, L. E., 2000	Low	All pts had trauma-related amputation of lower limb; Avg ISS: 20.7; 40.4% MVA	Return to Work (Return to activity)	Job scale at time of injury VS. Continuous	78	7 yrs	Mulivariate logit regression (inpatient rehab, age, time since injury, male, white, education, job scale at time of injury, injury characteristics, amputation level, post-amputation surgeries)	Log odds	0.38	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Job with high physical demands VS. Job with low physical demands	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self-efficacy, job tenure, job involvement, 3-month pain, 3 month SIP score)			NS
Rusch, M. D., 2003	Mod	Hand/UE pts; required tx by hand surgeon; 20 crush, 4 degloving; 51 amputations	RTW status (Return to activity)	litigation status VS. unclear	92	6 mo	Logistic regression (age, sex, causal attributions, litigation status, months with employers)	significan ce	NR	NS
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Low-Physical demand of job in 0- 3m) VS. High	312	12 mo	Proportional hazards regression (age,gender,occupati on, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	2.6(1.3,5.2	Individuals with LL fractures with jobs with low physical demands are more likely to RTW

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Low-Physical demand of job in 0- 3m) VS. High	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	2.1(1.0,4.2	NS
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Medium-Physical demand of job in 0- 3m) VS. High	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.1(0.6,2.4	NS
Rusch, M. D., 2003	Mod	Hand/UE pts; required tx by hand surgeon; 20 crush, 4 degloving; 51 amputations	RTW status (Return to activity)	Months with employers VS. Continuous	92	6 mo	Logistic regression (age, sex, causal attributions, litigation status, months with employers)	significan ce	NR	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Near poor (poverty status) VS. Poor	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	3.3(2.0,4.8	Individuals with LL fractures who are near- poor are more likely to RTW
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	No health insurance VS. Health insurance	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)			NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	No involvement with legal system VS. Involvement with legal system	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.61 (1.19- 2.17)	No involvement with legal system is associated with higher return to work rates
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Not Poor (Poverty status) VS. Poor	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	3.1(2.1,5.1	Individuals with LL fractures who are not poor are more likely to RTW
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Other- Compensation in 0- 3 m VS. None	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	0.5(0.3,0.8	Individuals with LL fractures with jobs with other compensation are more likely to RTW

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Other- Compensation in 3- 6 m VS. None	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.0(0.6,1.9	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Part time job VS. White Collar Full time Job	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	2.77(1.09, 7.00)	Part time job workers are associated with slow RTW (compared to Fast RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	part time jobs VS. White Collar Full time Job	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.85(0.85, 4.05)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	Part time jobs VS. White-collar full time	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.49(0.71, 3.15)	NS
Hu, J., 2014	Low	Polytrauma, Work related hand injury includes wrist, palm, and fingers	RTW status (Return to activity)	Post-injury monthly salary VS. Continuous	246	8 mo	Cox regression analyses (hospitalization, injury severity, tendon trauma, skin loss and identification of injury, pre-injury salary, off-work salary)	significan ce	NA	NS
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Poverty VS. unclear	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)			NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Pre-injury job tenure of 1 yr of more VS. Pre- injury job tenure of <1 yr	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.63 (1.14- 2.32)	Longer pre- injury job tenure is associated with higher return to work rates
Hu, J., 2014	Low	Polytrauma, Work related hand injury includes wrist, palm, and fingers	RTW status (Return to activity)	Pre-injury monthly salary VS. Continuous	246	8 mo	Cox regression analyses (hospitalization, injury severity, tendon trauma, skin loss and identification of injury, pre-injury salary, off-work salary)	significan ce	NA	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Repair personnel/operators /laborers VS. White Collar Full time Job	637	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.19(0.67, 2.11)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Repair personnel/operators /laborers VS. White Collar Full time Job	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	3.24(1.59, 6.59)	Repair personnel/opera tors/laborers are associated with slow RTW (compared to Fast RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	Repair personnel/operators /laborers VS. White-collar full time	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	2.73 (1.57- 4.47)	NS
Luthi, F., 2011	Low	ortho trauma hospitalized adult pts; exclude TBI	Return to work (Return to activity)	unqualified work VS. qualified work	118	1 yrs	univariate logistic regression (age, gender)	OR (LL, UL)	3.3 (1.3, 8.4)	qualified workers are more likely to return to work
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	White collar job VS. Blue collar job	97	2 yrs	Cox regression(gender,age,educatio n,NISS,LOS,locus of health control,function)	RR(LL,U L)	1.14(0.53,2 .43)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	White collar(Occupation in month 0-3) VS. Blue collar	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	4.1(2.3,7.1	Individuals with LL fractures with white collar jobs are more likely to RTW
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	White collar(Occupation in month 3-6) VS. Blue collar	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.3(0.7,2.3	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Workers in farming /forestry/fishing VS. White Collar Full time Job	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.85(0.85, 4.05)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Workers in farming /forestry/fishing VS. White Collar Full time Job	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	2.24(1.12, 4.48)	Workers in farming /forestry/fishing are associated with slow RTW (compare to Fast RTW)
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	Workers in farming/forestry/fis hing VS. White- collar full time	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.94(0.14, 3.35)	Ns
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Worker's- Compensation in 0- 3 m VS. None	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	0.1(0.0,0.5	Individuals with LL fractures with jobs with worker's compensation are more likely to RTW

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Worker's- Compensation in 3- 6 m VS. None	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	0.4(0.1,0.9	Individuals with LL fractures with jobs with worker's compensation are more likely to RTW

Table 15: Social Support (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-5 Anxiety or depressio n (Anxiety)	household composition more VS. Household Composition Alone	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	0.6(0.2, 1.3)	NS
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Anxiety scores (Anxiety)	Social Support VS. continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	-0.08	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Head Injury symptom checklist (HISC) (Composi te)	household more VS. household single	225	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	0.8(0.3, 2.0)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Social Support (Inventory of Socially Supported Behaviors) VS. Continuous	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.5	Higher social support scores are associated with lower overall SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	Social Support (Inventory of Socially Supported Behaviors) VS. Continuous	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.4	Higher social support scores are associated with lower overall SIP scores
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	CES-D Scale >=16 (Depressi on)	Divorced/widowed VS. Single	84	6 mo	Multivariate logistic regression (marital status, education, baseline depression, max AIS score)	OR, CI, P-value	7.49 (1.44- 38.99), 0.017	Divorced/wido wed patients have higher odds of depression at 6 mos compared to those who are single

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	CES-D Scale >=16 (Depressi on)	Married VS. Single	84	6 mo	Multivariate logistic regression (marital status, education, baseline depression, max AIS score)	OR, CI, P-value	1.24 (0.36- 4.21), 0.733	NS
Bosma, Hans, 2004	Mod	Unclear trauma, majority of pts with sustained fall related injuries to extremities	Depressio n symptoms (Depressi on)	social support VS. Continuous	181	12 mo	Multivariate Regression Analysis(Depression , Sex, Age, Education, Occupation, social Support, Self efficacy, Neuroticism & mastery)	Beta coefficien t	-0.13	NS
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	WHODA S 2.0 >=25 (Function)	Divorced/Widowed VS. Single	89	6 то	Multivariate logistic regression (marital status, education, baseline physical disability, max AIS score)	significan ce		NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-3 Daily activities (Function)	household more VS. household alone	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.00(0.4, 2.1)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-1 Mobility (Function)	household more VS. household alone	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	0.6(0.3, 1.4)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function)	Married VS. Never married	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-1.8 (-4.5- 1.0)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function	Participation in society at rehab discharge VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	0.06 (0.01- 0.11)	Higher levels participation in society are associated with higher SF-36 PCS scores at 5 years
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function)	Participation in society at rehab discharge VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	0.14 (0.06- 0.21)	Higher levels participation in society are associated with higher SF-36 PCS scores at 5 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Physical Compone nt Score (Function)	Participation in society at rehab discharge VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	0.13 (0.07- 0.20)	Higher levels participation in society are associated with higher SF-36 PCS scores at 5 years
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Physical Compone nt Score (Function	Previously married VS. Never married	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-2.3 (-7.1- 2.4)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Social Support (Inventory of Socially Supported Behaviors) VS. Continuous	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.4	Higher social support scores are associated with lower physical SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	Social Support (Inventory of Socially Supported Behaviors) VS. Continuous	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.4	Higher social support scores are associated with lower physical SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Living with spouse VS. Living alone	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	1.37 (0.62, 3.02)	NS
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Living with spouse VS. Living alone	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	1.84 (0.57, 5.88)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	Married VS. Never married	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	0.9 (-1.8- 3.6)	NS
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Participation in society at rehab discharge VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, WHODAS cognitive function at rehab discharge, WHODAS mobility at rehab discharge, WHODAS participation in society at rehab discharge)	Beta coef, CI	0.18 (0.12- 0.23)	Higher levels participation in society are associated with higher SF-36 MCS scores at 5 years

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Participation in society at rehab discharge VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping, WHODAS cognitive function at 1yr, WHODAS mobility at 1yr, WHODAS participation in society at 1yr)	Beta coef, CI	0.18 (0.11- 0.24)	Higher levels participation in society are associated with higher SF-36 MCS scores at 5 years
Soberg, H. L., 2012	Low	Poly trauma pts; NISS >=16; includes TBI (28pts) and SCI (18 pts) pts	SF-36 Mental Compone nt Score (Mental Health)	Participation in society at rehab discharge VS. Continuous	104	5 yrs	Multivariate General Estimating Equations (time, sex, age, education, work, GCS, time in rehab, coping at 2 yrs, WHODAS cognitive function at 2yr, WHODAS mobility at 2yr, WHODAS participation in society at 2yr)	Beta coef, CI	0.24 (0.16- 0.32)	Higher levels participation in society are associated with higher SF-36 MCS scores at 5 years
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	SF-12 Mental Compone nt Score (Mental Health)	Previously married VS. Never married	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	-3.0 (-7.6- 1.7)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Schnyder, U., 2001 (a)	Low	Post trauma patients with severe accident injuries; excluding head (unclear anatomical location)	Psychiatri c morbidity (includes PTSD, depressio n and anxiety) (Mental Health)	Social network VS. No social network	99	1 yrs	Logistic regression(ISS, gender, biographical, stress, subjective appraisal, sense of death threat, coherence, social network, coping)	OR(LL,U L)	0.94(0.74,1 .19)	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	Social Support (Inventory of Socially Supported Behaviors) VS. Continuous	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	-0.8	Higher social support scores are associated with lower mental SIP scores
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Social support VS. Continuous	235	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.94 (0.92, 0.97)	Increased social support leads to decreased risk of low mental health in trauma pts with associated

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Ouellet, M. C., 2009	Low	spine, upper, and lower extremity injury pts with TBI	SF-12 Mental Compone nt Score (Mental Health)	Social support VS. Continuous	162	3 yrs	Logistic regression (cognitive problems, social support, pain, time since injury, gender, age, marital status, ISS, education, occupation, physical health problems)	OR (LL,UL)	0.98 (0.95, 1.01)	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-4 Pain or discomfor t (Pain)	HOUSEHOLD MORE VS. HOUSEHOLD ALONE	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	0.7(0.3, 1.8)	NS
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	Married VS. Never married	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	2.0 (0.7- 6.1)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Andrew, N. E., 2008	Low	Ortho trauma pts; 34.6% isolated extremity; 31.2% have ortho plus other injury; 11.5% multiple UL	Maximu m Pain (Pain)	Previously married VS. Never married	366	12 mo	Multivariate linear regression (sporting group, age, sex, education, marital status, ISS, injury profile, serious head injury)	Coefficie nt, CI	3.0 (0.7- 13.1)	NS
Papadaka ki, M., 2017	Mod	Unclear injury, Car accident survivors; All have fractures; polytrauma included	IES-R >26 (PTSD)	Divorced/widow VS. Single	86	6 mo	Multivariate logistic regression (marital status, education, baseline PTSD, max AIS score)	significan ce		NS
Schnyder, U., 2001 (b)	Mod	accidental injury traumatology ICU pts; excluded severe head injury	Clinician Administ ered PTSD Scale (PTSD)	Size of social network VS. Continuous	106	1 yrs	multivariate linear regression (ISS, gender, biographical factors, coherence, coping, stress, anxiety, impact, support)	Beta	-0.07	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Model B; EQol-vas (QOL)	Household composition more VS. Household composition Alone	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	0.007	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	model B; EuroQol- utility (QOL)	Household Composition More VS. Household Composition Alone	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	Regressio n Coefficie nt (RC)	0.039	NS
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	EQ-2 Self care (QOL)	household more VS. household alone	335	12 mo	multivariate logistic regression (e.g. BMI, comorbidity)	OR(LL, UL)	0.6(0.2, 1.7)	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Holtslag, H. R., 2007	Mod	Unclear trauma UE or LE injury patients; includes brain, spinal cord, chest, abs	Glasgow Outcome Scale (GOS) < 5 (QOL)	household more VS. household alone	335	12 mo	multivariate logistic regression (age, gender, BMI, education, household composition, comorbidities, injury characteristics)	OR(LL, UL)	1.1(0.4, 2.8)	NS
Hou, W. H., 2013	Mod	Traumatic limb injuries; excludes TBI, SCI, and organ damage; 39% one UB limb inj, 33% one LL inj.	EQ-5D (QOL)	Married VS. Single	464 3	24 mo	Multivariate linear regression (rtw, age, sex, marital status, education, occupation, los, type of injury, economic burden, workers comp, FAI, BSRS-5, Self-efficacy, stress coping, time since injury)	Beta Coef	-0.004	NS
Clay, F. J., 2010 (b)	Low	Ortho injuries; 77% fractures; 88pts ISS 1-8; 73% isolated or multiple extremity injuries	Time off work (Return to activity)	High social functioning and receipt of injury compensation VS. Low social functioning and receipt of injury compensation	152	6 mo	multivariate cox regression (coping, comorbidities, employment, polytrauma, social functioning, ISS, age, self-employment, education, compensation, high initial pain, recovery beliefs, interactions)	Relative Rate Ratio, CI	2.58 (1.35- 9.47)	Compared to pts w/low social functioning, those with high had shorter time off work

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Low levels of social support VS. unclear	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)			NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Average vs. Fast RTW (Return to activity)	Married VS. Single, divorced or Widowed	576	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.79(0.47, 1.33)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	Married VS. Single, divorced or widowed	627	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.63(0.40, 1.00)	married patients is associated with average RTW (compared to slow RTW)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	Married VS. Single, divorced or widowed	405	2 yrs	Multinomial logistic regression(Age, Gender, Marital Status, Occupation, Education, WHO-QOL scores, self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.50(0.27, 0.93)	Married patients are associated to faster RTW (compare to slow RTW)
Soberg, H. L., 2007	Low	Employed trauma patients with severe injury excluding aphasia(significant brain/head injury)	RTW (Return to activity)	Social functioning high VS. Social functioning low	97	2 yrs	Cox regression(gender,age,educatio n,profession,ISS,LO S, health control,function)	RR(LL,U L)	2.72(1.04,7 .13)	Higher social functioning (>75) is associated with increased probability of RTW
MacKenzi e, E. J., 1998	Low	pts with blunt, unilateral lower extremity fractures,	RTW (Return to activity)	Strong-Practical support VS. Weak	312	12 mo	Proportional hazards regression(age,gend er,occupation, physical demand,practical support, compensation)	Relative Rate Ratio(LL, UL)	1.7(1.2,2.5	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow vs. Average RTW (Return to activity)	WHO-QOLscore; Social(4-20) VS. Continuous	627	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.01(0.90, 1.13)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW; Slow Vs. Fast RTW (Return to activity)	WHO-QOLscore; Social(4-20) VS. Continuous	405	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	1.00(0.87, 1.15)	NS
Hou, W. H., 2012	High	Unclear trauma UE/ LE injury pts from MVA, pts with TBI & SCI or intern organs injury were excluded	RTW;Av erage vs fast RTW (Return to activity)	WHO-QOLscore; Social(4-20) VS. Continuous	576	2 yrs	Multinomial logistic regression(Age, Gender,Marital Status, Occupation, Education, WHO-QOL scores,self efficacy to RTW, Injury energy, Injury severity, injury part).	OR(LL, UL)	0.99(0.88, 1.11)	NS

Table 16: Substance Use (PICO 1)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	<10 cigarettes/day VS. Not a current smoker	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	16.6	<10 cigarettes/day is associated with a higher overall SIP score
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	<10 cigarettes/day VS. Not a current smoker	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	18.6	<10 cigarettes/day is associated with a higher overall SIP score
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	>=10 cigarettes/day VS. Not a current smoker	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	24.1	>=10 cigarettes/day is associated with higher overall SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Overall SIP Score (Composi te)	>=10 cigarettes/day VS. Not a current smoker	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	29.2	>=10 cigarettes/day is associated with higher overall SIP scores
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Overall Sickness impact Profile (SIP) (Composi te)	Smoking	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	32.3, 0.02	Smoking results in increased odds of overall SIP score
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	<10 cigarettes/day VS. Not a current smoker	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	16.2	<10 cigarettes/day is associated with a higher physical SIP score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	<10 cigarettes/day VS. Not a current smoker	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	17.9	<10 cigarettes/day is associated with a higher physical SIP score
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	>=10 cigarettes/day VS. Not a current smoker	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	27.9	>=10 cigarettes/day is associated with higher physical SIP scores
Castillo, R. C., 2011	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Physical Function SIP Score (Function)	>=10 cigarettes/day VS. Not a current smoker	336	12 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	30.5	>=10 cigarettes/day is associated with higher physical SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry Simple Shoulder Test (>=10) (Function	No smoking VS. Smoking	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	1.7	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry DASH Score (<21) (Function	Non-smoker VS. Smoker	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.34	NS
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 PCS (>=40) (Function	Non-smoker VS. Smoker	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	0.54	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Physical Function of SIP (Function)	Smoking	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	31.9, 0.02	Smoking results in increased odds of physical function SIP score
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Walking speed (>=4 ft/sec) (Function)	Smoking	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, OR, p- value	0.37, 0.11	Not Significant
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Status: Current Smoker VS. Status: Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	3.3	Subjects with LE trauma who are current smokers are 3.3 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	Status: Current Smoker VS. Status: Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.1	Current smokers with LE trauma are 2.1 times more likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function	Status: Quit smoking VS. Status: Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	2.2	Subjects with LE trauma who quit smoking are 2.2 times more likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Physical (Function)	Status: Quit smoking VS. Status: Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	2.1	Subjects with LE trauma who quit smoking are 2.1 times more likely to have disability
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	<10 cigarettes/day VS. Not a current smoker	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	17	NS
Bosse, M. J., 2002	Low	Pts had high-energy trauma below distal femur; complicated grade IIIB and C fractures;	% Change in Mental Function SIP Score (Mental Health)	>=10 cigarettes/day VS. Not a current smoker	460	24 mo	Multivariate longitudinal linear regression (treatment, major complications, education, income, race, insurance, smoking status, self- efficacy, social support, lawyer hired)	Percent differenc e	36	>=10 cigarettes/day is associated with higher mental SIP scores

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Current smoker VS. Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.8	Current smokers with LE trauma getting treatment are 1.8 times likely to have disability
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Current smoker VS. Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	1.8	Current smokers with LE trauma getting treatment are 1.8 times likely to have disability

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Current smoker VS. Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.8	Current smokers with LE trauma getting treatment are 1.8 times likely to have disability
Shields, E., 2015	Low	Poly-trauma & several injuries, All humeral shaft fractures; avg age: 47	Satisfacto ry SF-12 MCS (>=40) (Mental Health)	No smoking VS. Smoking	77	1 yrs	multivariate logistic regression (age, follow-up, treatment, BMI, injury mechanism, associated fracture, psychiatric history, insurance, fracture location, nerve injury, smoker, charlson score)	OR	3.2	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Quit smoking VS. Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.3	NS

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Quit smoking VS. Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >20 points)	1.3	NS
MacKenzi e, E. J., 2005	Low	Population with unilateral Lower extremity injury; LEAP pts	Sickness Impact Profile (SIP)- Psychoso cial (Mental Health)	Quit smoking VS. Never smoked	413	84 mo	Logistic Regression(type of treatment, age,gender,race,edu cation,poverty status,pre-injury health status,smoking, involvement with legal system, self- efficacy, probability of amputation)	Adjusted OR(of subscore of >5 points)	1.3	Smokers who quit with LE trauma getting treatment are 1.8 times likely to have disability
MacKenzi e, E. J., 2004	Mod	All pts unilateral lower limb amputation, most injuries from motor vehicle accident; LEAP pts	Psychoso cial Function of SIP (Mental Health)	Smoking	124	24 mo	level of amputation, age, education, insurance, income, smoking status, chronic medical conditions, injury severity score, ipsilateral injury, self-efficacy	Multivari ate Logistic regressio n, percent differenc e, p-value	53.4, 0.001	Smoking results in increased odds of psychosocial function SIP score

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Drinking problem VS. No drinking problem	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)			NS
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Never smoked VS. Current smoker	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.87 (1.29- 2.70)	Never smoking is associated with higher return to work rates
MacKenzi e, E. J., 2006	Mod	LEAP pts; severe lower extremity trauma; includes grade III B and C fractures	Return to Work (Return to activity)	Quit smoking VS. Current smoker	423	84 mo	multivariate cox regression (probability of amputation, treatment, age, gender, race, education, smoking, legal system, self efficacy, job tenure, job involvement, 3 month pain, 3 month SIP score)	Rate Ratio, CI	1.42 (0.96- 2.11)	NS

Table 17: PTSD Likelihood (PICO 1)

Reference	Quality	Patient Characteristics	Reference Standard	Duration	Index Test	N1	Events	N2	Events	LR(+	LR(-	Rule	Rule
							1		2))	In	Out
Russo, Joan, 2013	Low	trauma injury pts; unclear location; excluded head/TBI/SCI	Clinician Administered PTSD Scale (CAPS)	180	PTSD Checklist Civilian Version (PCL- C >34 at injury)	207	AR	207	AR	2.13	0.8	WEA K	POOR
Russo, Joan, 2013	Low	trauma injury pts; unclear location; excluded head/TBI/SCI	Clinician Administered PTSD Scale (CAPS)	360	PTSD Checklist Civilian Version (PCL- C >34 at injury)	207	AR	207	AR	1.65	0.87	POOR	POOR

Table 18: Screening Tools (PICO 2)

Reference	Quality	Patient Characteristics	Reference Standard	Index Test	N1	Events	N2	Events	LR(+	LR(-	Rule In	Rule Out
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (>=1 yes)	35 0	291	76 5	58	10.83	0.18	STRONG	MODERAT E
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (>=3 yes)	23 1	214	88 4	135	27.63	0.40	STRONG	WEAK
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (4 yes)	17 0	162	94 5	187	44.45	0.54	STRONG	POOR
Dezman, Z. D. W., 2018	Mod	general trauma adult pts; unclear location	Substance Use Disorder Diagnosis; SCID-III-R	CAGE questionnaire (>=2 yes)	29 4	262	82 1	87	17.97	0.26	STRONG	WEAK
Hennigar, C., 2001	Low	traumatic hand injury pts	Post-traumatic stress diagnostic scale (PDS)	Injured Workers Survey (IWS >4)	84	AR	84	AR	2.26	0.09	MODERAT E	STRONG
Hennigar, C., 2001	Low	traumatic hand injury pts	Post-traumatic stress diagnostic scale (PDS)	Injured Workers Survey (IWS<4)	84	AR	84	AR	3.42	0.15	MODERAT E	MODERAT E
Hennigar, C., 2001	Low	traumatic hand injury pts	Post-traumatic stress diagnostic scale (PDS)	Injured Workers Survey (IWS>4 including #4 or 5)	84	AR	84	AR	2.46	0.14	MODERAT E	MODERAT E

Table 19: Pre-Injury Psychosocial Factors in Military Population (PICO 4)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Gunaward ena, N., 2007	Low	All military unilateral amputees; average age 26.2 years old; land mine most frequent case of injury	Presence of Psycholo gical Distress - BSI Scale (Mental Health)	Being shot at under war/violent circumstances	461	3 yrs	<30 y/o, employed in army, lesser extent of prosthetic use outdoors, threatened with arms, witnessed war	Multivari ate Logistic Regressio n, OR, CI, P- value	5.39 (1.67- 7.22)	Pts who have been shot at under war have higher odds of psychological distress
Gunaward ena, N., 2007	Low	All military unilateral amputees; average age 26.2 years old; land mine most frequent case of injury	Presence of Psycholo gical Distress - BSI Scale (Mental Health)	Being threatened with arms under war	461	3 yrs	<30 y/o, employed in army, lesser extent of prosthetic use outdoors, threatened with arms, witnessed war	Multivari ate Logistic Regressio n, OR, CI, P- value	3.78 (1.82- 4.19)	Pts who have been threatened with war have higher odds of psychological distress
Gunaward ena, N., 2007	Low	All military unilateral amputees; average age 26.2 years old; land mine most frequent case of injury	Presence of Psycholo gical Distress - GHQ Scale (Mental Health)	Being threatened with arms under war/violent circumstances	461	3 yrs	<30 y/o, employed in army, lesser extent of prosthetic use outdoors, threatened with arms, witnessed war	Multivari ate Logistic Regressio n, OR, CI, P- value	7.14 (1.84- 12.58)	Pts who have been threatened with arms have higher odds of psychological distress

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Gunaward ena, N., 2007	Low	All military unilateral amputees; average age 26.2 years old; land mine most frequent case of injury	Presence of Psycholo gical Distress - GHQ Scale (Mental Health)	Witnessed war/violent actions including shooting, grenades, bombs, explosions	461	3 yrs	<30 y/o, employed in army, lesser extent of prosthetic use outdoors, threatened with arms, witnessed war	Multivari ate Logistic Regressio n, OR, CI, P- value	3.08 (1.31- 6.69)	Pts who have seen war have higher odds of psychological distress
Melcer, T., 2013 (a)	Low	military-related lower limb injury; AIS >=3; complex fractures, major soft tissue, and lower-extremity amputations	PTSD (PTSD)	Preinjury psychological diagnosis	772	2 yrs	age, log ISS, mechanism of injury (blast or nonblast), injury year (2001Y2005 or 2006Y2008), injury location (above the knee or below the knee), or preinjury psychological diagnosis.	Multivari ate Logistic regressio n, OR, CI	2.62 (1.45- 4.75)	Preinjury psychological diagnosis is associated with increased odds of PTSD
Melcer, T., 2013 (a)	Low	military-related lower limb injury; AIS >=3; complex fractures, major soft tissue, and lower-extremity amputations	Substance Abuse (Substanc e abuse)	Preinjury psychological diagnosis	772	2 yrs	age, log ISS, mechanism of injury (blast or nonblast), injury year (2001Y2005 or 2006Y2008), injury location (above the knee or below the knee), or preinjury psychological diagnosis.	Multivari ate Logistic regressio n, OR, CI	4.25 (2.21- 8.16)	Preinjury psychological diagnosis is associated with increased odds of substance abuse

Table 20: Barriers to Screening (PICO 5)

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at 1 year (Other)	Age VS. Continuous	990	1 yrs	Multivariate logistic regression (age, education, native language, biopsychosocial complexity)	OR, CI	0.98 (0.97- 1.00)	Increasing age is associated with lower odds of non-response at 1 year
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at 1 year (Other)	Further Education VS. Compulsory School	990	1 yrs	Multivariate logistic regression (age, education, native language, biopsychosocial complexity)	OR, CI	0.56 (0.41- 0.76)	Further education is associated with lower odds of non-response at 1 year
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at hospitaliz ation (Other)	Further Education VS. Compulsory school	990	3 days	Multivariate logistic regression (marital status, education, native language, biopsychosocial complexity))	OR, CI	0.34 (0.24- 0.49)	Further education is associated with lower odds of non-response at 3 days

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at 1 year (Other)	Complex biopsychosocial complexity VS. Simple biopsychosocial complexity	990	1 yrs	Multivariate logistic regression (age, education, native language, biopsychosocial complexity)	OR, CI	1.50 (1.14- 2.00)	Patients with more complex biopsychosocial profile have higher odds of non-response
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at hospitaliz ation (Other)	Complex biopsychosocial complexity VS. Simple biopsychosocial complexity	990	3 days	Multivariate logistic regression (marital status, education, native language, biopsychosocial complexity))	OR, CI	1.99 (1.44- 2.76)	Patients with more complex biopsychosocial profile have higher odds of non-response
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at 1 year (Other)	Other language than native language VS. Native language (French or German)	990	1 yrs	Multivariate logistic regression (age, education, native language, biopsychosocial complexity)	OR, CI	3.40 (2.50- 4.62)	Speaking a language other than the native language is associated with higher odds of non-response

Reference	Qualit y	Patient Characteristics	Outcome	Factor VS. Reference	Grp N	Duration	Adjustment	Statistic	Result	Significance
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at hospitaliz ation (Other)	Other language than native language VS. Native language (French or German)	990	3 days	Multivariate logistic regression (marital status, education, native language, biopsychosocial complexity))	OR, CI	9.78 (6.55- 14.50)	Speaking a language other than the native language is associated with higher odds of non-response
Burrus, C., 2009	Low	Orthopedic trauma pts with knee, spine, shoulder, foot/ankle, hand/wrist injuries from rehab center;	Non- Participati on in questionn aire at hospitaliz ation (Other)	Single VS. Married or domestic partner	990	3 days	Multivariate logistic regression (marital status, education, native language, biopsychosocial complexity))	OR, CI	0.53 (0.37- 0.76)	Being single is associated with lower odds of non-response at 3 days

Excluded Literature

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Predictors of lower-than-expected posttraumatic symptom severity in war veterans: The influence of personality, self-reported trait resilience, and psychological flexibility	Meyer, E. C.; Kotte, A.; Kimbrel, N. A.; DeBeer, B. B.; Elliott, T. R.; Gulliver, S. B.; Morissette, S. B.	2018	Behaviour Research & Therapy	not target population; no subanalysis of ortho pts
Can Resilience be Measured and Used to Predict Mental Health Symptomology Among First Responders Exposed to Repeated Trauma?	Joyce, S.; Tan, L.; Shand, F.; Bryant, R. A.; Harvey, S. B.	2018	Journal of Occupational & Environmental Medicine	not target population; no ortho trauma
Association Between 6-Week Postdischarge Risk Classification and 12-Month Outcomes After Orthopedic Trauma	Castillo, R. C.; Huang, Y.; Scharfstein, D.; Frey, K.; Bosse, M. J.; Pollak, A. N.; Vallier, H. A.; Archer, K. R.; Hymes, R. A.; Newcomb, A. B.; MacKenzie, E. J.; Wegener, S.; and the Major Extremity Trauma Research, Consortium; Hsu, J. R.; Karunakar, M. A.; Seymour, R. B.; Sims, S. H.; Flores, E.; Churchill, C.; Hak, D. J.; Henderson, C. E.; Mir, H. R.; Chan, D. S.; Shah, A. R.; Steverson, B.; Westberg, J.; Gary, J. L.; Achor, T. S.; Choo, A.; Munz, J. W.; Porrey, M.; Hendrickson, S.; Breslin,	2018	JAMA Surgery	insufficient data; unclear comparison data
From fragments to identity: reminiscence, life review and well-being of holocaust survivors. An integrative review	Zimmermann, S.; Forstmeier, S.	2018	Aging & Mental Health	irrelevant systematic review*
Gender Differences in Post-deployment Adjustment of Air Force Personnel: The Role of Wartime Experiences, Unit Cohesion, and Self-efficacy	Welsh, J. A.; Olson, J. R.; Perkins, D. F.	2018	Military Medicine	Not target population; no ortho subanalysis
Pain extent is more strongly associated with disability, psychological factors, and neck muscle function in people with non-traumatic versus traumatic chronic neck pain: a cross sectional study	Ris, I.; Barbero, M.; Falla, D.; Larsen, M. H.; Kraft, M. N.; Sogaard, K.; Juul-Kristensen, B.	2018	European journal of physical & rehabilitation medicine	no target comparison; no PRF groups
The Women's Experience: A Look at Risk and Protective Factors for Deployed Female Air Force Personnel	Breeden, N. C.; Welsh, J. A.; Olson, J. R.; Perkins, D. F.	2018	Journal of Women's Health	not target population; no subanalysis of ortho pts
Correlates of exposure to potentially traumatic experiences: Results from a national household survey	Forman-Hoffman, V.; Batts, K.; Bose, J.; Glasheen, C.; Hirsch, E.; Yu, F.; Hedden, S.	2018	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no subanalysis of ortho pts
Long-Term Trajectories of Posttraumatic Stress Disorder: Categorical versus Continuous Assessment	Solomon, Z.; Bachem, R.; Levin, Y.; Crompton, L.; Ginzburg, K.	2018	Psychiatry	no ortho trauma group

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The Mediating Effects of Social Support and Locus of Control on the Relationship between Post-Traumatic Stress and Depressive Symptoms in a Jamaican University Sample	Seixas, A. A.; James, C.; Jean-Louis, G.; Butler, M.; Zizi, F.; Gardner, A.	2015	South African Psychiatry Review	No ortho trauma
Predicting Future PTSD using a Modified New York Risk Score: Implications for Patient Screening and Management	Boscarino, J. A.; Kirchner, H. L.; Hoffman, S. N.; Sartorius, J.; Adams, R. E.; Figley, C. R.	2012	Minerva Psichiatrica	Target population absent
A different kind of co-morbidity: Understanding posttraumatic stress disorder and chronic pain	Beck, J. G.; Clapp, J. D.	2011	Psychological Trauma:Theory, Pesearch, Practice and Policy	Review
(untitled)	Dobscha, S. K.; Campbell, R.; Morasco, B. J.; Freeman, M.; Helfand, M.	2008	Department of Veterans Affairs	systematic review
Comparative Characteristic of << Alcohol Depression>> in Persons Who Participated in Combat Operations (Combatans) and Affected by Radiation Catastrop	Napryeyenko, O. K.; Loganovsky, K. M.; Napryeyenko, N. Y.; Loganovskaja, T. K.; Gresko, M. V.; Zdanevich, N. A.	2018	Problemi Radiacijnoi Medicini Ta Radiobiologii	not target population; unclear ortho trauma
Sleep Patterns and Problems Among Army National Guard Soldiers	Hansen, L. P.; Kinskey, C.; Koffel, E.; Polusny, M.; Ferguson, J.; Schmer-Galunder, S.; Erbes, C. R.	2018	Military Medicine	no ortho trauma group
Post-traumatic growth in the military: a systematic review	Mark, K. M.; Stevelink, S. A. M.; Choi, J.; Fear, N. T.	2018	Occupational & Environmental Medicine	systematic review
Cognitive Flexibility Predicts PTSD Symptoms: Observational and Interventional Studies	Ben-Zion, Z.; Fine, N. B.; Keynan, N. J.; Admon, R.; Green, N.; Halevi, M.; Fonzo, G. A.; Achituv, M.; Merin, O.; Sharon, H.; Halpern, P.; Liberzon, I.; Etkin, A.; Hendler, T.; Shalev, A. Y.	2018	Frontiers in psychiatry Frontiers Research Foundation	Unclear Ortho trauma; includes burns, terror attacks, and disasters
Anger and Aggression in UK Treatment-Seeking Veterans with PTSD	Turgoose, D.; Murphy, D.	2018	Healthcare	no ortho trauma group
Association of suicidal ideation with trajectories of deployment-related PTSD symptoms	Wang, J.; Ursano, R. J.; Gonzalez, O. I.; Russell, D. W.; Dinh, H.; Hernandez, L.; Gifford, R. K.; Cohen, G. H.; Sampson, L.; Galea, S.; Fullerton, C. S.	2018	Psychiatry Research	no ortho trauma group
Development of a screening tool to predict the risk of chronic pain and disability following musculoskeletal trauma: protocol for a prospective observational study in the United Kingdom	Rushton, A. B.; Evans, D. W.; Middlebrook, N.; Heneghan, N. R.; Small, C.; Lord, J.; Patel, J. M.; Falla, D.	2018	BMJ Open	protocol
Acute stress and subsequent health outcomes: A systematic review	Garfin, D. R.; Thompson, R. R.; Holman, E. A.	2018	Journal of Psychosomatic Research	systematic review

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Fear Avoidance and Clinical Outcomes from Mild Traumatic Brain Injury	Silverberg, N. D.; Panenka, W. J.; Iverson, G. L.	2018	Journal of Neurotrauma	not target population; no subanalysis of ortho pts
Psychological Resilience Is Associated With Participation Outcomes Following Mild to Severe Traumatic Brain Injury	Wardlaw, C.; Hicks, A. J.; Sherer, M.; Ponsford, J. L.	2018	Frontiers in neurology [electronic resource].	not target population; no subanalysis of ortho pts
Emotional reserve and prolonged post-concussive symptoms and disability: a Swedish prospective 1-year mild traumatic brain injury cohort study	Oldenburg, C.; Lundin, A.; Edman, G.; Deboussard, C. N.; Bartfai, A.	2018	BMJ Open	not population of interest; mTBI
Physical, Cognitive, and Psychosocial Characteristics Associated With Mortality in Chronic TBI Survivors: A National Institute on Disability, Independent Living, and Rehabilitation Research Traumatic Brain Injury Model Systems Study	O'Neil-Pirozzi, T. M.; Ketchum, J. M.; Hammond, F. M.; Philippus, A.; Weber, E.; Dams-O'Connor, K.	2018	Journal of Head Trauma Rehabilitation	no ortho trauma; TBI only
Assessing Psychological Fitness in the Military - Development of an Effective and Economic Screening Instrument	Wesemann, U.; Willmund, G. D.; Ungerer, J.; Kreim, G.; Zimmermann, P. L.; Buhler, A.; Stein, M.; Kaiser, J.; Kowalski, J. T.	2018	Military Medicine	no ortho trauma
Adversity and Resilience Are Associated with Outcome after Mild Traumatic Brain Injury in Military Service Members	Reid, M. W.; Cooper, D. B.; Lu, L. H.; Iverson, G. L.; Kennedy, J. E.	2018	Journal of Neurotrauma	TBI only
Utility of P300 ERP in monitoring post-trauma mental health: A longitudinal study in military personnel returning from combat deployment	Wang, C.; Rapp, P.; Darmon, D.; Trongnetrpunya, A.; Costanzo, M. E.; Nathan, D. E.; Cellucci, C. J.; Roy, M. J.; Keyser, D.	2018	Journal of Psychiatric Research	no ortho trauma
Longitudinal study of objective and subjective cognitive performance and psychological distress in OEF/OIF Veterans with and without traumatic brain injury	Donnelly, K.; Donnelly, J. P.; Warner, G. C.; Kittleson, C. J.; King, P. R.	2018	Clinical Neuropsychologist	TBI only
The impact of sepsis, delirium, and psychological distress on self-rated cognitive function in ICU survivors-a prospective cohort study	Bruck, E.; Schandl, A.; Bottai, M.; Sackey, P.	2018	Journal of intensive care	<6 month follow-up
Psycho-social and Mental Variables and Post- Traumatic Stress Disorder in Traffic Accident Survivors in Northern Iran	Khodadadi-Hassankiadeh, N.; Dehghan-Nayeri, N.; Shahsavari, H.; Yousefzadeh-Chabok, S.; Haghani, H.	2017	Bulletin of Emergency & Trauma	<6 month follow-up

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Predicting Outcome 12 Months after Mild Traumatic Brain Injury in Patients Admitted to a Neurosurgery Service	Hellstrom, T.; Kaufmann, T.; Andelic, N.; Soberg, H. L.; Sigurdardottir, S.; Helseth, E.; Andreassen, O. A.; Westlye, L. T.	2017	Frontiers in neurology [electronic resource].	not target population; no subanalysis of ortho pts
Validation of a Measure of Family Resilience among Iraq and Afghanistan Veterans	Finley, E. P.; Pugh, M. J.; Palmer, R. F.	2016	Military Behavioral Health	no ortho trauma; validation testing
Effect of Mild Traumatic Brain Injury and Demographic Factors on Psychological Outcome	Shafiei, E.; Fakharian, E.; Omidi, A.; Akbari, H.; Delpisheh, A.	2016	Archives of Trauma Research	not target population; no subanalysis of ortho pts
PTSD and depression construct: prevalence and predictors of co-occurrence in a South Lebanese civilian sample	Farhood, L. F.; Fares, S.; Sabbagh, R.; Hamady, C.	2016	European Journal of Psychotraumatology	not target population; no ortho trauma
Biomarkers of post-deployment resilience among military service members	Highland, K. B.; Costanzo, M.; Jovanovic, T.; Norrholm, S. D.; Ndiongue, R.; Reinhardt, B.; Rothbaum, B.; Roy, M. J.	2015	Neurobiology of Stress	No target population; no ortho trauma
Prognostic influence of witness/victim experiences and PTSD-specific symptoms on working and educational capacity: a comparison between two groups of individuals post-trauma	Muller, H. H.; Moeller, S.; Hilger, Y.; Sperling, W.	2015	Annals of General Psychiatry	not target population; no ortho trauma
Psychological distress and post-traumatic symptoms following occupational accidents	Ghisi, M.; Novara, C.; Buodo, G.; Kimble, M. O.; Scozzari, S.; Di Natale, A.; Sanavio, E.; Palomba, D.	2013	Behavioral sciences	Insufficient data; <60 total pts
Trauma and mental health of medics in eastern Myanmar's conflict zones: a cross-sectional and mixed methods investigation	Lim, A. G.; Stock, L.; Shwe Oo, E. K.; Jutte, D. P.	2013	Conflict & Health [Electronic Resource]	no ortho trauma
Systematic review of persistent pain and psychological outcomes following traumatic musculoskeletal injury	Rosenbloom, B. N.; Khan, S.; McCartney, C.; Katz, J.	2013	Journal of pain research	systematic review
Prevalence and Sociodemographic Correlates of Mental Health Problems Among Emergency Department Patients With High-Risk and Dependent Alcohol Use Patterns	Funn, J.; Woodruff, S. I.	2011	Journal of Dual Diagnosis	Not target population; trauma unclear
Self-efficacy in acutely traumatized patients and the risk of developing a posttraumatic stress syndrome	Flatten, G.; Walte, D.; Perlitz, V.	2008	Psycho-Social Medicine	insufficient data for 6mo FU
Specific differences in trauma related symptoms between war veterans and the civilian population	Kucukalic, A.; Bravo-Mehmedbasic, A.; Dzubur- Kulenovic, A.; Salcic-Dizdarevic, D.	2004	Psychiatria Danubina	no ortho trauma
Emotional responses to unintentional and intentional traumatic injuries among urban black men: A qualitative study	Jiang, T.; Webster, J. L.; Robinson, A.; Kassam-Adams, N.; Richmond, T. S.	2018	Injury	no usable data

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Post-Traumatic Stress Disorder and Comorbidity: The Role of Mediation and Relation between Ptsd and Somatic Complaints in Mental Health Management	Sikharulidze, G.; van Geloven, N.; Gugushvili, N.; Sikharulidze, Z.; Vermetten, E.	2018	Georgian Medical News	abstract presentation
The role of resiliency and coping strategies in occurrence of positive changes in medical rescue workers	Oginska-Bulik, N.; Zadworna-Cieslak, M.	2018	International emergency nursing	not target population; rescue workers
Appraisals of DisAbility Primary and Secondary Scale-Short Form (ADAPSS-sf): Psychometrics and association with mental health among U.S. military veterans with spinal cord injury	McDonald, S. D.; Goldberg-Looney, L. D.; Mickens, M. N.; Ellwood, M. S.; Mutchler, B. J.; Perrin, P. B.	2018	Rehabilitation Psychology	not target population; SCI
A prospective evaluation of predictors of pain after arthroscopic rotator cuff repair: psychosocial factors have a stronger association than structural factors	Ravindra, A.; Barlow, J. D.; Jones, G. L.; Bishop, J. Y.	2018	Journal of Shoulder & Elbow Surgery	mixed etiology
Examining the relationship between obesity and mental health outcomes among individuals admitted to a level I trauma centre	Reynolds, M.; Driver, S.; Bennett, M.; Patel, S.; Rainey, E.; Warren, A. M.	2018	Clinical Obesity	<6 months follow up
Temporomandibular Disorders Related to Stress and HPA-Axis Regulation	Staniszewski, K.; Lygre, H.; Bifulco, E.; Kvinnsland, S.; Willassen, L.; Helgeland, E.; Berge, T.; Rosen, A.	2018	Pain Research & Management	not target population; non trauma injury
Chronic neck pain patients with traumatic or non-traumatic onset: Differences in characteristics. A cross-sectional study	Ris, I.; Juul-Kristensen, B.; Boyle, E.; Kongsted, A.; Manniche, C.; Sogaard, K.	2017	Scandinavian Journal of Pain	no target population; factor as outcome
Understanding the early support needs of survivors of traumatic events: The example of severe injury survivors	Brand, R. M.; Chisholm, K.; Terhaag, S.; Lau, W.; Forbes, D.; Holmes, A.; O'Donnell, M.	2018	Psychological Trauma:Theory, Pesearch, Practice and Policy	<60 pts total
Psychological flexibility mitigates effects of PTSD symptoms and negative urgency on aggressive behavior in trauma-exposed veterans	Dutra, S. J.; Sadeh, N.	2018	Personality Disorders: Theory, Research, & Treatment	not target population; no subanalysis of ortho pts
Mental health and psychosocial problems in the aftermath of the Nepal earthquakes: findings from a representative cluster sample survey	Kane, J. C.; Luitel, N. P.; Jordans, M. J. D.; Kohrt, B. A.; Weissbecker, I.; Tol, W. A.	2018	Epidemiology & Psychiatric Science	not target population; no subanalysis of ortho pts
The protective role of maternal posttraumatic growth and cognitive trauma processing among Palestinian mothers and infants	Diab, S. Y.; Isosavi, S.; Qouta, S. R.; Kuittinen, S.; Punamaki, R. L.	2018	Infant Behavior & Development	not target population; no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Employment outcome four years after a severe traumatic brain injury: results of the Paris severe traumatic brain injury study	Ruet, A.; Jourdan, C.; Bayen, E.; Darnoux, E.; Sahridj, D.; Ghout, I.; Azerad, S.; Pradat Diehl, P.; Aegerter, P.; Charanton, J.; Vallat Azouvi, C.; Azouvi, P.	2018	Disability & Rehabilitation	no ortho trauma; TBI only
Indicators to facilitate the early identification of patients with major depressive disorder in need of highly specialized care: A concept mapping study	van Krugten, F. C. W.; Goorden, M.; van Balkom, Ajlm; Spijker, J.; Brouwer, W. B. F.; Hakkaart-van Roijen, L.; Decision Tool Unipolar Depression, Consortium	2018	Depression & Anxiety	irrelevant systematic review
Coping strategies and mental health outcomes of conflict-affected persons in the Republic of Georgia	Saxon, L.; Makhashvili, N.; Chikovani, I.; Seguin, M.; McKee, M.; Patel, V.; Bisson, J.; Roberts, B.	2017	Epidemiology & Psychiatric Science	not target population; no injury sub- analysis
Sex-based differences in pain distribution in a cohort of patients with persistent post-traumatic neck pain	Westergren, H.; Larsson, J.; Freeman, M.; Carlsson, A.; Joud, A.; Malmstrom, E. M.	2018	Disability & Rehabilitation	not target population; neck pain
Preexisting psychiatric illness worsens acute care outcomes after orthopaedic trauma in obese patients	Vincent, H. K.; Vasilopoulos, T.; Zdziarski-Horodyski, L. A.; Sadasivan, K. K.; Hagen, J.; Guenther, R.; McClelland, J.; Horodyski, M.	2018	Injury	insufficient data for 6mo FU
Covering traumatic news stories: Factors associated with post-traumatic stress disorder among journalists	Smith, R. J.; Drevo, S.; Newman, E.	2018	Stress & Health	no ortho trauma
Post-traumatic stress disorder and coping styles of war veterans twenty years after the war from Tuzla Canton	Selimbasic, Z.; Brkic, M.; Kravic, N.; Hamidovic, J.; Selimbasic, M.	2018	Medicinski Glasnik Ljekarske Komore Zenickodobojskog Kantona	<60 target population
A study of outcomes of patients treated at a UK major trauma centre for moderate or severe injuries one to three years after injury	Spreadborough, S.; Radford, K.; das Nair, R.; Brooks, A.; Duffy, M.	2018	Clinical Rehabilitation	not best available evidence; very low quality
Beyond Pathologizing Harm: Understanding PTSD in the Context of War Experience	Benner, P.; Halpern, J.; Gordon, D. R.; Popell, C. L.; Kelley, P. W.	2018	Journal of Medical Humanities	no quantitative data
Resilience and Traumatic Brain Injury Among Iraq/Afghanistan War Veterans: Differential Patterns of Adjustment and Quality of Life	Elliott, T. R.; Hsiao, Y. Y.; Kimbrel, N. A.; Meyer, E.; DeBeer, B. B.; Gulliver, S. B.; Kwok, O. M.; Morissette, S. B.	2017	Journal of Clinical Psychology	TBI only; unclear co-occurring ortho trauma
Evaluating the stability of DSM-5 PTSD symptom network structure in a national sample of U.S. military veterans	von Stockert, S. H. H.; Fried, E. I.; Armour, C.; Pietrzak, R. H.	2018	Journal of Affective Disorders	not target population; no subanalysis of ortho pts
Time-course of PTSD symptoms in the Australian Defence Force: a retrospective cohort study	Waller, M.; Charlson, F. J.; Ireland, R. E.; Whiteford, H. A.; Dobson, A. J.	2016	Epidemiology & Psychiatric Science	not target population; no subanalysis of ortho pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The mediation effect of PTSD, perceived job stress and resilience on the relationship between trauma exposure and the development of depression and alcohol use problems in Korean firefighters: A cross-sectional study	Kim, J. I.; Park, H.; Kim, J. H.	2018	Journal of Affective Disorders	not target population; no ortho trauma
Is prevention better than cure? A systematic review of the effectiveness of well-being interventions for military personnel adjusting to civilian life	Bauer, A.; Newbury-Birch, D.; Robalino, S.; Ferguson, J.; Wigham, S.	2018	PLoS ONE [Electronic Resource]	irrelevant systematic review
Secondary traumatic stress and secondary posttraumatic growth in a sample of Dutch police family liaison officers	Kunst, M. J. J.; Saan, M. C.; Bollen, L. J. A.; Kuijpers, K. F.	2017	Stress & Health	not target population; no ortho trauma
Spiritual needs of PTSD patients in Croatia and Bosnia-Herzegovina: A quantitative pilot study	Glavas, A.; Jors, K.; Bussing, A.; Baumann, K.	2017	Psychiatria Danubina	not target population; no ortho trauma
Quality of life after orbito-facial trauma	Sharma, G.; Kaur, A.	2017	Orbit	not target population; no ortho trauma: orbito facial
The Prevalence and Mental and Physical Health Correlates of Posttraumatic Stress Disorder Symptoms in Vulnerable and Underresourced Primary Care Patients Referred to a Behavioral Health Provider	Langhinrichsen-Rohling, J.; Selwyn, C. N.; Jackson, S.; Johns, K.; Wornell, C.; Finnegan, H.; Smith-West, M. B.	2017	Journal of Public Health Management & Practice	not target population; no ortho trauma
Self-Reported Driving Difficulty in Veterans With Traumatic Brain Injury: Its Central Role in Psychological Well-Being	Winter, L.; Moriarty, H. J.; Short, T. H.	2017	Pm & R	not target population; no subanalysis of ortho pts
Trauma characteristics, post-traumatic symptoms, psychiatric disorders and suicidal behaviours: Results from the 2007 Australian National Survey of Mental Health and Wellbeing	Afzali, M. H.; Sunderland, M.; Batterham, P. J.; Carragher, N.; Slade, T.	2017	Australian & New Zealand Journal of Psychiatry	no sub-analysis of ortho trauma
Effects of military service and deployment on clinical symptomatology: The role of trauma exposure and social support	Moore, T. M.; Risbrough, V. B.; Baker, D. G.; Larson, G. E.; Glenn, D. E.; Nievergelt, C. M.; Maihofer, A.; Port, A. M.; Jackson, C. T.; Ruparel, K.; Gur, R. C.	2017	Journal of Psychiatric Research	no ortho trauma
Trajectories of posttraumatic growth among US military veterans: a 4-year nationally representative, prospective cohort study	Tsai, J.; Pietrzak, R. H.	2017	Acta Psychiatrica Scandinavica	mixed population; not all were ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Investigating Lushan Earthquake Victims' Individual Behavior Response and Rescue Organization	Kang, P.; Lv, Y.; Deng, Q.; Liu, Y.; Zhang, Y.; Liu, X.; Zhang, L.	2017	International Journal of Environmental Research & Public Health [Electronic Resource]	not target population; no ortho trauma subanalysis
Mental health stigma and barriers to mental health care for first responders: A systematic review and meta-analysis	Haugen, P. T.; McCrillis, A. M.; Smid, G. E.; Nijdam, M. J.	2017	Journal of Psychiatric Research	systematic review
Smoking, Quitting, and the Provision of Smoking Cessation Support: A Survey of Orthopaedic Trauma Patients	McCrabb, S.; Baker, A. L.; Attia, J.; Balogh, Z. J.; Lott, N.; Palazzi, K.; Naylor, J.; Harris, I. A.; Doran, C. M.; George, J.; Wolfenden, L.; Skelton, E.; Bonevski, B.	2017	Journal of Orthopaedic Trauma	factor as outcome
Examining the Relationship Between Traumatic Brain Injury and Substance Use Outcomes in the Canadian Population	Allen, S.; Stewart, S. H.; Cusimano, M.; Asbridge, M.	2016	Substance Use & Misuse	injury is factor; spine and TBI
The impact of witnessing other people's trauma: The resilience and coping strategies of members of the Faculty of Forensic and Legal Medicine	Horvath, M. A. H.; Massey, K.	2018	Journal of Forensic & Legal Medicine	Target population absent
Post-deployment screening for mental disorders and tailored advice about help-seeking in the UK military: a cluster randomised controlled trial.[Erratum appears in Lancet. 2017 Apr 8;389(10077):1398; PMID: 28359649]	Rona, R. J.; Burdett, H.; Khondoker, M.; Chesnokov, M.; Green, K.; Pernet, D.; Jones, N.; Greenberg, N.; Wessely, S.; Fear, N. T.	2017	Lancet	not target population; no subanalysis of ortho pts
Consequences of violence across the lifespan: Mental health and sleep quality in pregnant women	Miller-Graff, L. E.; Cheng, P.	2017	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no Physical trauma sub-analysis
Predictors of Prescription Opioid Use 4 Months After Traumatic Musculoskeletal Injury and Corrective Surgery: A Prospective Study	Rosenbloom, B. N.; McCartney, C. J. L.; Canzian, S.; Kreder, H. J.; Katz, J.	2017	Journal of Pain	<6 month follow-up
Depression and posttraumatic stress disorder among road traffic accident victims managed in a Tertiary hospital in Southern Nigeria	Asuquo, J. E.; Edet, B. E.; Abang, I. E.; Essien, E. A.; Osakwe, O. G.; Aigbomain, E. J.; Chigbundu, K. C.	2017	Nigerian Journal of Clinical Practice	not target population; <60 injured pts
Stability of coping and the role of self-efficacy in the first year following mild traumatic brain injury	Scheenen, M. E.; van der Horn, H. J.; de Koning, M. E.; van der Naalt, J.; Spikman, J. M.	2017	Social Science & Medicine	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Posttraumatic growth in pediatric intensive care personnel: Dependence on resilience and coping strategies	Rodriguez-Rey, R.; Palacios, A.; Alonso-Tapia, J.; Perez, E.; Alvarez, E.; Coca, A.; Mencia, S.; Marcos, A. M.; Mayordomo-Colunga, J.; Fernandez, F.; Gomez, F.; Cruz, J.; Baron, L.; Calderon, R. M.; Belda, S.	2017	Psychological Trauma:Theory, Pesearch, Practice and Policy	no ortho trauma
Violent injury predicts poor psychological outcomes after traumatic injury in a hard-to-reach population: an observational cohort study	Rahtz, E.; Bhui, K.; Smuk, M.; Hutchison, I.; Korszun, A.	2017	BMJ Open	not target population; no subanalysis of target pts
Conceptual model and cluster analysis of behavioral symptoms in two cohorts of adults with traumatic brain injuries	Juengst, S. B.; Switzer, G.; Oh, B. M.; Arenth, P. M.; Wagner, A. K.	2017	Journal of Clinical & Experimental Neuropsychology: Official Journal of the International Neuropsychological Society	not target population; TBI only
Population-based cohort study of the impacts of mild traumatic brain injury in adults four years post-injury	Theadom, A.; Starkey, N.; Barker-Collo, S.; Jones, K.; Ameratunga, S.; Feigin, V.; B. IONIC4you Research Group	2018	PLoS ONE [Electronic Resource]	No ortho trauma; TBI only
Utility of the Neurobehavioral Symptom Inventory As an Outcome Measure: A VA TBI Model Systems Study	Belanger, H. G.; Silva, M. A.; Donnell, A. J.; McKenzie-Hartman, T.; Lamberty, G. J.; Vanderploeg, R. D.	2017	Journal of Head Trauma Rehabilitation	not target population; no co-occurring ortho trauma
Association between personality traits and mental health outcomes in older adults with lifetime trauma exposure: a nationwide community sample	Park, J. E.; Suk, H. W.; Seong, S. J.; Sohn, J. H.; Hahm, B. J.; Lee, D. W.; Cho, M. J.	2016	International Psychogeriatrics	not target population; no subanalysis of ortho pts
Amputation: Not a failure for severe lower extremity combat injury	van Dongen, T. T.; Huizinga, E. P.; de Kruijff, L. G.; van der Krans, A. C.; Hoogendoorn, J. M.; Leenen, L. P.; Hoencamp, R.	2017	Injury	<60 target population
Patients "At Risk" of Suffering from Persistent Complaints after Mild Traumatic Brain Injury: The Role of Coping, Mood Disorders, and Post- Traumatic Stress	Scheenen, M. E.; Spikman, J. M.; de Koning, M. E.; van der Horn, H. J.; Roks, G.; Hageman, G.; van der Naalt, J.	2017	Journal of Neurotrauma	TBI only; no co-occurring ortho trauma
Deployment Experiences, Social Support, and Mental Health: Comparison of Black, White, and Hispanic U.S. Veterans Deployed to Afghanistan and Iraq	Muralidharan, A.; Austern, D.; Hack, S.; Vogt, D.	2016	Journal of Traumatic Stress	not target population; no ortho trauma
Impact of religious attendance on psychosocial outcomes for individuals with traumatic brain injury: A NIDILRR funded TBI Model Systems study	Philippus, A.; Mellick, D.; O'Neil-Pirozzi, T.; Bergquist, T.; Guller Bodien, Y.; Sander, A. M.; Dreer, L. E.; Giacino, J.; Novack, T.	2016	Brain Injury	not target population; TBI only
Prevalence and predictors of disability for Maori 24 months after injury	Wyeth, E. H.; Samaranayaka, A.; Davie, G.; Derrett, S.	2017	Australian & New Zealand Journal of Public Health	not target population; unclear trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Validation of the Compassion Fatigue Short Scale among Chinese medical workers and firefighters: a cross-sectional study	Sun, B.; Hu, M.; Yu, S.; Jiang, Y.; Lou, B.	2016	BMJ Open	not target population; no ortho trauma
Return to Work After Traumatic Injury: Increased Work-Related Disability in Injured Persons Receiving Financial Compensation is Mediated by Perceived Injustice	Giummarra, M. J.; Cameron, P. A.; Ponsford, J.; Ioannou, L.; Gibson, S. J.; Jennings, P. A.; Georgiou-Karistianis, N.	2017	Journal of Occupational Rehabilitation	cross-sectional; concurrent measurements
PTSD symptoms and suicide risk in veterans: Serial indirect effects via depression and anger	McKinney, J. M.; Hirsch, J. K.; Britton, P. C.	2017	Journal of Affective Disorders	not target population; no ortho trauma
Psychological resilience is associated with more intact social functioning in veterans with post-traumatic stress disorder and depression	Wingo, A. P.; Briscione, M.; Norrholm, S. D.; Jovanovic, T.; McCullough, S. A.; Skelton, K.; Bradley, B.	2017	Psychiatry Research	No ortho trauma
The impact of a civic service program on biopsychosocial outcomes of post 9/11 U.S. military veterans	Matthieu, M. M.; Lawrence, K. A.; Robertson-Blackmore, E.	2017	Psychiatry Research	not target population; no ortho trauma
Pre-event trajectories of mental health and health- related disabilities, and post-event traumatic stress symptoms and health: A 7-wave population-based study	van der Velden, P. G.; Bosmans, M. W. G.; van der Meulen, E.; Vermunt, J. K.	2016	Psychiatry Research	not target population; no injury sub- analysis
Approximating a Dsm-5 Diagnosis of Ptsd Using Dsm-Iv Criteria	Rosellini, A. J.; Stein, M. B.; Colpe, L. J.; Heeringa, S. G.; Petukhova, M. V.; Sampson, N. A.; Schoenbaum, M.; Ursano, R. J.; Kessler, R. C.; Army, Starrs Collaborators	2015	Depression & Anxiety	not target population; no subanalysis of ortho pts
"One Scar Too Many:" The Associations Between Traumatic Events and Psychological Distress Among Undocumented Mexican Immigrants	Garcini, L. M.; Pena, J. M.; Gutierrez, A. P.; Fagundes, C. P.; Lemus, H.; Lindsay, S.; Klonoff, E. A.	2017	Journal of Traumatic Stress	not target population; no ortho trauma subanalysis
Self-Regulation Shift Theory: A Dynamic Systems Approach to Traumatic Stress	Benight, C. C.; Shoji, K.; Delahanty, D. L.	2017	Journal of Traumatic Stress	insufficient data for 6mo FU
Impact of individual resilience and safety climate on safety performance and psychological stress of construction workers: A case study of the Ontario construction industry	Chen, Y.; McCabe, B.; Hyatt, D.	2017	Journal of Safety Research	not target population; no injury sub- analysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Association of DSM-IV Posttraumatic Stress Disorder With Traumatic Experience Type and History in the World Health Organization World Mental Health Surveys	Liu, H.; Petukhova, M. V.; Sampson, N. A.; Aguilar-Gaxiola, S.; Alonso, J.; Andrade, L. H.; Bromet, E. J.; de Girolamo, G.; Haro, J. M.; Hinkov, H.; Kawakami, N.; Koenen, K. C.; Kovess-Masfety, V.; Lee, S.; Medina-Mora, M. E.; Navarro-Mateu, F.; O'Neill, S.; Piazza, M.; Posada-Villa, J.; Scott, K. M.; Shahly, V.; Stein, D. J.; Ten Have, M.; Torres, Y.; Gureje, O.; Zaslavsky, A. M.; Kessler, R. C.; World Health Organization World Mental Health Survey, Collaborators	2017	JAMA Psychiatry	unclear ortho trauma
Group Psychotherapeutic Factors and Perceived Social Support Among Veterans With PTSD Symptoms	Cox, D. W.; Owen, J. J.; Ogrodniczuk, J. S.	2017	Journal of Nervous & Mental Disease	not target population; no ortho trauma
Risk of Pain Medication Misuse After Spinal Cord Injury: The Role of Substance Use, Personality, and Depression	Clark, J. M.; Cao, Y.; Krause, J. S.	2017	Journal of Pain	not target population; SCI
Post-traumatic stress symptoms are associated with physical multimorbidity: Findings from the Adult Psychiatric Morbidity Survey 2007.[Erratum appears in J Affect Disord. 2018 Apr 12;235:168; PMID: 29656262]	Jacob, L.; Haro, J. M.; Koyanagi, A.	2018	Journal of Affective Disorders	not target population; no ortho trauma
Gender differences in mental and physical health conditions in U.S. veterans: Results from the National Health and Resilience in Veterans Study	Ziobrowski, H.; Sartor, C. E.; Tsai, J.; Pietrzak, R. H.	2017	Journal of Psychosomatic Research	not target population; unclear ortho trauma
Completion of a Veteran-Focused Civic Service Program Improves Health and Psychosocial Outcomes in Iraq and Afghanistan Veterans With a History of Traumatic Brain Injury	Lawrence, K. A.; Matthieu, M. M.; Robertson-Blackmore, E.	2017	Military Medicine	TBI only; no ortho sub-analysis
The influence of physical and mental health symptoms on Veterans' functional health status	Sheng, T.; Fairchild, J. K.; Kong, J. Y.; Kinoshita, L. M.; Cheng, J. J.; Yesavage, J. A.; Helmer, D. A.; Reinhard, M. J.; Ashford, J. W.; Adamson, M. M.	2016	Journal of Rehabilitation Research & Development	not target population; TBI only
Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study	van der Naalt, J.; Timmerman, M. E.; de Koning, M. E.; van der Horn, H. J.; Scheenen, M. E.; Jacobs, B.; Hageman, G.; Yilmaz, T.; Roks, G.; Spikman, J. M.	2017	Lancet Neurology	No ortho trauma; TBI only
Postconcussive Symptoms, PTSD, and Medical Disease Burden in Treatment-Seeking OEF/OIF/OND Veterans	Williams, J. L.; McDevitt-Murphy, M. E.; Murphy, J. G.; Crouse, E. M.	2017	Military Medicine	TBI only; no co-occurring ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Screening for Anger and Sleep Difficulties	Steele, N. M.; Fogarty, G. J.	2017	Military Medicine	no ortho trauma
Probable Posttraumatic Stress Disorder in the US Veteran Population According to DSM-5: Results From the National Health and Resilience in Veterans Study	Wisco, B. E.; Marx, B. P.; Miller, M. W.; Wolf, E. J.; Mota, N. P.; Krystal, J. H.; Southwick, S. M.; Pietrzak, R. H.	2016	Journal of Clinical Psychiatry	not target population; no injury sub- analysis
Resilience during war: Better unit cohesion and reductions in avoidant coping are associated with better mental health function after combat deployment	McAndrew, L. M.; Markowitz, S.; Lu, S. E.; Borders, A.; Rothman, D.; Quigley, K. S.	2017	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no subanalysis of ortho pts
Workplace belongingness, distress, and resilience in emergency service workers	Shakespeare-Finch, J.; Daley, E.	2017	Psychological Trauma:Theory, Pesearch, Practice and Policy	no ortho trauma
The Influence of Social Support on Dyadic Functioning and Mental Health Among Military Personnel During Postdeployment Reintegration	Cederbaum, J. A.; Wilcox, S. L.; Sullivan, K.; Lucas, C.; Schuyler, A.	2017	Public Health Reports	not target population; no ortho trauma
Correlates of psychological distress among urban trauma-exposed adults: Influence of age and coping preferences	Hansen, M. C.; Ghafoori, B.	2017	Psychological Trauma:Theory, Pesearch, Practice and Policy	no ortho trauma group
Intimate Partner Violence Victims Seeking a Temporary Restraining Order: Social Support and Resilience Attenuating Psychological Distress	Jose, R.; Novaco, R. W.	2016	Journal of Interpersonal Violence	not target population; unclear ortho trauma
Multiple traumatic events and psychological distress: the South Africa stress and health study	Williams, S. L.; Williams, D. R.; Stein, D. J.; Seedat, S.; Jackson, P. B.; Moomal, H.	2007	Journal of Traumatic Stress	no ortho trauma group
Death Anxiety Resilience; a Mixed Methods Investigation	Hoelterhoff, M.; Chung, M. C.	2017	Psychiatric Quarterly	not target population; no ortho trauma
Political violence and mental health in Nepal: prospective study	Kohrt, B. A.; Hruschka, D. J.; Worthman, C. M.; Kunz, R. D.; Baldwin, J. L.; Upadhaya, N.; Acharya, N. R.; Koirala, S.; Thapa, S. B.; Tol, W. A.; Jordans, M. J.; Robkin, N.; Sharma, V. D.; Nepal, M. K.	2012	British Journal of Psychiatry	insufficient data; no ortho trauma
Effects of home on the mental health of British forces serving in Iraq and Afghanistan	Mulligan, K.; Jones, N.; Davies, M.; McAllister, P.; Fear, N. T.; Wessely, S.; Greenberg, N.	2012	British Journal of Psychiatry	not target population; no ortho trauma subanalysis
Mental health of UK military personnel while on deployment in Iraq	Mulligan, K.; Jones, N.; Woodhead, C.; Davies, M.; Wessely, S.; Greenberg, N.	2010	British Journal of Psychiatry	not target population; no ortho trauma
Influence of childhood adversity on health among male UK military personnel	Iversen, A. C.; Fear, N. T.; Simonoff, E.; Hull, L.; Horn, O.; Greenberg, N.; Hotopf, M.; Rona, R.; Wessely, S.	2007	British Journal of Psychiatry	not target population; no subanalysis of ortho pts
Going to war does not have to hurt: preliminary findings from the British deployment to Iraq	Hughes, J. H.; Cameron, F.; Eldridge, R.; Devon, M.; Wessely, S.; Greenberg, N.	2005	British Journal of Psychiatry	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The role of social support in the relationship between mental health and posttraumatic stress disorder amongst orthopaedic patients	Maselesele, V. M.; Idemudia, E. S.	2013	Curationis	cross-sectional; concurrent measurements
Screening in Trauma for Opioid Misuse Prevention (STOMP): study protocol for the development of an opioid risk screening tool for victims of injury	Brown, R.; Deyo, B.; Riley, C.; Quanbeck, A.; Glass, J. E.; Turpin, R.; Hetzel, S.; Nicholas, C.; Cruz, M.; Agarwal, S.	2017	Addiction Science & Clinical Practice	protocol
Correlates of resilience in the first 5 years after traumatic brain injury	Hanks, R. A.; Rapport, L. J.; Waldron Perrine, B.; Millis, S. R.	2016	Rehabilitation Psychology	not target population; TBI only
Psychological distress and user experiences with health care provision in persons living with spinal cord injury for more than 20 years	Jakimovska, V. M.; Kostovski, E.; Biering-Sorensen, F.; Lidal, I. B.	2017	Spinal Cord	not target population; SCI
Predicting post-traumatic stress and health anxiety following a venous thrombotic embolism	Bennett, P.; Patterson, K.; Noble, S.	2016	Journal of Health Psychology	not target population; no ortho trauma
Organizational belongingness mediates the relationship between sources of stress and posttrauma outcomes in firefighters	Armstrong, D.; Shakespeare-Finch, J.; Shochet, I.	2016	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no ortho trauma
A prospective study of pre-trauma risk factors for post-traumatic stress disorder and depression	Wild, J.; Smith, K. V.; Thompson, E.; Bear, F.; Lommen, M. J.; Ehlers, A.	2016	Psychological Medicine	Target population absent; no ortho trauma
Anxiety Disorder-Specific Predictors of Treatment Outcome in the Coordinated Anxiety Learning and Management (CALM) Trial	Jakubovski, E.; Bloch, M. H.	2016	Psychiatric Quarterly	not target population; no ortho trauma
Number of knee and ankle injuries is associated with poor physical but not mental health	Bruce, C. M.; Gribble, P. A.; Turner, M. J.; Hubbard- Turner, T.; Simon, J. E.; Thomas, A. C.	2017	Physician & Sportsmedicine	not target population; unclear trauma
Forward psychiatry - early intervention for mental health problems among UK armed forces in Afghanistan	Jones, N.; Fear, N. T.; Wessely, S.; Thandi, G.; Greenberg, N.	2017	European Psychiatry: the Journal of the Association of European Psychiatrists	not target population; unclear ortho trauma
The Impact of Pain Management with Opioids among Older Adults Post Orthopedic Trauma	Resnick, B.; Galik, E.; Wells, C. L.; Boltz, M.; Renn, C. L.; Dorsey, S. G.	2016	Pain Management Nursing	<6 month follow-up
Coping strategies as mediators in relation to resilience and posttraumatic stress disorder	Thompson, N. J.; Fiorillo, D.; Rothbaum, B. O.; Ressler, K. J.; Michopoulos, V.	2018	Journal of Affective Disorders	not target population; no injury sub- analysis
The effect of depressive symptoms on social support one year following traumatic injury	Agtarap, S.; Boals, A.; Holtz, P.; Roden-Foreman, K.; Rainey, E. E.; Ruggero, C.; Warren, A. M.	2017	Journal of Affective Disorders	not best available evidence; very low quality

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Validation of the Injustice Experiences Questionnaire in a heterogeneous trauma sample	Agtarap, S.; Scott, W.; Warren, A. M.; Trost, Z.	2016	Rehabilitation Psychology	insufficient data for target comparison
Trauma Coping Self-Efficacy: A Context-Specific Self-Efficacy Measure for Traumatic Stress	Benight, C. C.; Shoji, K.; James, L. E.; Waldrep, E. E.; Delahanty, D. L.; Cieslak, R.	2015	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no injury sub- analysis
Trajectories in quality of life of patients with a fracture of the distal radius or ankle using latent class analysis	Van Son, M. A. C.; De Vries, J.; Zijlstra, W.; Roukema, J. A.; Gosens, T.; Verhofstad, M. H. J.; Den Oudsten, B. L.	2017	Quality of Life Research	not best available evidence; very low quality
Insomnia in workers with delayed recovery from mild traumatic brain injury	Mollayeva, T.; Mollayeva, S.; Shapiro, C. M.; Cassidy, J. D.; Colantonio, A.	2016	Sleep Medicine	not target population; TBI only
Depression and Risk of Unintentional Injury in Rural Communities-A Longitudinal Analysis of the Australian Rural Mental Health Study	Inder, K. J.; Holliday, E. G.; Handley, T. E.; Fragar, L. J.; Lower, T.; Booth, A.; Lewin, T. J.; Kelly, B. J.	2017	International Journal of Environmental Research & Public Health [Electronic Resource]	not target population; injury as outcome
What Determines Posttraumatic Stress and Growth Following Various Traumatic Events? A Study in a Turkish Community Sample	Gul, E.; Karanci, A. N.	2017	Journal of Traumatic Stress	no ortho trauma group
Mild Traumatic Brain Injury, PTSD, and Psychosocial Functioning Among Male and Female U.S. OEF/OIF Veterans	Jackson, C. E.; Green, J. D.; Bovin, M. J.; Vasterling, J. J.; Holowka, D. W.; Ranganathan, G.; Rosen, R. C.; Keane, T. M.; Marx, B. P.	2016	Journal of Traumatic Stress	not target population; TBI only
Ergonomic and socioeconomic risk factors for hospital workers' compensation injury claims	Boyer, J.; Galizzi, M.; Cifuentes, M.; d'Errico, A.; Gore, R.; Punnett, L.; Slatin, C.; Promoting Healthy Safe Employment in Healthcare, Team	2009	American Journal of Industrial Medicine	not target population; no subanalysis of ortho trauma; injury as outcome
The long-term impact of combat exposure on health, interpersonal, and economic domains of functioning	Sheffler, J. L.; Rushing, N. C.; Stanley, I. H.; Sachs-Ericsson, N. J.	2016	Aging & Mental Health	no ortho trauma
Covariation of physical and mental symptoms across illnesses: results of a factor analytic study	Schwartz, C. E.; Kaplan, R. M.; Anderson, J. P.; Holbrook, T.; Genderson, M. W.	1999	Annals of Behavioral Medicine	not target population; no ortho trauma subanalysis
Sleep Disturbances in OEF/OIF/OND Veterans: Associations with PTSD, Personality, and Coping	Lind, M. J.; Brown, E.; Farrell-Carnahan, L.; Brown, R. C.; Hawn, S.; Berenz, E.; McDonald, S.; Pickett, T.; Danielson, C. K.; Thomas, S.; Amstadter, A. B.	2017	Journal of Clinical Sleep Medicine	not target population; no ortho trauma subanalysis
Traumatic injuries and persistent opioid use in the USA: findings from a nationally representative survey	Alghnam, S.; Castillo, R.	2017	Injury Prevention	not target population; injury as factor
Socio-demographic and Psychological Correlates of Posttraumatic Growth among Korean Americans with a History of Traumatic Life Experiences	Jeon, G. S.; Park, S. Y.; Bernstein, K. S.	2017	Archives of Psychiatric Nursing	not target population; no subanalysis of ortho pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The role of experiential avoidance, resilience and pain acceptance in the adjustment of chronic back pain patients who have experienced a traumatic event: a path analysis	Ruiz-Parraga, G. T.; Lopez-Martinez, A. E.	2015	Annals of Behavioral Medicine	not target population; no ortho trauma
Positive change after severe burn injuries	Rosenbach, C.; Renneberg, B.	2008	Journal of Burn Care & Research	not target population; burn only
Prevalence and Mental Health Correlates of Insomnia in First-Encounter Veterans with and without Military Sexual Trauma	Jenkins, M. M.; Colvonen, P. J.; Norman, S. B.; Afari, N.; Allard, C. B.; Drummond, S. P.	2015	Sleep	not target population; no ortho trauma
Factors associated with pain intensity and physical limitations after lateral ankle sprains	Briet, J. P.; Houwert, R. M.; Hageman, Mgjs; Hietbrink, F.; Ring, D. C.; Verleisdonk, Ejjm	2016	Injury	not target population; unclear ortho trauma
Mental health of those directly exposed to the World Trade Center disaster: unmet mental health care need, mental health treatment service use, and quality of life	Brackbill, R. M.; Stellman, S. D.; Perlman, S. E.; Walker, D. J.; Farfel, M. R.	2013	Social Science & Medicine	not target population; no ortho trauma
Reliability of the Deployment Resiliency Assessment	Simon, S. E.; Stewart, K.; Kloc, M.; Williams, T. V.; Wilmoth, M. C.	2016	Military Medicine	reliability testing; no injury
Construct validity of a short, self report instrument assessing emotional dysregulation	Powers, A.; Stevens, J.; Fani, N.; Bradley, B.	2015	Psychiatry Research	no ortho trauma
Illness Representations of Injury: A Comparison of Patients and Their Caregivers	Lee, B. O.; Fan, J. Y.; Hung, C. C.; Pai, H. C.; Chou, P. L.	2016	Journal of Nursing Scholarship	not target population; no subanalysis of ortho pts
Predicting recovery from common whiplash	Radanov, B. P.; Sturzenegger, M.	1996	European Neurology	not target population; whiplash
Longitudinal Prediction of Quality-of-Life Scores and Locomotion in Individuals With Traumatic Spinal Cord Injury	Hiremath, S. V.; Hogaboom, N. S.; Roscher, M. R.; Worobey, L. A.; Oyster, M. L.; Boninger, M. L.	2017	Archives of Physical Medicine & Rehabilitation	not target population; SCI
Measuring Community Integration in Persons With Limb Trauma and Amputation: A Systematic Review	Resnik, L.; Borgia, M.; Silver, B.	2017	Archives of Physical Medicine & Rehabilitation	systematic review
Validity and reliability of a questionnaire to assess social skills in traumatic brain injury: A preliminary study	Francis, H. M.; Osborne-Crowley, K.; McDonald, S.	2017	Brain Injury	not target population; TBI only
The Relationship between Allostatic Load and Psychosocial Characteristics among Women Veterans	Beckie, T. M.; Duffy, A.; Groer, M. W.	2016	Womens Health Issues	not target population; no subanalysis of ortho pts
Resilience, traumatic brain injury, depression, and posttraumatic stress among Iraq/Afghanistan war veterans	Elliott, T. R.; Hsiao, Y. Y.; Kimbrel, N. A.; Meyer, E. C.; DeBeer, B. B.; Gulliver, S. B.; Kwok, O. M.; Morissette, S. B.	2015	Rehabilitation Psychology	not target population; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
An examination of the broader effects of warzone experiences on returning Iraq/Afghanistan veterans' psychiatric health	Kimbrel, N. A.; DeBeer, B. B.; Meyer, E. C.; Silvia, P. J.; Beckham, J. C.; Young, K. A.; Morissette, S. B.	2015	Psychiatry Research	not target population; no ortho trauma
Workplace psychosocial factors associated with work-related injury absence: a study from a nationally representative sample of Korean workers	Lu, M. L.; Nakata, A.; Park, J. B.; Swanson, N. G.	2014	International Journal of Behavioral Medicine	not target population; unclear trauma
Alcohol use in South Sudan in relation to social factors, mental distress and traumatic events	Lien, L.; Hauff, E.; Martinez, P.; Eide, A. H.; Swarts, L.; Ayazi, T.	2016	BMC Public Health	not target population; no ortho trauma subanalysis
Preventing PTSD and Depression and Reducing Health Care Costs in the Military: A Call for Building Resilience Among Service Members	Vyas, K. J.; Fesperman, S. F.; Nebeker, B. J.; Gerard, S. K.; Boyd, N. D.; Delaney, E. M.; Webb-Murphy, J. A.; Johnston, S. L.	2016	Military Medicine	not target population; no ortho trauma
Association between pain catastrophising and musculoskeletal disorders is modified by past injuries in Malaysian military recruits	Mohd Din, F. H.; Rampal, S.; Muslan, M. A.; Hoe, V. C.	2016	Occupational & Environmental Medicine	not target population; trauma is exposure
The psychological impact of traffic injuries sustained in a road crash by bicyclists: A prospective study	Craig, A.; Elbers, N. A.; Jagnoor, J.; Gopinath, B.; Kifley, A.; Dinh, M.; Pozzato, I.; Ivers, R. Q.; Nicholas, M.; Cameron, I. D.	2017	Traffic Injury Prevention	not target population; no non-tbi injury sub-analysis
Health-related quality of life 24 months after sustaining a minor musculoskeletal injury in a road traffic crash: A prospective cohort study	Gopinath, B.; Jagnoor, J.; Harris, I. A.; Nicholas, M.; Casey, P.; Blyth, F.; Maher, C. G.; Cameron, I. D.	2017	Traffic Injury Prevention	<60 target population
The association between seeking financial compensation and injury recovery following motor vehicle related orthopaedic trauma	Murgatroyd, D. F.; Harris, I. A.; Tran, Y.; Cameron, I. D.	2016	BMC Musculoskeletal Disorders	no factor of interest
Impact of Childhood Abuse on Physical and Mental Health Status and Health Care Utilization Among Female Veterans	Mercado, R. C.; Wiltsey-Stirman, S.; Iverson, K. M.	2015	Military Medicine	not target population; no ortho trauma
Sexual Functioning Among a Cohort of Treatment- Seeking Canadian Military Personnel and Veterans With Psychiatric Conditions	McIntyre-Smith, A.; St Cyr, K.; King, L.	2015	Military Medicine	not target population; no ortho trauma
Reassessment of psychological distress and post- traumatic stress disorder in United States Air Force Distributed Common Ground System operators	Prince, L.; Chappelle, W. L.; McDonald, K. D.; Goodman, T.; Cowper, S.; Thompson, W.	2015	Military Medicine	not target population; no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The role of resilience and social support in predicting postdeployment adjustment in otherwise healthy Navy personnel	Cunningham, C. A.; Weber, B. A.; Roberts, B. L.; Hejmanowski, T. S.; Griffin, W. D.; Lutz, B. J.	2014	Military Medicine	No ortho trauma
Mental health, help seeking, and stigma and barriers to care among 3- and 12-month postdeployed and never deployed U.S. Army Combat Medics	Chapman, P. L.; Elnitsky, C.; Pitts, B.; Figley, C.; Thurman, R. M.; Unwin, B.	2014	Military Medicine	Target population absent; no ortho trauma
Dwell time and psychological screening outcomes among military service members with multiple combat deployments	MacGregor, A. J.; Heltemes, K. J.; Clouser, M. C.; Han, P. P.; Galarneau, M. R.	2014	Military Medicine	not target population; no ortho trauma
Sexual assault during the time of Gulf War I: a cross-sectional survey of U.S. service men who later applied for Department of Veterans Affairs PTSD disability benefits	Murdoch, M.; Polusny, M. A.; Street, A.; Noorbaloochi, S.; Simon, A. B.; Bangerter, A.; Grill, J.; Voller, E.	2014	Military Medicine	not target population; no ortho trauma
A conceptual model of the psychological health system for U.S. active duty service members: an approach to inform leadership and policy decision making	Wang, J. Y.; Glover, W. J.; Rhodes, A. M.; Nightingale, D.	2013	Military Medicine	Review
Clinical utility of the brunel mood scale in screening for post-traumatic stress risk in a military population	van Wijk, C. H.; Martin, J. H.; Hans-Arendse, C.	2013	Military Medicine	no ortho trauma
Risk and protective factors associated with symptoms of post-traumatic stress, depression, and alcohol misuse in OEF/OIF veterans	James, L. M.; Van Kampen, E.; Miller, R. D.; Engdahl, B. E.	2013	Military Medicine	not target population; no ortho trauma
Unmet need for treatment of substance use disorders and serious psychological distress among veterans: a nationwide analysis using the NSDUH	Golub, A.; Vazan, P.; Bennett, A. S.; Liberty, H. J.	2013	Military Medicine	not target population; no ortho trauma
Impact on mental health of deploying as an individual augmentee in the U.K. Armed Forces	Sundin, J.; Mulligan, K.; Henry, S.; Hull, L.; Jones, N.; Greenberg, N.; Wessely, S.; Fear, N. T.	2012	Military Medicine	not target population; no ortho trauma
Psychological adjustment and retention of Australian Army reservists following a stability operation	Orme, G. J.; Kehoe, J.	2011	Military Medicine	not target population; unclear ortho trauma
Does the repressor coping style predict lower posttraumatic stress symptoms?	McNally, R. J.; Hatch, J. P.; Cedillos, E. M.; Luethcke, C. A.; Baker, M. T.; Peterson, A. L.; Litz, B. T.	2011	Military Medicine	Target population absent; no ortho trauma
The role of emotional numbing in sexual functioning among veterans of the Iraq and Afghanistan wars	Nunnink, S. E.; Goldwaser, G.; Afari, N.; Nievergelt, C. M.; Baker, D. G.	2010	Military Medicine	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Substance use and mental health trends among U.S. military active duty personnel: key findings from the 2008 DoD Health Behavior Survey	Bray, R. M.; Pemberton, M. R.; Lane, M. E.; Hourani, L. L.; Mattiko, M. J.; Babeu, L. A.	2010	Military Medicine	not target population; no ortho trauma
Veterans' distress related to participation in a study about detainee abuse	Gariti, K. O.; Sadeghi, L.; Joisa, S. D.; Holmes, W. C.	2009	Military Medicine	not target population; no ortho trauma
PTSD subclusters and functional impairment in Kosovo peacekeepers	Maguen, S.; Stalnaker, M.; McCaslin, S.; Litz, B. T.	2009	Military Medicine	no ortho trauma; no LEC subpop data
Trauma exposure, branch of service, and physical injury in relation to mental health among U.S. veterans returning from Iraq and Afghanistan	Baker, D. G.; Heppner, P.; Afari, N.; Nunnink, S.; Kilmer, M.; Simmons, A.; Harder, L.; Bosse, B.	2009	Military Medicine	not target population; no ortho trauma subanalysis
The USS Cole bombing: analysis of pre-existing factors as predictors for development of post-traumatic stress or depressive disorders	Nasky, K. M.; Hines, N. N.; Simmer, E.	2009	Military Medicine	not target population; no injury sub- analysis
Psychosocial predictors of return to duty among marine recruits with musculoskeletal injuries	Booth-Kewley, S.; Larson, G. E.; Highfill-McRoy, R. M.	2009	Military Medicine	not target population; unclear trauma
Description of risk and resilience factors among military medical personnel before deployment to Iraq	Maguen, S.; Turcotte, D. M.; Peterson, A. L.; Dremsa, T. L.; Garb, H. N.; McNally, R. J.; Litz, B. T.	2008	Military Medicine	Target population absent; no ortho trauma
Effects of sociodemographic characteristics, illness process, and social support on the levels of perceived quality of life in veterans	Yazicioglu, K.; Duyan, V.; Karatas, K.; Ozgu, A.; Yilmaz, B.; Duyan, G. C.; Aksu, S.	2006	Military Medicine	<60 target population
Psychosocial and health correlates of types of traumatic event exposures among U.S. military personnel	Hourani, L. L.; Yuan, H.; Bray, R. M.	2003	Military Medicine	not target population; no ortho trauma subanalysis
Self-reported health of Persian Gulf War veterans: a comparison of help-seeking and randomly ascertained cases	Hull, L.; David, A. S.; Hyams, K. C.; Unwin, C.; Wessely, S. C.; Hotopf, M.	2002	Military Medicine	not target population; no ortho trauma subanalysis
The mental health status of women in the Navy and Marine Corps: preliminary findings from the Perceptions of Wellness and Readiness Assessment	Hourani, L. L.; Yuan, H.	1999	Military Medicine	not target population; no ortho trauma
Psychosocial stress in Marine Corps officers	Solis, S.	1991	Military Medicine	not target population; no ortho trauma
Factors associated with return to work in men and women with work-related traumatic brain injury	Xiong, C.; Martin, T.; Sravanapudi, A.; Colantonio, A.; Mollayeva, T.	2016	Disability & Health Journal	not target population; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Psychological distress among Vietnamese adults attending Vietnamese-speaking general practices in South Western Sydney: prevalence and associations	Nguyen, T.; Dennis, S.; An, H.; Vagholkar, S.; Liaw, S. T.	2016	Australian Journal of Primary Health	no ortho trauma
Prediction of work resumption and sustainability up to 1 year after mild traumatic brain injury	de Koning, M. E.; Scheenen, M. E.; van der Horn, H. J.; Timmerman, M. E.; Hageman, G.; Roks, G.; Spikman, J. M.; van der Naalt, J.	2017	Neurology	No ortho trauma
Chronic Pain and Associated Factors in India and Nepal: A Pilot Study of the Vanderbilt Global Pain Survey	Walters, J. L.; Baxter, K.; Chapman, H.; Jackson, T.; Sethuramachandran, A.; Couldridge, M.; Joshi, H. R.; Kundra, P.; Liu, X.; Nair, D.; Sullivan, B.; Shotwell, M. S.; Jense, R. J.; Kassebaum, N. J.; McQueen, K. A. K.	2017	Anesthesia & Analgesia	not target population; no ortho trauma
Factors associated with access to physical rehabilitation for victims of traffic accidents	Sousa, K. M.; Oliveira, W. I. F.; Alves, E. A.; Gama, Zads	2017	Revista de Saude Publica	not best available; very low quality
Comparing health-related quality of life of Dutch and Chinese patients with traumatic brain injury: do cultural differences play a role?	Cnossen, M. C.; Polinder, S.; Vos, P. E.; Lingsma, H. F.; Steyerberg, E. W.; Sun, Y.; Ye, P.; Duan, L.; Haagsma, J. A.	2017	Health & Quality of Life Outcomes	No ortho trauma; TBI only
Overview of findings from a 2-year study of claimants who had sustained a mild or moderate injury in a road traffic crash: prospective study	Gopinath, B.; Jagnoor, J.; Elbers, N.; Cameron, I. D.	2017	BMC Research Notes	no usable data
Psychological resilience in U.S. military veterans: A 2-year, nationally representative prospective cohort study	Isaacs, K.; Mota, N. P.; Tsai, J.; Harpaz-Rotem, I.; Cook, J. M.; Kirwin, P. D.; Krystal, J. H.; Southwick, S. M.; Pietrzak, R. H.	2017	Journal of Psychiatric Research	not target population; no ortho trauma subanalysis
Reciprocal Causation Between Functional Independence and Mental Health 1 and 2 Years After Traumatic Brain Injury: A Cross-Lagged Panel Structural Equation Model	Perrin, P. B.; Stevens, L. F.; Sutter, M.; Lequerica, A. H.; Krch, D.; Kolakowsky-Hayner, S. A.; Arango-Lasprilla, J. C.	2017	American Journal of Physical Medicine & Rehabilitation	not target population; TBI only
Post-traumatic growth among the UK veterans following treatment for post-traumatic stress disorder	Murphy, D.; Palmer, E.; Lock, R.; Busuttil, W.	2017	Journal of the Royal Army Medical Corps	unclear population; ortho?
The Dutch language anterior cruciate ligament return to sport after injury scale (ACL-RSI) - validity and reliability	Slagers, A. J.; Reininga, I. H.; van den Akker-Scheek, I.	2017	Journal of Sports Sciences	no usable data
Sexual dysfunction of male, after pelvic fracture	Copuroglu, C.; Yilmaz, B.; Yilmaz, S.; Ozcan, M.; Ciftdemir, M.; Copuroglu, E.	2017	European Journal of Trauma & Emergency Surgery	<60 total pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Influence of Immediate and Delayed Lower-Limb Amputation Compared with Lower-Limb Salvage on Functional and Mental Health Outcomes Post- Rehabilitation in the U.K. Military	Ladlow, P.; Phillip, R.; Coppack, R.; Etherington, J.; Bilzon, J.; McGuigan, M. P.; Bennett, A. N.	2016	Journal of Bone & Joint Surgery - American Volume	Prospective univariate; very low quality
Frailty and resilience in an older population. The role of resilience during rehabilitation after orthopedic surgery in geriatric patients with multiple comorbidities	Rebagliati, G. A.; Sciume, L.; Iannello, P.; Mottini, A.; Antonietti, A.; Caserta, V. A.; Gattoronchieri, V.; Panella, L.; Callegari, C.	2016	Functional Neurology	not target population; elderly hip fracture
Contributions of risk and protective factors to prediction of psychological symptoms after traumatic experiences	Carlson, E. B.; Palmieri, P. A.; Field, N. P.; Dalenberg, C. J.; Macia, K. S.; Spain, D. A.	2016	Comprehensive Psychiatry	not target population; no ortho trauma subanalysis
Associations between lifetime potentially traumatic events and chronic physical conditions in the South African Stress and Health Survey: a cross-sectional study	Atwoli, L.; Platt, J. M.; Basu, A.; Williams, D. R.; Stein, D. J.; Koenen, K. C.	2016	BMC Psychiatry	not target population; no ortho trauma subanalysis
Subacute posttraumatic complaints and psychological distress in trauma patients with or without mild traumatic brain injury	de Koning, M. E.; Gareb, B.; El Moumni, M.; Scheenen, M. E.; van der Horn, H. J.; Timmerman, M. E.; Spikman, J. M.; van der Naalt, J.	2016	Injury	not target population; unclear trauma
Posttraumatic stress and growth in student service members and veterans: The role of personal growth initiative	Borowa, D.; Robitschek, C.; Harmon, K. A.; Shigemoto, Y.	2016	Journal of American College Health	not target population; no subanalysis of ortho pts
Investigating Veterans' Pre-, Peri-, and Post- Deployment Experiences as Potential Risk Factors for Problem Gambling	Whiting, S. W.; Potenza, M. N.; Park, C. L.; McKee, S. A.; Mazure, C. M.; Hoff, R. A.	2016	Journal of Behavioral Addictions	No ortho trauma; TBI only
Social and occupational factors associated with psychological distress and disorder among disaster responders: a systematic review	Brooks, S. K.; Dunn, R.; Amlot, R.; Greenberg, N.; Rubin, G. J.	2016	BMC psychology	systematic review
Social Causation Versus Social Erosion: Comparisons of Causal Models for Relations Between Support and PTSD Symptoms	Shallcross, S. L.; Arbisi, P. A.; Polusny, M. A.; Kramer, M. D.; Erbes, C. R.	2016	Journal of Traumatic Stress	not target population; no subanalysis of ortho pts
Factors associated with long-term functional and psychological outcomes in persons with moderate to severe traumatic brain injury	Khan, F.; Amatya, B.; Judson, R.; Chung, P.; Truesdale, M.; Elmalik, A.; Galea, M. P.	2016	Journal of Rehabilitation Medicine	not target population; TBI only
General self-efficacy and posttraumatic stress after a natural disaster: a longitudinal study	Nygaard, E.; Hussain, A.; Siqveland, J.; Heir, T.	2016	BMC psychology	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Does perceived injustice correlate with pain intensity and disability in orthopaedic trauma patients?	van Leeuwen, W. F.; van der Vliet, Q. M.; Janssen, S. J.; Heng, M.; Ring, D.; Vranceanu, A. M.	2016	Injury	<6 month follow-up
Predictors for Return to Work in Subjects with Mild Traumatic Brain Injury	Vikane, E.; Hellstrom, T.; Roe, C.; Bautz-Holter, E.; Asmus, J.; Skouen, J. S.	2016	Behavioural Neurology	No ortho trauma; TBI only
Well-being in wounds inventory (WOWI): development of a valid and reliable measure of well-being in patients with wounds	Upton, D.; Upton, P.; Alexander, R.	2016	Journal of Wound Care	no ortho trauma
Unit cohesion, traumatic exposure and mental health of military personnel	Kanesarajah, J.; Waller, M.; Zheng, W. Y.; Dobson, A. J.	2016	Occupational Medicine (Oxford)	not target population; no ortho trauma
Association of Child Abuse Exposure With Suicidal Ideation, Suicide Plans, and Suicide Attempts in Military Personnel and the General Population in Canada	Afifi, T. O.; Taillieu, T.; Zamorski, M. A.; Turner, S.; Cheung, K.; Sareen, J.	2016	JAMA Psychiatry	No ortho trauma
The Association of Social Inhibition and Posttraumatic Stress Disorder: A Vicious Circle?: Results From the Population-Based KORA F4 Study With 1232 Participants With Trauma Exposure	Lukaschek, K.; Baumert, J.; Kruse, J.; Ladwig, K. H.	2016	Journal of Nervous & Mental Disease	not target population; no ortho trauma
Influence of Priming on Patient-Reported Outcome Measures: A Randomized Controlled Trial	Claessen, F. M.; Mellema, J. J.; Stoop, N.; Lubberts, B.; Ring, D.; Poolman, R. W.	2016	Psychosomatics	insufficient data for 6mo FU
Mental Health and Medical Health Disparities in 5135 Transgender Veterans Receiving Healthcare in the Veterans Health Administration: A Case-Control Study	Brown, G. R.; Jones, K. T.	2016	Lgbt Health	No ortho trauma
Association between resiliency and posttraumatic growth in firefighters: the role of stress appraisal	Oginska-Bulik, N.; Kobylarczyk, M.	2016	International Journal of Occupational Safety & Ergonomics	not target population; no ortho trauma
Physical Function and Mental Health in Trauma Intensive Care Patients: A 2-Year Cohort Study	Aitken, L. M.; Macfarlane, B.; Chaboyer, W.; Schuetz, M.; Joyce, C.; Barnett, A. G.	2016	Critical Care Medicine	not target population; no extremity sub- analysis
Service-Related Exposures and Physical Health Trajectories Among Aging Veteran Men	Taylor, M. G.; Urena, S.; Kail, B. L.	2016	Gerontologist	No ortho trauma
The role of performance validity tests in the assessment of cognitive functioning after military concussion: A replication and extension	Armistead-Jehle, P.; Cooper, D. B.; Vanderploeg, R. D.	2016	Applied Neuropsychology. Adult	no ortho trauma
The Essential Resilience Scale: Instrument Development and Prediction of Perceived Health and Behaviour	Chen, X.; Wang, Y.; Yan, Y.	2016	Stress & Health	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium	Benjet, C.; Bromet, E.; Karam, E. G.; Kessler, R. C.; McLaughlin, K. A.; Ruscio, A. M.; Shahly, V.; Stein, D. J.; Petukhova, M.; Hill, E.; Alonso, J.; Atwoli, L.; Bunting, B.; Bruffaerts, R.; Caldas-de-Almeida, J. M.; de Girolamo, G.; Florescu, S.; Gureje, O.; Huang, Y.; Lepine, J. P.; Kawakami, N.; Kovess-Masfety, V.; Medina-Mora, M. E.; Navarro-Mateu, F.; Piazza, M.; Posada-Villa, J.; Scott, K. M.; Shalev, A.; Slade, T.; ten Have, M.; Torres, Y.; Viana, M. C.; Zarkov, Z.; Koenen, K. C.	2016	Psychological Medicine	not target population; no ortho trauma subanalysis
What happens to the mental health of UK service personnel after they return home from Afghanistan?	Banwell, E.; Greenberg, N.; Smith, P.; Jones, N.; Fertout, M.	2016	Journal of the Royal Army Medical Corps	not target population; no ortho trauma
Reliability and validity of the Brief Resilience Scale (BRS) Spanish Version	Rodriguez-Rey, R.; Alonso-Tapia, J.; Hernansaiz-Garrido, H.	2016	Psychological Assessment	not target population; no ortho trauma
The predictive value of trauma-related coping self- efficacy for posttraumatic stress symptoms: Differences between treatment-seeking and non- treatment-seeking victims	Bosmans, M. W.; van der Knaap, L. M.; van der Velden, P. G.	2016	Psychological Trauma: Theory, Pesearch, Practice and Policy	not target population; no ortho trauma
What doesn't kill you makes you stronger: A national study of U.S. military veterans	Tsai, J.; Mota, N. P.; Southwick, S. M.; Pietrzak, R. H.	2016	Journal of Affective Disorders	mixed population; majority non-ortho
The mental health of deployed UK maritime forces	Whybrow, D.; Jones, N.; Evans, C.; Minshall, D.; Smith, D.; Greenberg, N.	2016	Occupational & Environmental Medicine	not target population; no ortho trauma
Factors Associated with Posttraumatic Stress Disorder Following Moderate to Severe Traumatic Brain Injury: A Prospective Study	Alway, Y.; McKay, A.; Gould, K. R.; Johnston, L.; Ponsford, J.	2016	Depression & Anxiety	not target population; TBI only
Longitudinal Course of Posttraumatic Growth among U.S. Military Veterans: Results from the National Health and Resilience in Veterans Study	Tsai, J.; Sippel, L. M.; Mota, N.; Southwick, S. M.; Pietrzak, R. H.	2016	Depression & Anxiety	Unclear population; ortho?
A novel patient-reported outcome measure for anterior cruciate ligament injury: evaluating the reliability, validity, and responsiveness of Japanese anterior cruciate ligament questionnaire 25	Nagao, M.; Doi, T.; Saita, Y.; Kobayashi, Y.; Kubota, M.; Kaneko, H.; Takazawa, Y.; Ishijima, M.; Kurosawa, H.; Kaneko, K.; Nozawa, M.; Ikeda, H.; Kim, S. G.	2016	Knee Surgery, Sports Traumatology, Arthroscopy	not target population; 'ACL injury'

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Levels of resilience: Associations among individual, community, and national resilience	Kimhi, S.	2016	Journal of Health Psychology	review
Alcohol Misuse Among Female Veterans: Exploring Associations With Interpersonal Violence and Mental Health	Gobin, R. L.; Green, K. E.; Iverson, K. M.	2015	Substance Use & Misuse	No ortho trauma
A Prospective Study of Mortality and Trauma- Related Risk Factors Among a Nationally Representative Sample of Vietnam Veterans	Schlenger, W. E.; Corry, N. H.; Williams, C. S.; Kulka, R. A.; Mulvaney-Day, N.; DeBakey, S.; Murphy, C. M.; Marmar, C. R.	2015	American Journal of Epidemiology	No ortho trauma
Factors related to satisfaction with life in veterans with mild traumatic brain injury	Seidl, J. N.; Pastorek, N. J.; Lillie, R.; Rosenblatt, A.; Troyanskaya, M.; Miller, B. I.; Romesser, J.; Lippa, S.; Sim, A. H.; Linck, J.	2015	Rehabilitation Psychology	No ortho trauma; TBI only
Traumatic experiences, posttraumatic stress symptoms, depression, and health-risk behavior in relation to injury among University of Nairobi students in Kenya	Othieno, C. J.; Okoth, R.; Peltzer, K.; Pengpid, S.; Malla, L. O.	2015	International Journal of Psychiatry in Medicine	not target population; injury as factor
Prospective Analysis of Premilitary Mental Health, Somatic Symptoms, and Postdeployment Postconcussive Symptoms	Lee, J. E.; Garber, B.; Zamorski, M. A.	2015	Psychosomatic Medicine	No ortho trauma; TBI only
Alcohol misuse in the United Kingdom Armed Forces: A longitudinal study	Thandi, G.; Sundin, J.; Ng-Knight, T.; Jones, M.; Hull, L.; Jones, N.; Greenberg, N.; Rona, R. J.; Wessely, S.; Fear, N. T.	2015	Drug & Alcohol Dependence	not target population; no ortho trauma
Periodontal Disease Is Associated with Insomnia among Victims of the Great East Japan Earthquake: A Panel Study Initiated Three Months after the Disaster	Tsuchiya, M.; Aida, J.; Hagiwara, Y.; Sugawara, Y.; Tomata, Y.; Sato, M.; Watanabe, T.; Tomita, H.; Nemoto, E.; Watanabe, M.; Osaka, K.; Tsuji, I.	2015	Tohoku Journal of Experimental Medicine	not target population; no ortho trauma
Psychosocial adjustment following burns: An integrative literature review	Attoe, C.; Pounds-Cornish, E.	2015	Burns	irrelevant systematic review*
Injuries and Traumatic Psychological Exposures Associated with the South Napa Earthquake - California, 2014	Attfield, K. R.; Dobson, C. B.; Henn, J. B.; Acosta, M.; Smorodinsky, S.; Wilken, J. A.; Barreau, T.; Schreiber, M.; Windham, G. C.; Materna, B. L.; Roisman, R.	2015	MMWR - Morbidity & Mortality Weekly Report	not target population; injury as outcome
The Development of the Scale of Protective Factors: Resilience in a Violent Trauma Sample	Ponce-Garcia, E.; Madewell, A. N.; Kennison, S. M.	2015	Violence & Victims	not target population; no ortho trauma
Subjective sleep quality and postconcussion symptoms following mild traumatic brain injury	Towns, S. J.; Silva, M. A.; Belanger, H. G.	2015	Brain Injury	not target population; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Kinesiophobia and Return to Sports After Anterior Cruciate Ligament Reconstruction	Medvecky, M. J.; Nelson, S.	2015	Connecticut Medicine	review
Development of a trauma-specific quality-of-life measurement	Wanner, J. P.; deRoon-Cassini, T.; Kodadek, L.; Brasel, K.	2015	The Journal of Trauma and Acute Care Surgery	not target population; trauma pts <60
Relation between resiliency and post-traumatic growth in a group of paramedics: The mediating role of coping strategies	Oginska-Bulik, N.; Kobylarczyk, M.	2015	International Journal of Occupational Medicine & Environmental Health	no ortho trauma; paramedics
Prevalence of delirium in geriatric rehabilitation in Israel and its influence on rehabilitation outcomes in patients with hip fractures	Heyman, N.; Nili, F.; Shahory, R.; Seleznev, I.; Ben Natan, M.	2015	International Journal of Rehabilitation Research	not target population; elderly hip fracture
Rehabilitation needs of the survivors of the 2013 Ya'an earthquake in China	Li-Tsang, C. W.; He, C. Q.; Lo, A. G.; Ding, S. J.; Deng, X.; Yang, Y. H.; Zhang, Y. T.	2015	Journal of Rehabilitation Medicine	not target population; injury as factor
Key dimensions of impairment, self-report, and environmental supports in persons with traumatic brain injury	Sherer, M.; Sander, A. M.; Nick, T. G.; Melguizo, M. S.; Tulsky, D. S.; Kisala, P.; Hanks, R.; Novack, T. A.	2015	Rehabilitation Psychology	not target population; TBI only
Traumatic episodes and mental health effects in young men and women in Rwanda, 17 years after the genocide	Rugema, L.; Mogren, I.; Ntaganira, J.; Krantz, G.	2015	BMJ Open	not target population; no ortho trauma subanalysis
Coping Styles Among Individuals with Severe Mental Illness and Comorbid PTSD	McNeill, S. A.; Galovski, T. E.	2015	Community Mental Health Journal	not target population; trauma pts <60
Do Upper Extremity Trauma Patients Have Different Preferences for Shared Decision-making Than Patients With Nontraumatic Conditions?	Hageman, M. G.; Reddy, R.; Makarawung, D. J.; Briet, J. P.; van Dijk, C. N.; Ring, D.	2015	Clinical Orthopaedics & Related Research	not target population; no ortho trauma subanalysis
The Well-Being of Australian Service Mothers	Davy, C. P.; Lorimer, M.; McFarlane, A.; Hodson, S.; Crompvoets, S.; Lawrence-Wood, E.; Neuhaus, S. J.	2015	Women & Health	not target population; no ortho trauma
Decline in activities of daily living after a visit to a Canadian emergency department for minor injuries in independent older adults: are frail older adults with cognitive impairment at greater risk?	Provencher, V.; Sirois, M. J.; Ouellet, M. C.; Camden, S.; Neveu, X.; Allain-Boule, N.; Emond, M.; Canadian Emergency Team Initiative on Mobility in, Aging	2015	Journal of the American Geriatrics Society	not target population; no ortho trauma subanalysis
Development of a composite trauma exposure risk index	Liu, H.; Prause, N.; Wyatt, G. E.; Williams, J. K.; Chin, D.; Davis, T.; Loeb, T.; Marchand, E.; Zhang, M.; Myers, H. F.	2015	Psychological Assessment	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Psychological resilience after Hurricane Sandy: the influence of individual- and community-level factors on mental health after a large-scale natural disaster	Lowe, S. R.; Sampson, L.; Gruebner, O.; Galea, S.	2015	PLoS ONE [Electronic Resource]	not target population; no ortho trauma subanalysis
Relationships among Trait Resilience, Virtues, Post-traumatic Stress Disorder, and Post-traumatic Growth	Duan, W.; Guo, P.; Gan, P.	2015	PLoS ONE [Electronic Resource]	not target population; trauma pts <60
Relationship Between Resilience, Adjustment, and Psychological Functioning After Traumatic Brain Injury: A Preliminary Report	Lukow, H. R., 2nd; Godwin, E. E.; Marwitz, J. H.; Mills, A.; Hsu, N. H.; Kreutzer, J. S.	2015	Journal of Head Trauma Rehabilitation	not target population; TBI only
Loss and psychosocial factors as determinants of quality of life in a cohort of earthquake survivors	Khachadourian, V.; Armenian, H. K.; Demirchyan, A.; Goenjian, A.	2015	Health & Quality of Life Outcomes	no subanalysis of target population
Physical Trauma and Infection as Precipitating Factors in Patients with Fibromyalgia	Jiao, J.; Vincent, A.; Cha, S. S.; Luedtke, C. A.; Kim, C. H.; Oh, T. H.	2015	American Journal of Physical Medicine & Rehabilitation	not target population; no ortho trauma subanalysis
Post-traumatic stress disorder and depression prevalence and associated risk factors among local disaster relief and reconstruction workers fourteen months after the Great East Japan Earthquake: a cross-sectional study	Sakuma, A.; Takahashi, Y.; Ueda, I.; Sato, H.; Katsura, M.; Abe, M.; Nagao, A.; Suzuki, Y.; Kakizaki, M.; Tsuji, I.; Matsuoka, H.; Matsumoto, K.	2015	BMC Psychiatry	not target population; no ortho trauma
Longitudinal interplay between posttraumatic stress symptoms and coping self-efficacy: A four-wave prospective study.[Erratum appears in Soc Sci Med. 2015 Jul;136-137:189]	Bosmans, M. W.; van der Velden, P. G.	2015	Social Science & Medicine	not target population; no ortho trauma
Care related pain in rehabilitation after orthopedic trauma: An exploratory study with qualitative data	Favre, C.; Deriaz, O.; Hanon, R.; Luthi, F.	2015	Annals of Physical & Rehabilitation Medicine	not target population; trauma pts <60
Emerging posttraumatic growth: a prospective study with pre- and posttrauma psychological predictors	Su, Y. J.; Chen, S. H.	2015	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no ortho trauma
Trauma and event centrality: Valence and incorporation into identity influence well-being more than exposure	Bernard, J. D.; Whittles, R. L.; Kertz, S. J.; Burke, P. A.	2015	Psychological Trauma:Theory, Pesearch, Practice and Policy	not target population; no ortho trauma subanalysis
Associations between work environment and psychological distress after a workplace terror attack: the importance of role expectations, predictability and leader support.[Erratum appears in PLoS One. 2015;10(4):e0124849; PMID: 25856200]	Birkeland, M. S.; Nielsen, M. B.; Knardahl, S.; Heir, T.	2015	PLoS ONE [Electronic Resource]	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Traumatic brain injury among women veterans: an invisible wound of intimate partner violence	Iverson, K. M.; Pogoda, T. K.	2015	Medical Care	No ortho trauma; TBI only
Validation of the Korean version of the Connor- Davidson Resilience Scale-2 in firefighters and rescue workers	Jeong, H. S.; Kang, I.; Namgung, E.; Im, J. J.; Jeon, Y.; Son, J.; Yu, S.; Kim, S.; Yoon, S.; Lyoo, I. K.; Chung, Y. A.; Lim, J. H.; Kim, J. E.	2015	Comprehensive Psychiatry	no ortho trauma
A cross-sectional study of elite adult Irish dancers: biopsychosocial traits, pain, and injury	Cahalan, R.; Purtill, H.; O'Sullivan, P.; O'Sullivan, K.	2015	Journal of Dance Medicine & Science	not target population; trauma pts <60
PTSD symptom presentation across the deployment cycle	Steenkamp, M. M.; Boasso, A. M.; Nash, W. P.; Larson, J. L.; Lubin, R. E.; Litz, B. T.	2015	Journal of Affective Disorders	not target population; no ortho trauma
The Relationship of Health Locus of Control and Health-Related Quality of Life in the Chronic Phase After Traumatic Brain Injury	Wielenga-Boiten, J. E.; Heijenbrok-Kal, M. H.; Ribbers, G. M.	2015	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
A Profile of Patients With Traumatic Brain Injury Within Home Care, Long-Term Care, Complex Continuing Care, and Institutional Mental Health Settings in a Publicly Insured Population	Colantonio, A.; Hsueh, J.; Petgrave, J.; Hirdes, J. P.; Berg, K.	2015	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Novel risk factors associated with current suicidal ideation and lifetime suicide attempts in individuals with spinal cord injury	McCullumsmith, C. B.; Kalpakjian, C. Z.; Richards, J. S.; Forchheimer, M.; Heinemann, A. W.; Richardson, E. J.; Wilson, C. S.; Barber, J.; Temkin, N.; Bombardier, C. H.; Fann, J. R.; Prisms Investigators	2015	Archives of Physical Medicine & Rehabilitation	Target population absent,SCI
Risk factors for relapse to problem drinking among current and former US military personnel: a prospective study of the Millennium Cohort	Williams, E. C.; Frasco, M. A.; Jacobson, I. G.; Maynard, C.; Littman, A. J.; Seelig, A. D.; Crum-Cianflone, N. F.; Nagel, A.; Boyko, E. J.	2015	Drug & Alcohol Dependence	No ortho trauma
Reliability and validity of the Falls Efficacy Scale- International after hip fracture in patients aged >= 65 years	Visschedijk, J. H.; Terwee, C. B.; Caljouw, M. A.; Spruit-van Eijk, M.; van Balen, R.; Achterberg, W. P.	2015	Disability & Rehabilitation	not target population; elderly hip fxs
Sports participation 2 years after anterior cruciate ligament reconstruction in athletes who had not returned to sport at 1 year: a prospective follow-up of physical function and psychological factors in 122 athletes	Ardern, C. L.; Taylor, N. F.; Feller, J. A.; Whitehead, T. S.; Webster, K. E.	2015	American Journal of Sports Medicine	No targeted population; no trauma sport injuries

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The validity of military screening for mental health problems: diagnostic accuracy of the PCL, K10 and AUDIT scales in an entire military population	Searle, A. K.; Van Hooff, M.; McFarlane, A. C.; Davies, C. E.; Fairweather-Schmidt, A. K.; Hodson, S. E.; Benassi, H.; Steele, N.	2015	International Journal of Methods in Psychiatric Research	no ortho trauma
Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction	Lentz, T. A.; Zeppieri, G., Jr.; George, S. Z.; Tillman, S. M.; Moser, M. W.; Farmer, K. W.; Chmielewski, T. L.	2015	American Journal of Sports Medicine	No ortho trauma; no trauma ACL injuries
Conditioned fear and extinction learning performance and its association with psychiatric symptoms in active duty Marines	Acheson, D. T.; Geyer, M. A.; Baker, D. G.; Nievergelt, C. M.; Yurgil, K.; Risbrough, V. B.; Mrs-Ii Team	2015	Psychoneuroendocrinology	No ortho trauma
Posttraumatic stress in deployed Marines: prospective trajectories of early adaptation	Nash, W. P.; Boasso, A. M.; Steenkamp, M. M.; Larson, J. L.; Lubin, R. E.; Litz, B. T.	2015	Journal of Abnormal Psychology	Target population absent
Fragility non-hip fracture patients are at risk	Gosch, M.; Druml, T.; Nicholas, J. A.; Hoffmann-Weltin, Y.; Roth, T.; Zegg, M.; Blauth, M.; Kammerlander, C.	2015	Archives of Orthopaedic & Trauma Surgery	not target population; injury as factor
The contribution of psychological factors to recovery after mild traumatic brain injury: is cluster analysis a useful approach?	Snell, D. L.; Surgenor, L. J.; Hay-Smith, E. J.; Williman, J.; Siegert, R. J.	2015	Brain Injury	No ortho trauma; TBI only
A longitudinal examination of positive changes in quality-of-life after traumatic brain injury	Gould, K. R.; Ponsford, J. L.	2015	Brain Injury	No ortho trauma; TBI only
Strong army couples: a case study of rekindling marriage after combat deployment	Melvin, K. C.; Wenzel, J.; Jennings, B. M.	2015	Research in Nursing & Health	Target population absent
The effect of self efficacy and meaning in life on posttraumatic stress disorder and depression severity among veterans	Blackburn, L.; Owens, G. P.	2015	Journal of Clinical Psychology	not target population; no subanalysis of ortho pts
Impact of average household income and damage exposure on post-earthquake distress and functioning: A community study following the February 2011 Christchurch earthquake	Dorahy, M. J.; Rowlands, A.; Renouf, C.; Hanna, D.; Britt, E.; Carter, J. D.	2015	British Journal of Psychology	not target population; no ortho trauma
Comparison of long-term outcomes following traumatic injury: what is the unique experience for those with brain injury compared with orthopaedic injury?	Dahm, J.; Ponsford, J.	2015	Injury	factor as outcome

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Comparison of Canadian triage acuity scale to Australian Emergency Mental Health Scale triage system for psychiatric patients	Downey, L. V.; Zun, L. S.; Burke, T.	2015	International emergency nursing	No ortho trauma
A new measure of fear of falling: psychometric properties of the fear of falling questionnaire revised (FFQ-R)	Bower, E. S.; Wetherell, J. L.; Merz, C. C.; Petkus, A. J.; Malcarne, V. L.; Lenze, E. J.	2015	International Psychogeriatrics	not target population; elderly hip fxs
Post-traumatic growth among veterans in the USA: results from the National Health and Resilience in Veterans Study	Tsai, J.; El-Gabalawy, R.; Sledge, W. H.; Southwick, S. M.; Pietrzak, R. H.	2015	Psychological Medicine	mixed population; majority non-ortho
Posttraumatic growth within the first threemonths after accidental injury in China: the role of self-disclosure, cognitive processing, and psychosocial resources	Dong, C.; Gong, S.; Jiang, L.; Deng, G.; Liu, X.	2015	Psychology Health & Medicine	<6 month follow-up
Psychosocial outcomes and coping after complete avulsion traumatic brachial plexus injury	Franzblau, L.; Chung, K. C.	2015	Disability & Rehabilitation	not target population; trauma pts <60
Clinician versus Veteran ratings on the Mayo- Portland Participation Index in veterans with a history of mild traumatic brain injury	McCulloch, K.; Pastorek, N. J.; Miller, B. I.; Romesser, J.; Linck, J.; Sim, A. H.; Troyanskaya, M.; Maestas, K. L.	2015	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
The structure of postconcussion symptoms on the Neurobehavioral Symptom Inventory: a comparison of alternative models	Vanderploeg, R. D.; Silva, M. A.; Soble, J. R.; Curtiss, G.; Belanger, H. G.; Donnell, A. J.; Scott, S. G.	2015	Journal of Head Trauma Rehabilitation	not target population; no subanalysis of ortho pts
Psychological predictors of anterior cruciate ligament reconstruction outcomes: a systematic review	Everhart, J. S.; Best, T. M.; Flanigan, D. C.	2015	Knee Surgery, Sports Traumatology, Arthroscopy	systematic review; non-trauma
Correlates of pain symptoms among Iraq and Afghanistan military personnel following combatrelated blast exposure	Stratton, K. J.; Hawn, S. E.; Amstadter, A. B.; Cifu, D. X.; Walker, W. C.	2014	Journal of Rehabilitation Research & Development	TBI only; no ortho sub-analysis
What about the mental health of adults?	Maeda, M.; Yabe, H.; Yasumura, S.; Abe, M.	2014	Fukushima Journal of Medical Science	review
Posttraumatic stress disorder in the US veteran population: results from the National Health and Resilience in Veterans Study	Wisco, B. E.; Marx, B. P.; Wolf, E. J.; Miller, M. W.; Southwick, S. M.; Pietrzak, R. H.	2014	Journal of Clinical Psychiatry	not target population; no subanalysis of ortho pts
Pain, distress, and anticipated recovery for older versus younger emergency department patients after motor vehicle collision	Pereira, G. F.; McLean, S. A.; Tkacik, T. J.; Swor, R. A.; Jones, J. S.; Lee, D. C.; Peak, D. A.; Domeier, R. M.; Rathlev, N. K.; Hendry, P. L.; Platts-Mills, T. F.	2014	BMC Emergency Medicine	Not population of interest; excluded patients with fracture and serious injury

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The association of injury with substance use disorder among women of reproductive age: an opportunity to address a major contributor to recurrent preventable emergency department visits?	Bernstein, J.; Bernstein, E.; Belanoff, C.; Cabral, H. J.; Babakhanlou-Chase, H.; Derrington, T. M.; Diop, H.; Douriez, C.; Evans, S. R.; Jacobs, H.; Kotelchuck, M.	2014	Academic Emergency Medicine	injury as outcome
Subjective cognitive complaints and neuropsychological test performance following military-related traumatic brain injury	French, L. M.; Lange, R. T.; Brickell, T.	2014	Journal of Rehabilitation Research & Development	No ortho trauma; TBI only
The development of a three part model of psychological resilience	de Terte, I.; Stephens, C.; Huddleston, L.	2014	Stress & Health	no ortho trauma
A longitudinal pilot study of resilience in Canadian military personnel	Sudom, K. A.; Lee, J. E.; Zamorski, M. A.	2014	Stress & Health	not target population; no ortho trauma
Trauma-exposed firefighters: relationships among posttraumatic growth, posttraumatic stress, resource availability, coping and critical incident stress debriefing experience	Sattler, D. N.; Boyd, B.; Kirsch, J.	2014	Stress & Health	not target population; no ortho trauma
Postdeployment resilience as a predictor of mental health in operation enduring freedom/operation iraqi freedom returnees	Eisen, S. V.; Schultz, M. R.; Glickman, M. E.; Vogt, D.; Martin, J. A.; Osei-Bonsu, P. E.; Drainoni, M. L.; Elwy, A. R.	2014	American Journal of Preventive Medicine	not target population; no subanalysis of ortho pts
A systematic review of fatigue in patients with traumatic brain injury: the course, predictors and consequences	Mollayeva, T.; Kendzerska, T.; Mollayeva, S.; Shapiro, C. M.; Colantonio, A.; Cassidy, J. D.	2014	Neuroscience & Biobehavioral Reviews	irrelevant systematic review*
Clinical and neuropsychological predictors of posttraumatic stress disorder	Suliman, S.; Stein, D. J.; Seedat, S.	2014	Medicine	unclear ortho trauma
Resilience to trauma in the two largest cities of Brazil: a cross-sectional study	Vilete, L.; Figueira, I.; Andreoli, S. B.; Ribeiro, W.; Quintana, M. I.; de Jesus Mari, J.; Coutinho, E. S.	2014	BMC Psychiatry	not target population; no ortho trauma
The trajectory of awareness across the first year after traumatic brain injury: the role of biopsychosocial factors	Richardson, C.; McKay, A.; Ponsford, J. L.	2014	Brain Injury	No ortho trauma; TBI only
Validation of the Short Musculoskeletal Function Assessment in patients with battlefield-related extremity vascular injuries	Scott, D. J.; Watson, J. D.; Heafner, T. A.; Clemens, M. S.; Propper, B. W.; Arthurs, Z. M.	2014	Journal of Vascular Surgery	insufficient data for target comparison
Rest and recuperation in the UK Armed Forces	Parsloe, L.; Jones, N.; Fertout, M.; Luzon, O.; Greenberg, N.	2014	Occupational Medicine (Oxford)	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Early intervention following trauma may mitigate genetic risk for PTSD in civilians: a pilot prospective emergency department study	Rothbaum, B. O.; Kearns, M. C.; Reiser, E.; Davis, J. S.; Kerley, K. A.; Rothbaum, A. O.; Mercer, K. B.; Price, M.; Houry, D.; Ressler, K. J.	2014	Journal of Clinical Psychiatry	<6 month follow-up
A few seconds to have an accident, a long time to recover: consequences for road accident victims from the ESPARR cohort 2 years after the accident	Tournier, C.; Charnay, P.; Tardy, H.; Chossegros, L.; Carnis, L.; Hours, M.	2014	Accident Analysis & Prevention	not target population; unclear ortho trauma
Coping strategies and resources as predictors of psychosocial adaptation among people with spinal cord injury	Livneh, H.; Martz, E.	2014	Rehabilitation Psychology	Target population absent,SCI
Prevalence and predictors of mental disorders in intentionally and unintentionally injured emergency center patients	van der Westhuizen, C.; Wyatt, G.; Williams, J. K.; Stein, D. J.; Sorsdahl, K.	2014	Journal of Nervous & Mental Disease	not target population; unclear trauma
Early prediction of new-onset physical disability after intensive care unit stay: a preliminary instrument	Schandl, A.; Bottai, M.; Holdar, U.; Hellgren, E.; Sackey, P.	2014	Critical Care (London, England)	not target population; no ortho trauma
Assessing functional impairment in a working military population: the Walter Reed functional impairment scale	Herrell, R. K.; Edens, E. N.; Riviere, L. A.; Thomas, J. L.; Bliese, P. D.; Hoge, C. W.	2014	Psychological Services	no ortho trauma
Relationships between pain misconceptions, disability, patients' goals and interpretation of information from hand therapists	Bekkers, S.; Becker, S. J.; Bossen, J. K.; Mudgal, C. S.; Ring, D.; Vranceanu, A. M.	2014	Journal of Hand Therapy	not target population; no subanalysis of trauma pts
Preoperative cognitive impairment and psychological distress in hospitalized elderly hip fracture patients	Daniels, A. H.; Daiello, L. A.; Lareau, C. R.; Robidoux, K. A.; Luo, W.; Ott, B.; Hayda, R. A.; Born, C. T.	2014	American Journal of Orthopedics (Chatham, Nj)	not target population; trauma pts <30 in one group
Determinants of disability after proximal interphalangeal joint sprain or dislocation	Bot, A. G.; Bekkers, S.; Herndon, J. H.; Mudgal, C. S.; Jupiter, J. B.; Ring, D.	2014	Psychosomatics	<60 target trauma patients
Social resources mediate the relations between attachment dimensions and distress following potentially traumatic events	Shallcross, S. L.; Frazier, P. A.; Anders, S. L.	2014	Journal of Counseling Psychology	not target population; no ortho trauma
Psychosocial outcomes after traumatic brain injury: life satisfaction, community integration, and distress	Williams, M. W.; Rapport, L. J.; Millis, S. R.; Hanks, R. A.	2014	Rehabilitation Psychology	No ortho trauma; TBI only
Stressful life events and type 2 diabetes	Maksimovic, J. M.; Vlajinac, H. D.; Pejovic, B. D.; Lalic, N. M.; Vujicic, I. S.; Maksimovic, M. Z.; Vasiljevic, N. D.; Sipetic, S. B.	2014	Acta Clinica Belgica	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Role of character strengths in outcome after mild complicated to severe traumatic brain injury: a positive psychology study	Hanks, R. A.; Rapport, L. J.; Waldron-Perrine, B.; Millis, S. R.	2014	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
Incidence and predictors of acute psychological distress and dissociation after motor vehicle collision: a cross-sectional study	Lewis, G. C.; Platts-Mills, T. F.; Liberzon, I.; Bair, E.; Swor, R.; Peak, D.; Jones, J.; Rathlev, N.; Lee, D.; Domeier, R.; Hendry, P.; McLean, S. A.	2014	Journal of Trauma & Dissociation	Include; PICO 1
Influence of self-efficacy and coping on quality of life and social participation after acquired brain injury: a 1-year follow-up study	Brands, I.; Kohler, S.; Stapert, S.; Wade, D.; van Heugten, C.	2014	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
Do depressive symptoms on hospital admission impact early functional outcome in elderly patients with hip fracture?	Dubljanin Raspopovic, E.; Maric, N.; Nedeljkovic, U.; Ilic, N.; Tomanovic Vujadinovic, S.; Bumbasirevic, M.	2014	Psychogeriatrics:The Official Journal of the Japanese Psychogeriatric Society	not target population; elderly hip fracture
Twelve-month post-injury outcomes for Maori and non-Maori: findings from a New Zealand cohort study	Maclennan, B.; Wyeth, E.; Davie, G.; Wilson, S.; Derrett, S.	2014	Australian & New Zealand Journal of Public Health	unclear ortho trauma
A holistic perspective of patients' lives post-Ilizarov external fixation	Baschera, D.; Kingwell, D.; Wren, M.; Zellweger, R.	2014	ANZ Journal of Surgery	not target population; pts in one group <30
Rates and predictors of suicidal ideation during the first year after traumatic brain injury	Mackelprang, J. L.; Bombardier, C. H.; Fann, J. R.; Temkin, N. R.; Barber, J. K.; Dikmen, S. S.	2014	American Journal of Public Health	No ortho trauma; TBI only
Resilience and quality of life among Wenchuan earthquake survivors: the mediating role of social support	Xu, J.; Ou, L.	2014	Public Health	not target population; no ortho trauma
Development and psychometric properties of the Resistance to Trauma Test (TRauma)	Urra Portillo, J.; Escorial Martin, S.; Martinez Arias, R.	2014	Psicothema	no ortho trauma
Life-space mobility declines associated with incident falls and fractures	Lo, A. X.; Brown, C. J.; Sawyer, P.; Kennedy, R. E.; Allman, R. M.	2014	Journal of the American Geriatrics Society	not target population; no ortho trauma subanalysis
Predicting non return to work after orthopaedic trauma: the Wallis Occupational Rehabilitation RisK (WORRK) model.[Erratum appears in PLoS One. 2015;10(3):e0119193; PMID: 25742298]	Luthi, F.; Deriaz, O.; Vuistiner, P.; Burrus, C.; Hilfiker, R.	2014	PLoS ONE [Electronic Resource]	Very low quality
Adaptation to prostheses among patients with major lower-limb amputations and its association with sociodemographic and clinical data	Nunes, M. A.; Campos-Neto, I.; Ferraz, L. C.; Lima, C. A.; Rocha, T. O.; Rocha, T. F.	2014	Sao Paulo Medical Journal = Revista Paulista de Medicina	not target population; no injury sub- analysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The impact of social support on psychological distress for U.S. Afghanistan/Iraq era veterans with PTSD and other psychiatric diagnoses	Brancu, M.; Thompson, N. L.; Beckham, J. C.; Green, K. T.; Calhoun, P. S.; Elbogen, E. B.; Robbins, A. T.; Fairbank, J. A.; V. A. Mid-Atlantic MIRECC Registry Workgroup; Wagner, H. R.	2014	Psychiatry Research	not target population; no subanalysis of ortho pts
Risk factors for continued opioid use one to two months after surgery for musculoskeletal trauma	Helmerhorst, G. T.; Vranceanu, A. M.; Vrahas, M.; Smith, M.; Ring, D.	2014	Journal of Bone & Joint Surgery - American Volume	<6 months follow up
The impact of PTSD symptoms on physical and mental health functioning in returning veterans	Asnaani, A.; Reddy, M. K.; Shea, M. T.	2014	Journal of Anxiety Disorders	not target population; no subanalysis of ortho pts
Associations between mental health disorders and body mass index among military personnel	Smith, T. J.; White, A.; Hadden, L.; Young, A. J.; Marriott, B. P.	2014	American Journal of Health Behavior	not target population; no ortho trauma
Nonsuicidal self-injury among a sample of United States military personnel and veterans enrolled in college classes	Bryan, C.; Bryan, A.	2014	Journal of Clinical Psychology	No ortho trauma
Acute symptoms of posttraumatic stress and dissociative experiences among female israeli civilians exposed to war: the roles of intrapersonal and interpersonal sources of resilience	Besser, A.; Weinberg, M.; Zeigler-Hill, V.; Neria, Y.	2014	Journal of Clinical Psychology	not target population; no ortho trauma
Validation of lay-administered mental health assessments in a large Army National Guard cohort	Prescott, M. R.; Tamburrino, M.; Calabrese, J. R.; Liberzon, I.; Slembarski, R.; Shirley, E.; Fine, T.; Goto, T.; Wilson, K.; Ganocy, S.; Chan, P.; Derus, A.; Serrano, M. B.; Sizemore, J.; Kauffman, J.; Galea, S.	2014	International Journal of Methods in Psychiatric Research	not target population; no subanalysis of ortho pts
Identifying depression severity risk factors in persons with traumatic spinal cord injury	Williams, R. T.; Wilson, C. S.; Heinemann, A. W.; Lazowski, L. E.; Fann, J. R.; Bombardier, C. H.; Prisms Investigators	2014	Rehabilitation Psychology	Target population absent,SCI
Examining the factor structure of the Connor- Davidson Resilience Scale (CD-RISC) in a post- 9/11 U.S. military veteran sample	Green, K. T.; Hayward, L. C.; Williams, A. M.; Dennis, P. A.; Bryan, B. C.; Taber, K. H.; Mid-Atlantic Mental Illness Research, Education; Clinical Center, Workgroup; Davidson, J. R.; Beckham, J. C.; Calhoun, P. S.	2014	Assessment	no ortho trauma
Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk	Eraly, S. A.; Nievergelt, C. M.; Maihofer, A. X.; Barkauskas, D. A.; Biswas, N.; Agorastos, A.; O'Connor, D. T.; Baker, D. G.; Marine Resiliency Study, Team	2014	JAMA Psychiatry	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Health-related quality of life 3 years after moderate to severe traumatic brain injury: a prospective cohort study	Grauwmeijer, E.; Heijenbrok-Kal, M. H.; Ribbers, G. M.	2014	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
Development and predictors of psychological adjustment during the course of community-based rehabilitation of traumatic brain injury: A preliminary study	Schonberger, M.; Ponsford, J.; McKay, A.; Wong, D.; Spitz, G.; Harrington, H.; Mealings, M.	2014	Neuropsychological Rehabilitation	No ortho trauma; TBI only
Relationship between stressfulness of claiming for injury compensation and long-term recovery: a prospective cohort study	Grant, G. M.; O'Donnell, M. L.; Spittal, M. J.; Creamer, M.; Studdert, D. M.	2014	JAMA Psychiatry	not target population; unclear trauma
Impact of combat deployment on psychological and relationship health: a longitudinal study	Cigrang, J. A.; Talcott, G. W.; Tatum, J.; Baker, M.; Cassidy, D.; Sonnek, S.; Snyder, D. K.; Balderrama-Durbin, C.; Heyman, R. E.; Smith Slep, A. M.	2014	Journal of Traumatic Stress	not target population; no subanalysis of ortho pts
Eating disorders, trauma, PTSD, and psychosocial resources	Tagay, S.; Schlottbohm, E.; Reyes-Rodriguez, M. L.; Repic, N.; Senf, W.	2014	Brunner-Mazel Eating Disorders Monograph Series	not target population; no ortho trauma
The contribution of posttraumatic stress symptoms to chronic pain adjustment	Ruiz-Parraga, G. T.; Lopez-Martinez, A. E.	2014	Health Psychology	not target population; no ortho trauma
Determinants of disability after fingertip injuries	Bot, A. G. J.; Bossen, J. K. J.; Mudgal, C. S.; Jupiter, J. B.; Ring, D.	2014	Psychosomatics	<6 month follow-up
Psychological and social consequences after reconstruction of upper extremity trauma: methods of detection and management	Galanakos, S. P.; Bot, A. G.; Zoubos, A. B.; Soucacos, P. N.	2014	Journal of Reconstructive Microsurgery	systematic review
Association between traumatic brain injury and risk of posttraumatic stress disorder in active-duty Marines	Yurgil, K. A.; Barkauskas, D. A.; Vasterling, J. J.; Nievergelt, C. M.; Larson, G. E.; Schork, N. J.; Litz, B. T.; Nash, W. P.; Baker, D. G.; Marine Resiliency Study, Team	2014	JAMA Psychiatry	No ortho trauma; TBI only
Physiological emotional under-arousal in individuals with mild head injury	Baker, J. M.; Good, D. E.	2014	Brain Injury	No ortho trauma; no ortho injury data
Trauma exposure predicts alcohol, nicotine, and drug problems beyond the contribution of PTSD and depression in patients with cardiovascular disease: data from the Heart and Soul Study	Waldrop, A. E.; Cohen, B. E.	2014	American Journal on Addictions	not target population; no ortho trauma subanalysis
Evaluating a spinal cord injury-specific model of depression and quality of life	Hartoonian, N.; Hoffman, J. M.; Kalpakjian, C. Z.; Taylor, H. B.; Krause, J. K.; Bombardier, C. H.	2014	Archives of Physical Medicine & Rehabilitation	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
A systematic review of prognostic factors for return to work following work-related traumatic hand injury	Shi, Q.; Sinden, K.; MacDermid, J. C.; Walton, D.; Grewal, R.	2014	Journal of Hand Therapy	systematic review
A qualitative investigation of the decision to return to sport after anterior cruciate ligament reconstruction: to play or not to play	Tjong, V. K.; Murnaghan, M. L.; Nyhof-Young, J. M.; Ogilvie-Harris, D. J.	2014	American Journal of Sports Medicine	not target population; no ortho trauma: ACL tear
A pilot study of an enhanced mental health assessment during routine and discharge medicals in the British Armed Forces	Aguirre, M.; Greenberg, N.; Sharpley, J.; Simpson, R.; Wall, C.	2014	Journal of the Royal Army Medical Corps	no ortho trauma
Alcohol misuse and psychological resilience among U.S. Iraq and Afghanistan era veterans	Green, K. T.; Beckham, J. C.; Youssef, N.; Elbogen, E. B.	2014	Addictive Behaviors	not target population; no subanalysis of ortho pts
Predictors of depressed mood 12 months after injury. Contribution of self-efficacy and social support	Pjanic, I.; Messerli-Burgy, N.; Bachmann, M. S.; Siegenthaler, F.; Hoffmann-Richter, U.; Znoj, H.	2014	Disability & Rehabilitation	no target population; no ortho subset
Preliminary examination of the impact of traumatic brain injury and posttraumatic stress disorder on self-regulated learning and academic achievement among military service members enrolled in postsecondary education	Ness, B. M.; Vroman, K.	2014	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Perceived social support buffers the impact of PTSD symptoms on suicidal behavior: implications into suicide resilience research	Panagioti, M.; Gooding, P. A.; Taylor, P. J.; Tarrier, N.	2014	Comprehensive Psychiatry	not target population; no ortho trauma subanalysis
Changes in self-reported pre- to postinjury coping styles in the first 3 years after traumatic brain injury and the effects on psychosocial and emotional functioning and quality of life	Gregorio, G. W.; Gould, K. R.; Spitz, G.; van Heugten, C. M.; Ponsford, J. L.	2014	Journal of Head Trauma Rehabilitation	Unclear ortho trauma
Predicting outcome after hip fracture: using a frailty index to integrate comprehensive geriatric assessment results	Krishnan, M.; Beck, S.; Havelock, W.; Eeles, E.; Hubbard, R. E.; Johansen, A.	2014	Age & Ageing	not target population; elderly hip fracture
Loneliness among older veterans in the United States: results from the National Health and Resilience in Veterans Study	Kuwert, P.; Knaevelsrud, C.; Pietrzak, R. H.	2014	American Journal of Geriatric Psychiatry	not target population; no subanalysis of ortho pts
A prospective study of factors affecting recovery from musculoskeletal injuries	Booth-Kewley, S.; Schmied, E. A.; Highfill-McRoy, R. M.; Sander, T. C.; Blivin, S. J.; Garland, C. F.	2014	Journal of Occupational Rehabilitation	not target population; no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Factors associated with self-efficacy for managing recovery in the trauma intensive care population: a prospective cohort study	Connolly, F. R.; Aitken, L. M.; Tower, M.; Macfarlane, B.	2014	Injury	not target population; no ortho trauma subanalysis
PTSD in paramedics: resilience and sense of coherence	Streb, M.; Haller, P.; Michael, T.	2014	Behavioural & Cognitive Psychotherapy	not target population; no ortho trauma
Trajectories of PTSD risk and resilience in World Trade Center responders: an 8-year prospective cohort study	Pietrzak, R. H.; Feder, A.; Singh, R.; Schechter, C. B.; Bromet, E. J.; Katz, C. L.; Reissman, D. B.; Ozbay, F.; Sharma, V.; Crane, M.; Harrison, D.; Herbert, R.; Levin, S. M.; Luft, B. J.; Moline, J. M.; Stellman, J. M.; Udasin, I. G.; Landrigan, P. J.; Southwick, S. M.	2014	Psychological Medicine	not population of interest;
Sense of coherence: effect on adherence and response to resistance training in older people with hip fracture history	Portegijs, E.; Read, S.; Pakkala, I.; Kallinen, M.; Heinonen, A.; Rantanen, T.; Alen, M.; Kiviranta, I.; Sihvonen, S.; Sipila, S.	2014	Journal of Aging & Physical Activity	not target population; elderly hip fracture
Preinjury coping, emotional functioning, and quality of life following uncomplicated and complicated mild traumatic brain injury	Maestas, K. L.; Sander, A. M.; Clark, A. N.; van Veldhoven, L. M.; Struchen, M. A.; Sherer, M.; Hannay, H. J.	2014	Journal of Head Trauma Rehabilitation	No ortho trauma; no ortho injury data; TBI only
Changes in pain catastrophizing following physical therapy for musculoskeletal injury: the influence of depressive and post-traumatic stress symptoms	Slepian, P.; Bernier, E.; Scott, W.; Niederstrasser, N. G.; Wideman, T.; Sullivan, M.	2014	Journal of Occupational Rehabilitation	not target population; no ortho trauma
Quality of life in severely injured patients depends on psychosocial factors rather than on severity or type of injury	van Delft-Schreurs, C. C.; van Bergen, J. J.; de Jongh, M. A.; van de Sande, P.; Verhofstad, M. H.; de Vries, J.	2014	Injury	not target population; no subanalysis of target pts
The effect of environmental barriers on community integration for individuals with moderate to severe traumatic brain injury	Fleming, J.; Nalder, E.; Alves-Stein, S.; Cornwell, P.	2014	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Anxiety sensitivity and alexithymia as mediators of postconcussion syndrome following mild traumatic brain injury	Wood, R. L.; O'Hagan, G.; Williams, C.; McCabe, M.; Chadwick, N.	2014	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Associations between lifetime traumatic events and subsequent chronic physical conditions: a crossnational, cross-sectional study	Scott, K. M.; Koenen, K. C.; Aguilar-Gaxiola, S.; Alonso, J.; Angermeyer, M. C.; Benjet, C.; Bruffaerts, R.; Caldas-de-Almeida, J. M.; de Girolamo, G.; Florescu, S.; Iwata, N.; Levinson, D.; Lim, C. C.; Murphy, S.; Ormel, J.; Posada-Villa, J.; Kessler, R. C.	2013	PLoS ONE [Electronic Resource]	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Faith to move mountains: religious coping, spirituality, and interpersonal trauma recovery	Bryant-Davis, T.; Wong, E. C.	2013	American Psychologist	irrelevant systematic review
Clinical reappraisal of the Composite International Diagnostic Interview Screening Scales (CIDI-SC) in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)	Kessler, R. C.; Santiago, P. N.; Colpe, L. J.; Dempsey, C. L.; First, M. B.; Heeringa, S. G.; Stein, M. B.; Fullerton, C. S.; Gruber, M. J.; Naifeh, J. A.; Nock, M. K.; Sampson, N. A.; Schoenbaum, M.; Zaslavsky, A. M.; Ursano, R. J.	2013	International Journal of Methods in Psychiatric Research	no ortho trauma
Prevalence, risk, and correlates of posttraumatic stress disorder across ethnic and racial minority groups in the United States	Alegria, M.; Fortuna, L. R.; Lin, J. Y.; Norris, F. H.; Gao, S.; Takeuchi, D. T.; Jackson, J. S.; Shrout, P. E.; Valentine, A.	2013	Medical Care	not target population; no ortho trauma subanalysis
The psychosocial and affective burden of posttraumatic neuropathy following injuries to the trigeminal nerve	Smith, J. G.; Elias, L. A.; Yilmaz, Z.; Barker, S.; Shah, K.; Shah, S.; Renton, T.	2013	Journal of Orofacial Pain	not target population; no ortho trauma- trigeminal nerve injury
Gene-environment interaction of ApoE genotype and combat exposure on PTSD	Lyons, M. J.; Genderson, M.; Grant, M. D.; Logue, M.; Zink, T.; McKenzie, R.; Franz, C. E.; Panizzon, M.; Lohr, J. B.; Jerskey, B.; Kremen, W. S.	2013	American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: the Official Publication of the International Society of Psychiatric Genetics	not target population; no ortho trauma subanalysis
Cumulative incidence of functional decline after minor injuries in previously independent older Canadian individuals in the emergency department	Sirois, M. J.; Emond, M.; Ouellet, M. C.; Perry, J.; Daoust, R.; Morin, J.; Dionne, C.; Camden, S.; Moore, L.; Allain-Boule, N.	2013	Journal of the American Geriatrics Society	not target population; no ortho trauma subanalysis
A cross-sectional community study of post- traumatic stress disorder and social support in Lao People's Democratic Republic	Southivong, B.; Ichikawa, M.; Nakahara, S.; Southivong, C.	2013	Bulletin of the World Health Organization	not target population; no ortho trauma subanalysis
Chinese My Trauma Recovery, a Web-based intervention for traumatized persons in two parallel samples: randomized controlled trial	Wang, Z.; Wang, J.; Maercker, A.	2013	Journal of Medical Internet Research	not target population; no injuries
The roles of spirituality in the relationship between traumatic life events, mental health, and drug use among African American women from one southern state	Staton-Tindall, M.; Duvall, J.; Stevens-Watkins, D.; Oser, C. B.	2013	Substance Use & Misuse	not target population; no ortho trauma
Gender differences in the risk and protective factors associated with PTSD: a prospective study of National Guard troops deployed to Iraq	Kline, A.; Ciccone, D. S.; Weiner, M.; Interian, A.; St Hill, L.; Falca-Dodson, M.; Black, C. M.; Losonczy, M.	2013	Psychiatry	not target population; no ortho trauma
Educating medical professionals about suicide prevention among military veterans	Ganz, D.; Sher, L.	2013	International Journal of Adolescent Medicine & Health	review

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
An evaluation of the psychological impact of operational rest and recuperation in United Kingdom Armed Forces personnel: a post-intervention survey	Jones, N.; Fertout, M.; Parsloe, L.; Greenberg, N.	2013	Journal of the Royal Society of Medicine	not target population; no ortho trauma subanalysis
Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery	Ardern, C. L.; Taylor, N. F.; Feller, J. A.; Whitehead, T. S.; Webster, K. E.	2013	American Journal of Sports Medicine	not target population; no co-occuring ortho trauma; ACL injury
Late-life depressive symptoms: prediction models of change	Garcia-Pena, C.; Wagner, F. A.; Sanchez-Garcia, S.; Espinel-Bermudez, C.; Juarez-Cedillo, T.; Perez-Zepeda, M.; Arango-Lopera, V.; Franco-Marina, F.; Ramirez- Aldana, R.; Gallo, J. J.	2013	Journal of Affective Disorders	not target population; no ortho trauma
Influence of trauma history on panic and posttraumatic stress disorder in returning veterans.[Erratum appears in Psychol Serv. 2013 Nov;10(4):441]	Barrera, T. L.; Graham, D. P.; Dunn, N. J.; Teng, E. J.	2013	Psychological Services	not target population; no subanalysis of ortho pts
Premorbid personality characteristics and attachment style moderate the effect of injury severity on occupational outcome in traumatic brain injury: another aspect of reserve	Sela-Kaufman, M.; Rassovsky, Y.; Agranov, E.; Levi, Y.; Vakil, E.	2013	Journal of Clinical & Experimental Neuropsychology: Official Journal of the International Neuropsychological Society	No ortho trauma; TBI only
Predictors of psychiatric disorders in combat veterans	Booth-Kewley, S.; Schmied, E. A.; Highfill-McRoy, R. M.; Larson, G. E.; Garland, C. F.; Ziajko, L. A.	2013	BMC Psychiatry	No ortho trauma; TBI only
Exploration of the influence of childhood trauma, combat exposure, and the resilience construct on depression and suicidal ideation among U.S. Iraq/Afghanistan era military personnel and veterans	Youssef, N. A.; Green, K. T.; Dedert, E. A.; Hertzberg, J. S.; Calhoun, P. S.; Dennis, M. F.; Mid-Atlantic Mental Illness Research, Education; Clinical Center, Workgroup; Beckham, J. C.	2013	Archives of Suicide Research	not target population; no subanalysis of ortho pts
Recovery from injury: the UK burden of injury multicentre longitudinal study	Kendrick, D.; Vinogradova, Y.; Coupland, C.; Mulvaney, C. A.; Christie, N.; Lyons, R. A.; Towner, E. L.; U. K. Burden of Injuries Study Group	2013	Injury Prevention	not target population; no fracture sub- analysis
Risk factors for headache in the UK military: cross- sectional and longitudinal analyses	Rona, R. J.; Jones, M.; Goodwin, L.; Hull, L.; Wessely, S.	2013	Headache	No ortho trauma
Co-occurrence of major depressive episode and posttraumatic stress disorder among survivors of war: how is it different from either condition alone?	Morina, N.; Ajdukovic, D.; Bogic, M.; Franciskovic, T.; Kucukalic, A.; Lecic-Tosevski, D.; Morina, L.; Popovski, M.; Priebe, S.	2013	Journal of Clinical Psychiatry	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Relationship between posttraumatic stress disorder and type 2 diabetes in a population-based cross-sectional study with 2970 participants	Lukaschek, K.; Baumert, J.; Kruse, J.; Emeny, R. T.; Lacruz, M. E.; Huth, C.; Thorand, B.; Holle, R.; Rathmann, W.; Meisinger, C.; Ladwig, K. H.; Kora Investigators	2013	Journal of Psychosomatic Research	not target population; no ortho trauma
Influence of combat blast-related mild traumatic brain injury acute symptoms on mental health and service discharge outcomes	Eskridge, S. L.; Macera, C. A.; Galarneau, M. R.; Holbrook, T. L.; Woodruff, S. I.; MacGregor, A. J.; Morton, D. J.; Shaffer, R. A.	2013	Journal of Neurotrauma	No ortho trauma; TBI only
Characteristics and functional outcomes of brain injury caused by physical assault in Canada: a population-based study from an inpatient rehabilitation setting	Kim, H.; Bayley, M.; Dawson, D.; Mollayeva, T.; Colantonio, A.	2013	Disability & Rehabilitation	No ortho trauma ;TBI outcome only
Disability after injury: the cumulative burden of physical and mental health	O'Donnell, M. L.; Varker, T.; Holmes, A. C.; Ellen, S.; Wade, D.; Creamer, M.; Silove, D.; McFarlane, A.; Bryant, R. A.; Forbes, D.	2013	Journal of Clinical Psychiatry	not best available evidence; very low quality
Psychological resilience in older U.S. veterans: results from the national health and resilience in veterans study	Pietrzak, R. H.; Cook, J. M.	2013	Depression & Anxiety	not target population; no subanalysis of ortho pts
Risk factors for post-injury mental health problems	Sareen, J.; Erickson, J.; Medved, M. I.; Asmundson, G. J.; Enns, M. W.; Stein, M.; Leslie, W.; Doupe, M.; Logsetty, S.	2013	Depression & Anxiety	systematic review
Design of "neuropsychological and mental health outcomes of operation Iraqi freedom: a longitudinal cohort study"	Aslan, M.; Concato, J.; Peduzzi, P. N.; Proctor, S. P.; Schnurr, P. P.; Marx, B. P.; McFall, M.; Gleason, T.; Huang, G. D.; Vasterling, J. J.	2013	Journal of Investigative Medicine	not target population; no subanalysis of ortho pts
Risk factors for mortality after spinal cord injury in the USA	Cao, Y.; Krause, J. S.; DiPiro, N.	2013	Spinal Cord	not target population; SCI
Life in and after the Armed Forces: social networks and mental health in the UK military	Hatch, S. L.; Harvey, S. B.; Dandeker, C.; Burdett, H.; Greenberg, N.; Fear, N. T.; Wessely, S.	2013	Sociology of Health & Illness	No ortho trauma ; No injuries
Prevalence and risk factors of post-traumatic stress disorder among adult survivors six months after the Wenchuan earthquake	Zhou, X.; Kang, L.; Sun, X.; Song, H.; Mao, W.; Huang, X.; Zhang, Y.; Li, J.	2013	Comprehensive Psychiatry	not target population; no subanalysis of ortho pts
Traumatic injuries in developing countries: report from a nationwide cross-sectional survey of Sierra Leone	Stewart, K. A.; Groen, R. S.; Kamara, T. B.; Farahzad, M. M.; Samai, M.; Cassidy, L. D.; Kushner, A. L.; Wren, S. M.	2013	JAMA Surgery	Doesn't address question of interest;
Post-traumatic stress symptoms after elective lumbar arthrodesis are associated with reduced clinical benefit	Hart, R.; Perry, E.; Hiratzka, S.; Kane, M.; Deisseroth, K.	2013	Spine	not target population; no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The relationship between coping styles and affective/behavioural symptoms among individuals with an acquired brain injury	Velikonja, D.; Warriner, E. M.; Coulson, S.; Brum, C.	2013	Brain Injury	No ortho trauma; TBI only
Unintentional injury, psychological distress and depressive symptoms: is there an association for rural Australians?	Fragar, L.; Inder, K. J.; Kelly, B. J.; Coleman, C.; Perkins, D.; Lewin, T. J.	2013	Journal of Rural Health	not target population; injury as outcome
Does informal support influence social participation of fractured elderly people?	Ekstrom, H.; Dahlin Ivanoff, S.; Elmstahl, S.	2013	Archives of Gerontology & Geriatrics	not target population; elderly hip fracture
Exposure to crises and resiliency of health care workers in Singapore	Chan, A. O.; Chan, Y. H.; Kee, J. P.	2013	Occupational Medicine (Oxford)	not target population; no ortho trauma subanalysis
Fear of falling in patients with hip fractures: prevalence and related psychological factors	Visschedijk, J.; van Balen, R.; Hertogh, C.; Achterberg, W.	2013	Journal of the American Medical Directors Association	not target population; elderly hip fracture
Insomnia and symptoms of post-traumatic stress disorder among women veterans	Hughes, J.; Jouldjian, S.; Washington, D. L.; Alessi, C. A.; Martin, J. L.	2013	Behavioral Sleep Medicine	No ortho trauma
Trauma and conditional risk of posttraumatic stress disorder in two American Indian reservation communities	Beals, J.; Belcourt-Dittloff, A.; Garroutte, E. M.; Croy, C.; Jervis, L. L.; Whitesell, N. R.; Mitchell, C. M.; Manson, S. M.; Ai-Superpfp Team	2013	Social Psychiatry & Psychiatric Epidemiology	not target population; no ortho trauma subanalysis
Psychosocial factors influencing the recovery of athletes with anterior cruciate ligament injury: a systematic review	te Wierike, S. C.; van der Sluis, A.; van den Akker- Scheek, I.; Elferink-Gemser, M. T.; Visscher, C.	2013	Scandinavian Journal of Medicine & Science in Sports	systematic review; non-trauma
Chronic postconcussion symptoms and functional outcomes in OEF/OIF veterans with self-report of blast exposure	Verfaellie, M.; Lafleche, G.; Spiro, A., 3rd; Tun, C.; Bousquet, K.	2013	Journal of the International Neuropsychological Society	No ortho trauma; TBI with LOC
Sexual dysfunction among male veterans returning from Iraq and Afghanistan: prevalence and correlates	Hosain, G. M.; Latini, D. M.; Kauth, M.; Goltz, H. H.; Helmer, D. A.	2013	Journal of Sexual Medicine	No ortho trauma
Occupational competence and its relationship to emotional health in injured workers in return to work programs: a Malaysian study	Murad, M. S.; O'Brien, L.; Farnworth, L.; Chien, C. W.	2013	Scandinavian Journal of Occupational Therapy	cross-sectional; concurrent measurements
Climbing towards recovery: investigating physically injured combat veterans' psychosocial response to scaling Mt. Kilimanjaro	Burke, S. M.; Utley, A.	2013	Disability & Rehabilitation	<60 total pts
Prevalence and predictors of posttraumatic growth in accidentally injured patients	Wang, Y.; Wang, H.; Wang, J.; Wu, J.; Liu, X.	2013	Journal of Clinical Psychology in Medical Settings	<6 month follow-up

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
"If something happened, I will leave it, let it go and move on": resiliency and victimized homeless women's attitudes toward mental health counseling	Huey, L.; Fthenos, G.; Hryniewicz, D.	2013	Journal of Interpersonal Violence	not target population; no ortho trauma subanalysis
The mangled foot and ankle: results from a 2-year prospective study	Ellington, J. K.; Bosse, M. J.; Castillo, R. C.; MacKenzie, E. J.; Leap Study Group	2013	Journal of Orthopaedic Trauma	insufficient data for target comparison
Alexithymia and avoidance coping following traumatic brain injury	Wood, R. L.; Doughty, C.	2013	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Personality traits as moderators of the associations between deployment experiences and PTSD symptoms in OEF/OIF service members	Caska, C. M.; Renshaw, K. D.	2013	Anxiety, Stress, & Coping	No ortho trauma
Relationship of screen-based symptoms for mild traumatic brain injury and mental health problems in Iraq and Afghanistan veterans: Distinct or overlapping symptoms?	Maguen, S.; Lau, K. M.; Madden, E.; Seal, K.	2012	Journal of Rehabilitation Research & Development	No ortho trauma, TBI only
The influence of psychosocial factors on recovery following acute whiplash trauma	Carstensen, T. B.	2012	Danish Medical Journal	systematic review; non-trauma
Mental health of Canadian Forces members while on deployment to Afghanistan	Garber, B. G.; Zamorski, M. A.; Jetly, R.	2012	Canadian Journal of Psychiatry - Revue Canadienne de Psychiatrie	No ortho trauma; veteran mental health report
The effect of post traumatic stress disorders on rehabilitation among combat-wounded veterans	Siddharthan, K.	2012	Studies in Health Technology & Informatics	not target population; TBI
Deployment cycle stressors and post-traumatic stress symptoms in Army National Guard women: the mediating effect of resilience	Wooten, N. R.	2012	Social Work in Health Care	No ortho trauma
Impact of impairment and secondary health conditions on health preference among Canadians with chronic spinal cord injury	Craven, C.; Hitzig, S. L.; Mittmann, N.	2012	Journal of Spinal Cord Medicine	not target population; no subanalysis of target pts
Factors associated with the occurrence of sentinel events during transition from hospital to home for individuals with traumatic brain injury	Nalder, E.; Fleming, J.; Cornwell, P.; Foster, M.; Haines, T.	2012	Journal of Rehabilitation Medicine	No ortho trauma; TBI only
Health and wellness characteristics of persons with traumatic brain injury	Braden, C. A.; Cuthbert, J. P.; Brenner, L.; Hawley, L.; Morey, C.; Newman, J.; Staniszewski, K.; Harrison-Felix, C.	2012	Brain Injury	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Affective modulation of the startle reflex following traumatic brain injury	Williams, C.; Wood, R. L.	2012	Journal of Clinical & Experimental Neuropsychology: Official Journal of the International Neuropsychological Society	No ortho trauma; TBI only
Measurement of functional outcomes in the Major Extremity Trauma Research Consortium (METRC)	Castillo, R. C.; Mackenzie, E. J.; Bosse, M. J.; Metrc Investigators	2012	Journal of the American Academy of Orthopaedic Surgeons	review
Use of neighborhood characteristics to improve prediction of psychosocial outcomes: a traumatic brain injury model systems investigation	Corrigan, J. D.; Bogner, J.; Pretz, C.; Mellick, D.; Kreider, S.; Whiteneck, G. G.; Harrison-Felix, C.; Dijkers, M. P.; Heinemann, A. W.	2012	Archives of Physical Medicine & Rehabilitation	No ortho trauma
PTSD symptoms in a cohort of National Guard soldiers deployed to Iraq: evidence for nonspecific and specific components	Erbes, C. R.; Polusny, M. A.; Arbisi, P. A.; Koffel, E.	2012	Journal of Affective Disorders	No ortho trauma ; components of PTSD
Health status after traumatic injury	Aitken, L. M.; Chaboyer, W.; Kendall, E.; Burmeister, E.	2012	The Journal of Trauma and Acute Care Surgery	not target population; no extremity sub- analysis
Prevalence, incidence and determinants of PTSD and other mental disorders: design and methods of the PID-PTSD+3 study	Wittchen, H. U.; Schonfeld, S.; Thurau, C.; Trautmann, S.; Galle, M.; Mark, K.; Hauffa, R.; Zimmermann, P.; Schaefer, J.; Steudte, S.; Siegert, J.; Hofler, M.; Kirschbaum, C.	2012	International Journal of Methods in Psychiatric Research	No ortho trauma; PTSD comprehensive study
Predictors of risk and resilience for posttraumatic stress disorder among ground combat Marines: methods of the Marine Resiliency Study	Baker, D. G.; Nash, W. P.; Litz, B. T.; Geyer, M. A.; Risbrough, V. B.; Nievergelt, C. M.; O'Connor, D. T.; Larson, G. E.; Schork, N. J.; Vasterling, J. J.; Hammer, P. S.; Webb-Murphy, J. A.; M. R. S. Team	2012	Preventing Chronic Disease	not target population; no subanalysis of ortho pts
Neighborhood social cohesion and posttraumatic stress disorder in a community-based sample: findings from the Detroit Neighborhood Health Study	Johns, L. E.; Aiello, A. E.; Cheng, C.; Galea, S.; Koenen, K. C.; Uddin, M.	2012	Social Psychiatry & Psychiatric Epidemiology	not target population; no ortho trauma
Pain and satisfaction in hospitalized trauma patients: the importance of self-efficacy and psychological distress	Archer, K. R.; Castillo, R. C.; Wegener, S. T.; Abraham, C. M.; Obremskey, W. T.	2012	The Journal of Trauma and Acute Care Surgery	insufficient data for 6mo FU
Mental health in violent crime victims: Does sexual orientation matter?	Cramer, R. J.; McNiel, D. E.; Holley, S. R.; Shumway, M.; Boccellari, A.	2012	Law & Human Behavior	No ortho trauma ; LGBTQ victims violence review
Predictors of posttraumatic stress disorder and other psychological symptoms in trauma-exposed firefighters	Meyer, E. C.; Zimering, R.; Daly, E.; Knight, J.; Kamholz, B. W.; Gulliver, S. B.	2012	Psychological Services	No ortho trauma ; PTSD post trauma factors

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Physical effects of trauma and the psychological consequences of preexisting diseases account for a significant portion of the health-related quality of life patterns of former trauma patients	Orwelius, L.; Bergkvist, M.; Nordlund, A.; Simonsson, E.; Nordlund, P.; Backman, C.; Sjoberg, F.	2012	The Journal of Trauma and Acute Care Surgery	insufficient data for target factors
Engagement in psychosocial treatment: its relationship to outcome and care pathway progress for women in medium-secure settings	Long, C.; Dolley, O.; Hollin, C.	2012	Criminal Behaviour & Mental Health	no target comparison; tx study
Leadership, cohesion, morale, and the mental health of UK Armed Forces in Afghanistan	Jones, N.; Seddon, R.; Fear, N. T.; McAllister, P.; Wessely, S.; Greenberg, N.	2012	Psychiatry	No ortho trauma ; survey review
Effect of fracture type on health-related quality of life among older women in Taiwan	Chiu, M. H.; Hwang, H. F.; Lee, H. D.; Chien, D. K.; Chen, C. Y.; Lin, M. R.	2012	Archives of Physical Medicine & Rehabilitation	not target population; elderly fall fractures
The association of social functioning, social relationships and the receipt of compensation with time to return to work following unintentional injuries to Victorian workers	Clay, F. J.; Fitzharris, M.; Kerr, E.; McClure, R. J.; Watson, W. L.	2012	Journal of Occupational Rehabilitation	not target population; no subanalysis of target pts
Psychosocial issues in spinal cord injury: a review	Post, M. W.; van Leeuwen, C. M.	2012	Spinal Cord	irrelevant systematic review*
Prognostic factors for self-rated function and perceived health in patient living at home three months after a hip fracture	Sylliaas, H.; Thingstad, P.; Wyller, T. B.; Helbostad, J.; Sletvold, O.; Bergland, A.	2012	Disability & Rehabilitation	not target population; elderly hip fxs
Potentially modifiable pre-, peri-, and postdeployment characteristics associated with deployment-related posttraumatic stress disorder among ohio army national guard soldiers	Goldmann, E.; Calabrese, J. R.; Prescott, M. R.; Tamburrino, M.; Liberzon, I.; Slembarski, R.; Shirley, E.; Fine, T.; Goto, T.; Wilson, K.; Ganocy, S.; Chan, P.; Serrano, M. B.; Sizemore, J.; Galea, S.	2012	Annals of Epidemiology	not target population; no ortho trauma
Exploring the effects of pain and stress on wound healing	Woo, K. Y.	2012	Advances in Skin & Wound Care	review
The effect of acculturation and immigration on the victimization and psychological distress link in a national sample of Latino women	Cuevas, C. A.; Sabina, C.; Bell, K. A.	2012	Journal of Interpersonal Violence	not target population; no ortho trauma
Does attribution of blame influence psychological outcomes in facial trauma victims?	Islam, S.; Cole, J. L.; Walton, G. M.; Dinan, T. G.; Hoffman, G. R.	2012	Journal of Oral & Maxillofacial Surgery	not target population; no ortho trauma- facial trauma
Gender differences in traumatic experiences and mental health in active duty soldiers redeployed from Iraq and Afghanistan	Maguen, S.; Luxton, D. D.; Skopp, N. A.; Madden, E.	2012	Journal of Psychiatric Research	Target population absent

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Prevalence, correlates, and clinical features of delayed-onset posttraumatic stress disorder in a nationally representative military sample	Fikretoglu, D.; Liu, A.	2012	Social Psychiatry & Psychiatric Epidemiology	No ortho trauma ; veteran PTSD study survey
Violent behaviour in U.K. military personnel returning home after deployment	Macmanus, D.; Dean, K.; Al Bakir, M.; Iversen, A. C.; Hull, L.; Fahy, T.; Wessely, S.; Fear, N. T.	2012	Psychological Medicine	No ortho trauma
PTSD'S mediation of the relationships between trauma, depression, substance abuse, mental health, and physical health in individuals with severe mental illness: evaluating a comprehensive model	Subica, A. M.; Claypoole, K. H.; Wylie, A. M.	2012	Schizophrenia Research	No ortho trauma
Project VALOR: design and methods of a longitudinal registry of post-traumatic stress disorder (PTSD) in combat-exposed veterans in the Afghanistan and Iraqi military theaters of operations	Rosen, R. C.; Marx, B. P.; Maserejian, N. N.; Holowka, D. W.; Gates, M. A.; Sleeper, L. A.; Vasterling, J. J.; Kang, H. K.; Keane, T. M.	2012	International Journal of Methods in Psychiatric Research	No ortho trauma
Mental health of Special Forces personnel deployed in battle	Hanwella, R.; de Silva, V.	2012	Social Psychiatry & Psychiatric Epidemiology	No ortho trauma
The firefighter coping self-efficacy scale: measure development and validation	Lambert, J. E.; Benight, C. C.; Harrison, E.; Cieslak, R.	2012	Anxiety, Stress, & Coping	no ortho trauma
Early maladaptive schema factors, chronic pain and depressiveness: a study with 271 chronic pain patients and 331 control participants	Saariaho, T.; Saariaho, A.; Karila, I.; Joukamaa, M.	2012	Clinical Psychology & Psychotherapy	not target population; no ortho trauma
Effect of depression on recovery from PTSD	Tural, U.; Onder, E.; Aker, T.	2012	Community Mental Health Journal	No targeted population; no ortho trauma
Predictors of rehabilitation intention and behavior following anterior cruciate ligament surgery: an application of the Theory of Planned Behavior	Niven, A.; Nevill, A.; Sayers, F.; Cullen, M.	2012	Scandinavian Journal of Medicine & Science in Sports	No ortho trauma :ACL injuries only
Trauma postvention response in Manitoba: coping with trauma and disasters	Favelle, G. K.	2011	International Journal of Emergency Mental Health	review
Development of the Brief Assessment of Prospective Memory (BAPM) for use with traumatic brain injury populations	Man, D. W.; Fleming, J.; Hohaus, L.; Shum, D.	2011	Neuropsychological Rehabilitation	No ortho trauma; TBI only
Self-efficacy, physical activity and health-related quality of life in middle-aged meniscectomy patients and controls	Ericsson, Y. B.; Ringsberg, K.; Dahlberg, L. E.	2011	Scandinavian Journal of Medicine & Science in Sports	No ortho trauma; no targeted population

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
European Commission project: European Guideline for Target Group-Oriented Psychosocial Aftercare-Implementation	Vymetal, S.; Deistler, A.; Bering, R.; Schedlich, C.; Rooze, M.; Orengo, F.; Zurek, G.; Krtickova, M.	2011	Prehospital & Disaster Medicine	No ortho trauma : guideline
Psychiatric lessons learned in Kandahar	Jetly, R.	2011	Canadian Journal of Surgery	review
Factors identifying risk for psychological distress in the civilian trauma population	Chiu, K. B.; deRoon-Cassini, T. A.; Brasel, K. J.	2011	Academic Emergency Medicine	not target population; unclear injury type
Posttraumatic growth among operation enduring freedom and operation Iraqi freedom amputees	Benetato, B. B.	2011	Journal of Nursing Scholarship	<60 total pts
Effects of pre- and post-Katrina nonviolent and violent experiences on male veterans' psychological functioning	Tharp, A. T.; Vasterling, J. J.; Sullivan, G.; Han, X.; Davis, T.; Deitch, E. A.; Constans, J.	2011	Disaster Medicine & Public Health Preparedness	No ortho trauma; PTSD, violence
Chronic psychological and functional sequelae after emergent hand surgery	Richards, T.; Garvert, D. W.; McDade, E.; Carlson, E.; Curtin, C.	2011	Journal of Hand Surgery - American Volume	<60 total pts
Family resilience and the fortunes of war	Chapin, M.	2011	Social Work in Health Care	review
Late-life health consequences of exposure to trauma in a general elderly population: the mediating role of reexperiencing posttraumatic symptoms	Chaudieu, I.; Norton, J.; Ritchie, K.; Birmes, P.; Vaiva, G.; Ancelin, M. L.	2011	Journal of Clinical Psychiatry	No ortho trauma
Screening for mental illness in a trauma center: rooting out a risk factor for unintentional injury	Dicker, R. A.; Mah, J.; Lopez, D.; Tran, C.; Reidy, R.; Moore, M.; Kreniske, P.; Crane, I.; Knudson, M. M.; Li, M.; Menza, R.; Shuway, M.; Alvidrez, J.	2011	Journal of Trauma-Injury Infection & Critical Care	No ortho trauma; non-violent physical injury
Development and validation of the Caregiver Empowerment Scale: a resource for working with family caregivers of persons with traumatic brain injury	Degeneffe, C. E.; Chan, F.; Dunlap, L.; Man, D.; Sung, C.	2011	Rehabilitation Psychology	validation study; TBI caregivers
Patient-reported outcomes after simple dislocation of the elbow	Anakwe, R. E.; Middleton, S. D.; Jenkins, P. J.; McQueen, M. M.; Court-Brown, C. M.	2011	Journal of Bone & Joint Surgery - American Volume	cross-sectional; concurrent measurements
Suicidal ideation following traumatic brain injury: prevalence rates and correlates in adults living in the community	Tsaousides, T.; Cantor, J. B.; Gordon, W. A.	2011	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
The role of post-migration living difficulties on somatization among first-generation immigrants visited in a primary care service	Aragona, M.; Pucci, D.; Carrer, S.; Catino, E.; Tomaselli, A.; Colosimo, F.; Lafuente, M.; Mazzetti, M.; Maisano, B.; Geraci, S.	2011	Annali Dell'Istituto Superiore di Sanita	No ortho trauma
Exploration of the prevalence and correlates of depression among South Korean workers with injuries	Park, S. K.	2011	Work	Unclear/No ortho trauma; injuries not described

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Longitudinal changes in psychosocial factors and their association with knee pain and function after anterior cruciate ligament reconstruction	Chmielewski, T. L.; Zeppieri, G., Jr.; Lentz, T. A.; Tillman, S. M.; Moser, M. W.; Indelicato, P. A.; George, S. Z.	2011	Physical Therapy	No ortho trauma; non-trauma ACL
Participation after acquired brain injury: clinical and psychometric considerations of the Sydney Psychosocial Reintegration Scale (SPRS)	Tate, R. L.; Simpson, G. K.; Soo, C. A.; Lane-Brown, A. T.	2011	Journal of Rehabilitation Medicine	Target population absent
Major depressive disorder in persons exposed to trauma: relationship between emotional intelligence and social support	Kwako, L. E.; Szanton, S. J.; Saligan, L. N.; Gill, J. M.	2011	Journal of the American Psychiatric Nurses Association	not target population; no ortho trauma subanalysis
Exposure to trauma and posttraumatic stress disorder symptoms in older veterans attending primary care: comorbid conditions and self-rated health status	Durai, U. N.; Chopra, M. P.; Coakley, E.; Llorente, M. D.; Kirchner, J. E.; Cook, J. M.; Levkoff, S. E.	2011	Journal of the American Geriatrics Society	No ortho trauma
Gender differences in combat-related stressors and their association with postdeployment mental health in a nationally representative sample of U.S. OEF/OIF veterans	Vogt, D.; Vaughn, R.; Glickman, M. E.; Schultz, M.; Drainoni, M. L.; Elwy, R.; Eisen, S.	2011	Journal of Abnormal Psychology	No ortho trauma
Major depressive disorder following terrorist attacks: a systematic review of prevalence, course and correlates	Salguero, J. M.; Fernandez-Berrocal, P.; Iruarrizaga, I.; Cano-Vindel, A.; Galea, S.	2011	BMC Psychiatry	irrelevant systematic review*
Responding to traumatic events	Usher, K.; Grigg, M.	2011	Australian Nursing Journal	review
The casualty chain inventory: a new scale for measuring peritraumatic responses: a cross-sectional study	Skogstad, L.; Hem, E.; Sandvik, L.; Ekeberg, O.	2011	BMC Emergency Medicine	insufficient data for target outcomes
Religion and spirituality in rehabilitation outcomes among individuals with traumatic brain injury	Waldron-Perrine, B.; Rapport, L. J.; Hanks, R. A.; Lumley, M.; Meachen, S. J.; Hubbarth, P.	2011	Rehabilitation Psychology	No ortho trauma; TBI only
A prospective investigation of long-term cognitive impairment and psychological distress in moderately versus severely injured trauma intensive care unit survivors without intracranial hemorrhage	Jackson, J. C.; Archer, K. R.; Bauer, R.; Abraham, C. M.; Song, Y.; Greevey, R.; Guillamondegui, O.; Ely, E. W.; Obremskey, W.	2011	Journal of Trauma-Injury Infection & Critical Care	very low quality
Self-rated health in relation to rape and mental health disorders in a national sample of women	Amstadter, A. B.; McCauley, J. L.; Ruggiero, K. J.; Resnick, H. S.; Kilpatrick, D. G.	2011	American Journal of Orthopsychiatry	not target population; no ortho trauma
Combined effects of Hurricane Katrina and Hurricane Gustav on the mental health of mothers of small children	Harville, E. W.; Xiong, X.; Smith, B. W.; Pridjian, G.; Elkind-Hirsch, K.; Buekens, P.	2011	Journal of Psychiatric & Mental Health Nursing	No ortho trauma
Empowerment of personal injury victims through the internet: design of a randomized controlled trial	Elbers, N. A.; Akkermans, A. J.; Cuijpers, P.; Bruinvels, D. J.	2011	Trials [Electronic Resource]	no target comparison; tx study

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Resilience to traumatic exposure among soldiers deployed in combat	Schaubroeck, J. M.; Riolli, L. T.; Peng, A. C.; Spain, E. S.	2011	Journal of Occupational Health Psychology	Target population absent
Shared and unique predictors of post-traumatic growth and distress	Dekel, S.; Mandl, C.; Solomon, Z.	2011	Journal of Clinical Psychology	not target population; no ortho trauma
Predictive ability of preinjury stressful life events and post-traumatic stress symptoms for outcomes following mild traumatic brain injury: analysis in a prospective emergency room sample	van Veldhoven, L. M.; Sander, A. M.; Struchen, M. A.; Sherer, M.; Clark, A. N.; Hudnall, G. E.; Hannay, H. J.	2011	Journal of Neurology, Neurosurgery & Psychiatry	No ortho trauma; TBI only
Resilience and distress: Israelis respond to the disengagement from Gaza and the second Lebanese war	Ben-Zur, H.; Gilbar, O.	2011	Community Mental Health Journal	Target population absent
Psychosocial issues after a traumatic hand injury: facilitating adjustment	Hannah, S. D.	2011	Journal of Hand Therapy	review
Relationship between psychiatric disorders and 1- year psychosocial outcome following traumatic brain injury	Gould, K. R.; Ponsford, J. L.; Johnston, L.; Schonberger, M.	2011	Journal of Head Trauma Rehabilitation	Not target population; no target subset
Planful versus avoidant coping: behavior of individuals with moderate-to-severe traumatic brain injury during a psychosocial stress test	Krpan, K. M.; Stuss, D. T.; Anderson, N. D.	2011	Journal of the International Neuropsychological Society	No ortho trauma; TBI only
Longitudinal effects of mild traumatic brain injury and posttraumatic stress disorder comorbidity on postdeployment outcomes in national guard soldiers deployed to Iraq	Polusny, M. A.; Kehle, S. M.; Nelson, N. W.; Erbes, C. R.; Arbisi, P. A.; Thuras, P.	2011	Archives of General Psychiatry	not target population; no subanalysis of target pts
The subjective utility of early psychosocial interventions following combat deployment	Jones, N.; Burdett, H.; Wessely, S.; Greenberg, N.	2011	Occupational Medicine (Oxford)	No ortho trauma
Adaptation and validation of the Spanish-language Trauma Symptom Inventory in Puerto Rico	Gutierrez Wang, L.; Cosden, M.; Bernal, G.	2011	Journal of Consulting & Clinical Psychology	not target population; no ortho trauma
Posttraumatic intrusive symptoms across psychiatric disorders	Bryant, R. A.; O'Donnell, M. L.; Creamer, M.; McFarlane, A. C.; Silove, D.	2011	Journal of Psychiatric Research	unclear trauma;
Prospective risk factors for new-onset post- traumatic stress disorder in National Guard soldiers deployed to Iraq	Polusny, M. A.; Erbes, C. R.; Murdoch, M.; Arbisi, P. A.; Thuras, P.; Rath, M. B.	2011	Psychological Medicine	not target population; no subanalysis of ortho pts
Protective factors for posttraumatic stress disorder symptoms in a prospective study of police officers	Yuan, C.; Wang, Z.; Inslicht, S. S.; McCaslin, S. E.; Metzler, T. J.; Henn-Haase, C.; Apfel, B. A.; Tong, H.; Neylan, T. C.; Fang, Y.; Marmar, C. R.	2011	Psychiatry Research	not target population; no ortho trauma subanalysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Level of psychological distress and social support among patients with limb fractures in Hong Kong	Lam, K.; Chan, S. W.; Lam, S. C.	2011	Journal of Clinical Nursing	factor as outcome
Association of airflow limitation with trauma exposure and post-traumatic stress disorder	Spitzer, C.; Koch, B.; Grabe, H. J.; Ewert, R.; Barnow, S.; Felix, S. B.; Ittermann, T.; Obst, A.; Volzke, H.; Glaser, S.; Schaper, C.	2011	European Respiratory Journal	not target population; no ortho trauma
Psychological factors contributing to perceptions pain intensity after acute orthopaedic injury	Wood, R. L.; Maclean, L.; Pallister, I.	2011	Injury	<6 months (avg) follow up; very low quality
Correlation of RDC/TMD axis I diagnoses and axis II pain-related disability. A multicenter study	Manfredini, D.; Ahlberg, J.; Winocur, E.; Guarda- Nardini, L.; Lobbezoo, F.	2011	Clinical Oral Investigations	No ortho trauma; Non ortho diagnostic review
Personal debt and suicidal ideation	Meltzer, H.; Bebbington, P.; Brugha, T.; Jenkins, R.; McManus, S.; Dennis, M. S.	2011	Psychological Medicine	No ortho trauma
Multisite investigation of traumatic brain injuries, posttraumatic stress disorder, and self-reported health and cognitive impairments	Zatzick, D. F.; Rivara, F. P.; Jurkovich, G. J.; Hoge, C. W.; Wang, J.; Fan, M. Y.; Russo, J.; Trusz, S. G.; Nathens, A.; Mackenzie, E. J.	2010	Archives of General Psychiatry	not target population; no subanalysis of target ortho pts
Effectiveness of community-based rehabilitation after traumatic brain injury for 489 program completers compared with those precipitously discharged	Altman, I. M.; Swick, S.; Parrot, D.; Malec, J. F.	2010	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
The relationship of trauma to mental disorders among trafficked and sexually exploited girls and women	Hossain, M.; Zimmerman, C.; Abas, M.; Light, M.; Watts, C.	2010	American Journal of Public Health	injury as a risk factor
Impact of chronic Posttraumatic Stress Disorder on the Quality of life of war survivors	Bravo-Mehmedbasic, A.; Kucukalic, A.; Kulenovic, A. D.; Suljic, E.	2010	Psychiatria Danubina	not target population; no ortho trauma
The psychological impact of motor vehicle accidents on emergency service workers	Maia, A. C.; Ribeiro, E.	2010	European Journal of Emergency Medicine	not target population; total pts <60
Quality of life after traumatic brain injury: the clinical use of the QOLIBRI, a novel disease-specific instrument	Truelle, J. L.; Koskinen, S.; Hawthorne, G.; Sarajuuri, J.; Formisano, R.; Von Wild, K.; Neugebauer, E.; Wilson, L.; Gibbons, H.; Powell, J.; Bullinger, M.; Hofer, S.; Maas, A.; Zitnay, G.; Von Steinbuechel, N.; Qolibri Task, Force	2010	Brain Injury	No ortho trauma; TBI only
Association of exposure to violence and potential traumatic events with self-reported physical and mental health status in the Central African Republic	Vinck, P.; Pham, P. N.	2010	JAMA	not target population; no ortho trauma
Predictors of risk tolerance among oral surgery patients	Atchison, K. A.; Der-Martirosian, C.; Belin, T. R.; Black, E. E.; Gironda, M. W.	2010	Journal of Oral & Maxillofacial Surgery	Not target population; <6 months follow-up

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Somatic diseases in patients with posttraumatic stress disorder	Avdibegovic, E.; Delic, A.; Hadzibeganovic, K.; Selimbasic, Z.	2010	Medicinski Arhiv	not target population; no ortho trauma subanalysis
Factors associated with antisocial behavior in combat veterans	Booth-Kewley, S.; Larson, G. E.; Highfill-McRoy, R. M.; Garland, C. F.; Gaskin, T. A.	2010	Aggressive Behavior	not target population; no subanalysis of ortho pts
The years after an injury: long-term consequences of injury on self-rated health	Toft, A. M.; Moller, H.; Laursen, B.	2010	Journal of Trauma-Injury Infection & Critical Care	not target population; <75% ortho trauma
Sickness absence in patients with arm, neck and shoulder complaints presenting in physical therapy practice: 6 months follow-up	Karels, C. H.; Bierma-Zeinstra, S. M.; Verhagen, A. P.; Koes, B. W.; Burdorf, A.	2010	Manual Therapy	not target population; no ortho trauma subanalysis
Heterogeneity in the course of posttraumatic stress disorder: trajectories of symptomatology	Dickstein, B. D.; Suvak, M.; Litz, B. T.; Adler, A. B.	2010	Journal of Traumatic Stress	not target population; no ortho trauma
Religious moral beliefs as mental health protective factor of war veterans suffering from PTSD, depressiveness, anxiety, tobacco and alcohol abuse in comorbidity	Hasanovic, M.; Pajevic, I.	2010	Psychiatria Danubina	not target population; no subanalysis of ortho pts
Associations of coping processes with posttraumatic stress disorder symptoms in national guard/reserve service members deployed during the OEF-OIF era	Rodrigues, C. S.; Renshaw, K. D.	2010	Journal of Anxiety Disorders	not target population; no ortho trauma
Longitudinal physical activity changes in older men in the Osteoporotic Fractures in Men Study	Janney, C. A.; Cauley, J. A.; Cawthon, P. M.; Kriska, A. M.; Osteoporotic Fractures in Men Study, Group	2010	Journal of the American Geriatrics Society	no ortho trauma
Relationship between posttraumatic stress disorder, quality of life, social support, and affective and dissociative status in severely injured accident victims 12 months after trauma	Baranyi, A.; Leithgob, O.; Kreiner, B.; Tanzer, K.; Ehrlich, G.; Hofer, H. P.; Rothenhausler, H. B.	2010	Psychosomatics	<60 total patients
Psychosocial factors that influence recovery in aircrew with musculoskeletal disabilities	Taneja, N.	2010	Spine	not target population; total pts <60
Trauma exposure and symptoms of post-traumatic stress disorder in emergency medical services personnel in Hawaii	Mishra, S.; Goebert, D.; Char, E.; Dukes, P.; Ahmed, I.	2010	Emergency Medicine Journal	Target population absent
Assessment of long-term activity limitations and participation restrictions of persons with traumatic brain injury using the disability rating scale	Varjabic, M.; Bakran, Z.; Tusek, S.; Bujisic, G.	2010	Collegium Antropologicum	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Posttraumatic growth in Veterans of Operations Enduring Freedom and Iraqi Freedom	Pietrzak, R. H.; Goldstein, M. B.; Malley, J. C.; Rivers, A. J.; Johnson, D. C.; Morgan, C. A., 3rd; Southwick, S. M.	2010	Journal of Affective Disorders	not target population; no subanalysis of ortho pts
Social anxiety disorder and social fears in the Canadian military: prevalence, comorbidity, impairment, and treatment-seeking	Mather, A. A.; Stein, M. B.; Sareen, J.	2010	Journal of Psychiatric Research	not target population; no subanalysis of ortho pts
Evidence of poorer life-course mental health outcomes among veterans of the Korean War cohort	Brooks, M. S.; Fulton, L.	2010	Aging & Mental Health	not target population; no subanalysis of ortho pts
Risk factors for onset of chronic oro-facial pain- results of the North Cheshire oro-facial pain prospective population study	Aggarwal, V. R.; Macfarlane, G. J.; Farragher, T. M.; McBeth, J.	2010	Pain	not target population; no ortho trauma
Exploring the association between posttraumatic growth and PTSD: a national study of Jews and Arabs following the 2006 Israeli-Hezbollah war	Hall, B. J.; Hobfoll, S. E.; Canetti, D.; Johnson, R. J.; Palmieri, P. A.; Galea, S.	2010	Journal of Nervous & Mental Disease	not target population; no ortho trauma
Traumatic events and mental health in civilian primary care: implications for training and practice	Freedy, J. R.; Magruder, K. M.; Zoller, J. S.; Hueston, W. J.; Carek, P. J.; Brock, C. D.	2010	Family Medicine	No target population; no ortho subgroup
Resilience in the face of coping with a severe physical injury: a study of trajectories of adjustment in a rehabilitation setting	Quale, A. J.; Schanke, A. K.	2010	Rehabilitation Psychology	not target population; no ortho trauma followup <6 mths
Psychopathology and resilience following traumatic injury: a latent growth mixture model analysis	deRoon-Cassini, T. A.; Mancini, A. D.; Rusch, M. D.; Bonanno, G. A.	2010	Rehabilitation Psychology	not best available evidence; very low quality
The role of substance use and psychosocial characteristics in explaining unintentional injuries	Coghlan, M.; Macdonald, S.	2010	Accident Analysis & Prevention	not target population; injury as outcome
Substance abuse and psychosocial adaptation to physical disability: analysis of the literature and future directions	Smedema, S. M.; Ebener, D.	2010	Disability & Rehabilitation	systematic review; no target condition
Psychosocial predictors of military misconduct	Booth-Kewley, S.; Highfill-McRoy, R. M.; Larson, G. E.; Garland, C. F.	2010	Journal of Nervous & Mental Disease	No ortho trauma
All PTSD symptoms are highly associated with general distress: ramifications for the dysphoria symptom cluster	Marshall, G. N.; Schell, T. L.; Miles, J. N.	2010	Journal of Abnormal Psychology	not target population; unclear trauma
Chronic pain and disability after pelvic and acetabular fracturesassessment with the Mainz Pain Staging System	Gerbershagen, H. J.; Dagtekin, O.; Isenberg, J.; Martens, N.; Ozgur, E.; Krep, H.; Sabatowski, R.; Petzke, F.	2010	Journal of Trauma-Injury Infection & Critical Care	<30 pts per group
An experimental comparison of index traumatic event queries in PTSD assessment	Naifeh, J. A.; Elhai, J. D.	2010	Journal of Anxiety Disorders	not target population; insufficient data

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The association between perceived interpersonal social support and physical and mental health: results from the National Epidemiological Survey on Alcohol and Related Conditions	Moak, Z. B.; Agrawal, A.	2010	Journal of Public Health	trauma as an exposure variable
Comorbidity of posttraumatic stress disorder, anxiety and depression: a 20-year longitudinal study of war veterans	Ginzburg, K.; Ein-Dor, T.; Solomon, Z.	2010	Journal of Affective Disorders	no ortho trauma
Traumatic events and mental health in the community: a New Zealand study.[Erratum appears in Int J Soc Psychiatry. 2010 Jan;56(1):104]	Kazantzis, N.; Flett, R. A.; Long, N. R.; MacDonald, C.; Millar, M.; Clark, B.	2010	International Journal of Social Psychiatry	not target population; no ortho trauma
Psychosocial buffers of traumatic stress, depressive symptoms, and psychosocial difficulties in veterans of Operations Enduring Freedom and Iraqi Freedom: the role of resilience, unit support, and postdeployment social support	Pietrzak, R. H.; Johnson, D. C.; Goldstein, M. B.; Malley, J. C.; Rivers, A. J.; Morgan, C. A.; Southwick, S. M.	2010	Journal of Affective Disorders	not target population; no subanalysis of ortho pts
Occupational risk factors in the emergency medical services	Donnelly, E.; Siebert, D.	2009	Prehospital & Disaster Medicine	irrelevant systematic review*
Israeli civilians under heavy bombardment: prediction of the severity of post-traumatic symptoms	Somer, E.; Zrihan-Weitzman, A.; Fuse, T.; Parker, H.; Dickstein, B.; Maguen, S.; Litz, B. T.	2009	Prehospital & Disaster Medicine	not target population; no ortho trauma
Aggression after traumatic brain injury: prevalence and correlates	Rao, V.; Rosenberg, P.; Bertrand, M.; Salehinia, S.; Spiro, J.; Vaishnavi, S.; Rastogi, P.; Noll, K.; Schretlen, D. J.; Brandt, J.; Cornwell, E.; Makley, M.; Miles, Q. S.	2009	Journal of Neuropsychiatry & Clinical Neurosciences	<6 months follow-up, TBI only
Ethnic differences in posttraumatic distress: Hispanics' symptoms differ in kind and degree	Marshall, G. N.; Schell, T. L.; Miles, J. N.	2009	Journal of Consulting & Clinical Psychology	not target population; unclear trauma
Relationships between the Brief Multidimensional Measure of Religiousness/Spirituality and health outcomes for a heterogeneous rehabilitation population	Johnstone, B.; Yoon, D. P.	2009	Rehabilitation Psychology	Not population of interest; Unclear ortho (TBI)
Health-related quality of life after vertebral or hip fracture: a seven-year follow-up study	Hallberg, I.; Bachrach-Lindstrom, M.; Hammerby, S.; Toss, G.; Ek, A. C.	2009	BMC Musculoskeletal Disorders	not target population; injury as factor
Trauma, posttraumatic stress disorder, and physical illness: findings from the general population	Spitzer, C.; Barnow, S.; Volzke, H.; John, U.; Freyberger, H. J.; Grabe, H. J.	2009	Psychosomatic Medicine	not target population; no injury sub- analysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Posttraumatic stress disorder mediates the relationship between mild traumatic brain injury and health and psychosocial functioning in veterans of Operations Enduring Freedom and Iraqi Freedom	Pietrzak, R. H.; Johnson, D. C.; Goldstein, M. B.; Malley, J. C.; Southwick, S. M.	2009	Journal of Nervous & Mental Disease	No ortho trauma; TBI only
Delay to orthopedic consultation for isolated limb injury: cross-sectional survey in a level 1 trauma centre	Rouleau, D. M.; Feldman, D. E.; Parent, S.	2009	Canadian Family Physician	<6 month follow-up
Predictors of the development of posttraumatic stress disorder among police officers	Martin, M.; Marchand, A.; Boyer, R.; Martin, N.	2009	Journal of Trauma & Dissociation	not target population; no ortho trauma
Postural balance and self-reported balance confidence in older adults with a hip fracture history	Sihvonen, S.; Kulmala, J.; Kallinen, M.; Alen, M.; Kiviranta, I.; Sipila, S.	2009	Gerontology	not target population; no ortho trauma subanalysis
Psychosocial buffers of traumatic stress, depressive symptoms, and psychosocial difficulties in veterans of Operations Enduring Freedom and Iraqi Freedom: the role of resilience, unit support, and postdeployment social support	Pietrzak, R. H.; Johnson, D. C.; Goldstein, M. B.; Malley, J. C.; Rivers, A. J.; Morgan, C. A.; Southwick, S. M.	2009	Journal of Special Operations Medicine	no ortho trauma
Posttraumatic growth and optimism in health- related trauma: a systematic review	Bostock, L.; Sheikh, A. I.; Barton, S.	2009	Journal of Clinical Psychology in Medical Settings	irrelevant systematic review
Correlation of DASH and QuickDASH with measures of psychological distress	Niekel, M. C.; Lindenhovius, A. L.; Watson, J. B.; Vranceanu, A. M.; Ring, D.	2009	Journal of Hand Surgery - American Volume	wrong population
Psychosocial factors contributing to occupational injuries among direct care workers	Zontek, T. L.; Isernhagen, J. C.; Ogle, B. R.	2009	AAOHN Journal	injury as an outcome
Volunteer work and psychological health following traumatic brain injury	Ouellet, M. C.; Morin, C. M.; Lavoie, A.	2009	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Explosive anger as a response to human rights violations in post-conflict Timor-Leste	Silove, D.; Brooks, R.; Bateman Steel, C. R.; Steel, Z.; Hewage, K.; Rodger, J.; Soosay, I.	2009	Social Science & Medicine	No target population; no ortho subgroup
Is health-related quality of life associated with the risk of low-energy wrist fracture: a case-control study	Rohde, G.; Mengshoel, A. M.; Wahl, A. K.; Moum, T.; Haugeberg, G.	2009	BMC Musculoskeletal Disorders	injury is outcome
Psychological and biological correlates of fatigue after mild-to-moderate traumatic brain injury	Bay, E.; Xie, Y.	2009	Western Journal of Nursing Research	No ortho trauma; TBI only
Reflecting on subjective well-being and spinal cord injury	Migliorini, C.; Tonge, B.	2009	Journal of Rehabilitation Medicine	not target population; SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Determinants of return to work in patients with hand disorders and hand injuries	Opsteegh, L.; Reinders-Messelink, H. A.; Schollier, D.; Groothoff, J. W.; Postema, K.; Dijkstra, P. U.; van der Sluis, C. K.	2009	Journal of Occupational Rehabilitation	<60 target population
Alcohol abuse and illegal drug use among Los Angeles County trauma patients: prevalence and evaluation of single item screener	Ramchand, R.; Marshall, G. N.; Schell, T. L.; Jaycox, L. H.; Hambarsoomians, K.; Shetty, V.; Hinika, G. S.; Cryer, H. G.; Meade, P.; Belzberg, H.	2009	Journal of Trauma-Injury Infection & Critical Care	not target population; unclear trauma
Diagnostic alterations for post-traumatic stress disorder: examining data from the National Comorbidity Survey Replication and National Survey of Adolescents	Elhai, J. D.; Ford, J. D.; Ruggiero, K. J.; Christopher Frueh, B.	2009	Psychological Medicine	not target population; no subanalysis of ortho injury pts
Severity of injury does not have any impact on posttraumatic stress symptoms in severely injured patients	Quale, A. J.; Schanke, A. K.; Froslie, K. F.; Roise, O.	2009	Injury	not target population; no ortho injury sub-analysis
Traumatic brain injury and long-term quality of life: findings from an Australian study	Hawthorne, G.; Gruen, R. L.; Kaye, A. H.	2009	Journal of Neurotrauma	No ortho trauma; TBI only
Psychological resilience and postdeployment social support protect against traumatic stress and depressive symptoms in soldiers returning from Operations Enduring Freedom and Iraqi Freedom.[Reprint in J Spec Oper Med. 2009 Summer;9(3):67-73; PMID: 19739479]	Pietrzak, R. H.; Johnson, D. C.; Goldstein, M. B.; Malley, J. C.; Southwick, S. M.	2009	Depression & Anxiety	No ortho trauma
Relationships among spiritual beliefs, religious practises, congregational support and health for individuals with traumatic brain injury	Johnstone, B.; Yoon, D. P.; Rupright, J.; Reid-Arndt, S.	2009	Brain Injury	No ortho trauma; TBI only
PTSD onset and course following the World Trade Center disaster: findings and implications for future research	Boscarino, J. A.; Adams, R. E.	2009	Social Psychiatry & Psychiatric Epidemiology	Target population absent
Factors associated with osteoporosis screening and recommendations for osteoporosis screening in older adults	Nayak, S.; Roberts, M. S.; Greenspan, S. L.	2009	Journal of General Internal Medicine	Target population absent
Optimistic explanatory style as a moderator of the association between negative life events and suicide ideation	Hirsch, J. K.; Wolford, K.; Lalonde, S. M.; Brunk, L.; Parker-Morris, A.	2009	Crisis: Journal of Crisis Intervention & Suicide	not target population; no ortho trauma
A longitudinal analysis of alcohol consumption and the risk of posttraumatic symptoms	McFarlane, A. C.; Browne, D.; Bryant, R. A.; O'Donnell, M.; Silove, D.; Creamer, M.; Horsley, K.	2009	Journal of Affective Disorders	<6 months follow-up

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Development of chronic pain following severe accidental injury. Results of a 3-year follow-up study	Jenewein, J.; Moergeli, H.; Wittmann, L.; Buchi, S.; Kraemer, B.; Schnyder, U.	2009	Journal of Psychosomatic Research	insufficient data for target comparison
An exploration of Hispanic workers' perspectives about risks and hazards associated with orchard work	Keifer, M.; Salazar, M. K.; Connon, C.	2009	Family & Community Health	not target population; no ortho trauma subanalysis
Difficulties in getting treatment for injuries in rural Vietnam	Hang, H. M.; Byass, P.	2009	Public Health	Include; PICO 1; Pico1: does not evaluate psychosocial risk factors for poor outcome. evaluates predictors of seeking care for traumatic injury. pico 5: not relevant because it evaluates barriers to injury treatment, and not barriers to psychosocial screening
From trauma to resilience	Christensen, L.	2008	African Health Sciences	review
The role of adult attachment, parental bonding, and spiritual love in the adjustment to military trauma	Ghafoori, B.; Hierholzer, R.; Howsepian, B.; Boardman, A.	2008	Journal of Trauma & Dissociation	no ortho trauma
Trauma, resilience, and recovery in a high-risk African-American population.[Erratum appears in Am J Psychiatry. 2009 Jan;166(1):120]	Alim, T. N.; Feder, A.; Graves, R. E.; Wang, Y.; Weaver, J.; Westphal, M.; Alonso, A.; Aigbogun, N. U.; Smith, B. W.; Doucette, J. T.; Mellman, T. A.; Lawson, W. B.; Charney, D. S.	2008	American Journal of Psychiatry	not target population; no ortho trauma subanalysis
Canadian military personnel's population attributable fractions of mental disorders and mental health service use associated with combat and peacekeeping operations	Sareen, J.; Belik, S. L.; Afifi, T. O.; Asmundson, G. J.; Cox, B. J.; Stein, M. B.	2008	American Journal of Public Health	not target population; no ortho trauma
Correspondence between perceived disability and objective physical impairment after elbow trauma	Lindenhovius, A. L.; Buijze, G. A.; Kloen, P.; Ring, D. C.	2008	Journal of Bone & Joint Surgery - American Volume	insufficient data for target comparison
Health care and community-based interventions for war-traumatized people in Croatia: community-based study of service use and mental health	Franciskovic, T.; Tovilovic, Z.; Sukovic, Z.; Stevanovic, A.; Ajdukovic, D.; Kraljevic, R.; Bogic, M.; Priebe, S.	2008	Croatian Medical Journal	not target population; no ortho trauma
Number and cost of claims linked to minor cervical trauma in Europe: results from the comparative study by CEA, AREDOC and CEREDOC	Chappuis, G.; Soltermann, B.; Cea,; Aredoc,; Ceredoc,	2008	European Spine Journal	not target population; whiplash
Understanding adjustment following traumatic brain injury: is the Goodness-of-Fit coping hypothesis useful?	Kendall, E.; Terry, D. J.	2008	Social Science & Medicine	No ortho trauma; TBI only
Characteristics of non-urgent patients. Cross- sectional study of emergency department and primary care patients	Backman, A. S.; Blomqvist, P.; Lagerlund, M.; Carlsson-Holm, E.; Adami, J.	2008	Scandinavian Journal of Primary Health Care	not target population; no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Factors associated with retirement-related job lock in older workers with recent occupational injury	Benjamin, K. L.; Pransky, G.; Savageau, J. A.	2008	Disability & Rehabilitation	no target outcome; job lock
Mental health of Dutch peacekeeping veterans 10- 25 years after deployment	Klaassens, E. R.; van Veen, T.; Weerts, J. M.; Zitman, F. G.	2008	European Psychiatry: the Journal of the Association of European Psychiatrists	No ortho trauma
Coping self-efficacy mediates the effects of negative cognitions on posttraumatic distress	Cieslak, R.; Benight, C. C.; Caden Lehman, V.	2008	Behaviour Research & Therapy	<6 months follow-up
Trust, social support and patient typeassociations between patients perceived trust, supportive communication and patients preferences in regard to paternalism, clarification and participation of severely injured patients	Ommen, O.; Janssen, C.; Neugebauer, E.; Bouillon, B.; Rehm, K.; Rangger, C.; Erli, H. J.; Pfaff, H.	2008	Patient Education & Counseling	Include; PICO 1; less than 6 months follow up after screening
Effects of military trauma exposure on women veterans' use and perceptions of Veterans Health Administration care	Kelly, M. M.; Vogt, D. S.; Scheiderer, E. M.; Ouimette, P.; Daley, J.; Wolfe, J.	2008	Journal of General Internal Medicine	No ortho trauma ; sexual trauma
The effects of alcohol on in-hospital mortality in drivers admitted after motor vehicle accidents	Koval, K. J.; Cooley, M.; Cantu, R. V.; Spratt, K. F.	2008	Bulletin of the NYU Hospital for Joint Diseases	Include; PICO 1: the outcome was in- hospital mortality among MVA patients screened for alcohol in blood at the hospital. therefore, follow up is less than 6 months after screening
Health-related quality of life in persons with long- standing spinal cord injury.[Erratum appears in Spinal Cord. 2008 Nov;46(11):765]	Lidal, I. B.; Veenstra, M.; Hjeltnes, N.; Biering-Sorensen, F.	2008	Spinal Cord	Spinal Cord Injury
Physical and sexual violence among North Carolina women: associations with physical health, mental health, and functional impairment	Martin, S. L.; Rentz, E. D.; Chan, R. L.; Givens, J.; Sanford, C. P.; Kupper, L. L.; Garrettson, M.; Macy, R. J.	2008	Womens Health Issues	no ortho trauma
Posttraumatic growth in accident survivors: openness and optimism as predictors of its constructive or illusory sides	Zoellner, T.; Rabe, S.; Karl, A.; Maercker, A.	2008	Journal of Clinical Psychology	not target population; unclear trauma
Organizational factors and office workers' health after the World Trade Center terrorist attacks: long- term physical symptoms, psychological distress, and work productivity	Osinubi, O. Y.; Gandhi, S. K.; Ohman-Strickland, P.; Boglarsky, C.; Fiedler, N.; Kipen, H.; Robson, M.	2008	Journal of Occupational & Environmental Medicine	not target population; no ortho trauma subanalysis
Psychological distress and quality of life after orthopedic trauma: an observational study	Bhandari, M.; Busse, J. W.; Hanson, B. P.; Leece, P.; Ayeni, O. R.; Schemitsch, E. H.	2008	Canadian Journal of Surgery	cross-sectional; concurrent measurements

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Are reports of mechanical dysfunction in chronic oro-facial pain related to somatisation? A population based study	Aggarwal, V. R.; McBeth, J.; Zakrzewska, J. M.; Lunt, M.; Macfarlane, G. J.	2008	European Journal of Pain	not target population; orofacial trauma
Primary intervention for memory structuring and meaning acquisition (PIMSMA): study of a mental health first-aid intervention in the ED with injured survivors of suicide bombing attacks	Schreiber, S.; Dolberg, O. T.; Barkai, G.; Peles, E.; Leor, A.; Rapoport, E.; Heinik, J.; Bloch, M.	2007	American Journal of Disaster Medicine	Include; PICO 1; unclear if presence of PTSD at first evaluation (3-8 months after injury) was included in multivariate model for presence of PTSD at 2 years.
Trauma coping strategies and psychological distress: A meta-analysis	Littleton, H.; Horsley, S.; John, S.; Nelson, D. V.	2007	Journal of Traumatic Stress	systematic review
Hip fracture outcomes in the household population	Carriere, G.	2007	Health Reports	review
Factors that influence exercise activity among women post hip fracture participating in the Exercise Plus Program	Resnick, B.; Orwig, D.; D'Adamo, C.; Yu-Yahiro, J.; Hawkes, W.; Shardell, M.; Golden, J.; Zimmerman, S.; Magaziner, J.	2007	Clinical Interventions In Aging	Include; PICO 1: unclear if hip fractures were due to trauma
The effects of torture-related injuries on long-term psychological distress in a Punjabi Sikh sample	Rasmussen, A.; Rosenfeld, B.; Reeves, K.; Keller, A. S.	2007	Journal of Abnormal Psychology	not target population; ortho trauma <75%
Posttraumatic stress disorder and associated risk factors in Canadian peacekeeping veterans with health-related disabilities	Richardson, J. D.; Naifeh, J. A.; Elhai, J. D.	2007	Canadian Journal of Psychiatry - Revue Canadienne de Psychiatrie	No ortho trauma
Differences in the characteristics of elderly patients suffering from hip fracture due to falls according to place of residence	Formiga, F.; Lopez-Soto, A.; Duaso, E.; Ruiz, D.; Chivite, D.; Perez-Castejon, J. M.; Navarro, M.; Pujol, R.	2007	Journal of the American Medical Directors Association	not target population; non-trauma "injury"; elderly fall
Perceived self-efficacy and life satisfaction after traumatic brain injury	Cicerone, K. D.; Azulay, J.	2007	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
The relationship of lifetime polysubstance dependence to trauma exposure, symptomatology, and psychosocial functioning in incarcerated women with comorbid PTSD and substance use disorder	Salgado, D. M.; Quinlan, K. J.; Zlotnick, C.	2007	Journal of Trauma & Dissociation	No target population; no ortho subgroup
Return to work following traumatic brain injury: trends and challenges	Shames, J.; Treger, I.; Ring, H.; Giaquinto, S.	2007	Disability & Rehabilitation	irrelevant systematic review*
Community integration, social support and life satisfaction in relation to symptoms 3 years after mild traumatic brain injury	Stalnacke, B. M.	2007	Brain Injury	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Partial and full PTSD in Brazilian ambulance workers: prevalence and impact on health and on quality of life	Berger, W.; Figueira, I.; Maurat, A. M.; Bucassio, E. P.; Vieira, I.; Jardim, S. R.; Coutinho, E. S.; Mari, J. J.; Mendlowicz, M. V.	2007	Journal of Traumatic Stress	not target population; no ortho trauma
Use of mental health services among disaster survivors: predisposing factors	den Ouden, D. J.; van der Velden, P. G.; Grievink, L.; Morren, M.; Dirkzwager, A. J.; Yzermans, C. J.	2007	BMC Public Health	not target population; no ortho trauma subanalysis
A longitudinal analysis of emotional impact, coping strategies and post-traumatic psychological growth following spinal cord injury: a 10-year review	Pollard, C.; Kennedy, P.	2007	British Journal of Health Psychology	wrong population; spinal cord injury; unclear if any ortho injuries
Determinants of self-efficacy in the rehabilitation of patients with anterior cruciate ligament injury	Thomee, P.; Wahrborg, P.; Borjesson, M.; Thomee, R.; Eriksson, B. I.; Karlsson, J.	2007	Journal of Rehabilitation Medicine	not population of interest; ACL injury during sports activity
Sociodemographic characteristics associated with substance use status in a trauma inpatient population	Martins, S. S.; Copersino, M. L.; Soderstrom, C. A.; Smith, G. S.; Dischinger, P. C.; McDuff, D. R.; Hebel, J. R.; Kerns, T. J.; Ho, S. M.; Read, K. M.; Gorelick, D. A.	2007	Journal of Addictive Diseases	not target population; factor as outcome
Factors associated with back pain after physical injury: a survey of consecutive major trauma patients	Harris, I. A.; Young, J. M.; Rae, H.; Jalaludin, B. B.; Solomon, M. J.	2007	Spine	Include; PICO 1: some people had presence of a head injury. Unclear if head injury was cooccuring with other traumatic injuries in these patients.
The aftermath of road trauma: survivors' perceptions of trauma and growth	Harms, L.; Talbot, M.	2007	Health & Social Work	Include; PICO 1; unclear if injuries included people with only head injuries. sample description of injury type was too unclear to determine eligibility
Stressful memories and psychological distress in adult mechanically ventilated intensive care patients - a 2-month follow-up study	Samuelson, K. A.; Lundberg, D.; Fridlund, B.	2007	Acta Anaesthesiologica Scandinavica	not target population; no ortho trauma
Prevalence and predictors of post-traumatic stress disorder (PTSD) in physically injured victims of non-domestic violence. A longitudinal study	Johansen, V. A.; Wahl, A. K.; Eilertsen, D. E.; Weisaeth, L.	2007	Social Psychiatry & Psychiatric Epidemiology	not target population; no ortho trauma subanalysis
Pain regulation and health-related quality of life after thoracolumbar fractures of the spine	Briem, D.; Behechtnejad, A.; Ouchmaev, A.; Morfeld, M.; Schermelleh-Engel, K.; Amling, M.; Rueger, J. M.	2007	European Spine Journal	Include; PICO 1; inadequate quality due to lack of confounding adjustment and retrospective design

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Characteristics and psychosocial needs of victims of violent crime identified at a public-sector hospital: data from a large clinical trial	Boccellari, A.; Alvidrez, J.; Shumway, M.; Kelly, V.; Merrill, G.; Gelb, M.; Smart, S.; Okin, R. L.	2007	General Hospital Psychiatry	not target population; no subanalysis of ortho pts
The body remembers: somatic symptoms in traumatized Khmer	Perry, C. T.; Oum, P.; Gray, S. H.	2007	Journal of the American Academy of Psychoanalysis & Dynamic Psychiatry	not target population; no ortho trauma subanalysis
Assessing late-onset stress symptomatology among aging male combat veterans	King, L. A.; King, D. W.; Vickers, K.; Davison, E. H.; Spiro, A., 3rd	2007	Aging & Mental Health	Unclear population; ortho?
Traumatic events and suicidal behavior: results from a national mental health survey	Belik, S. L.; Cox, B. J.; Stein, M. B.; Asmundson, G. J.; Sareen, J.	2007	Journal of Nervous & Mental Disease	not target population; no ortho trauma
An evaluation of traumatic and organizational experiences on the psychological health of New Zealand police recruits	Huddleston, L.; Stephens, C.; Paton, D.	2007	Work	not target population; no ortho trauma
Chronic pain and violent ideation: testing a model of patient violence	Bruns, D.; Disorbio, J. M.; Hanks, R.	2007	Pain Medicine	no target comparison; pain to violent ideation
Smoking as a risk factor for mental health disturbances after a disaster: a prospective comparative study	Van der Velden, P. G.; Grievink, L.; Olff, M.; Gersons, B. P.; Kleber, R. J.; Dutch Ministry of Health, Welfare; Sport,	2007	Journal of Clinical Psychiatry	not target population; no ortho trauma subanalysis
Physiologic reactivity despite emotional resilience several years after direct exposure to terrorism	Tucker, P. M.; Pfefferbaum, B.; North, C. S.; Kent, A.; Burgin, C. E.; Parker, D. E.; Hossain, A.; Jeon-Slaughter, H.; Trautman, R. P.	2007	American Journal of Psychiatry	not target population; no ortho trauma subanalysis
The association between gender, coping style and whiplash related symptoms in sufferers of whiplash associated disorder	Jones, A.; Elklit, A.	2007	Scandinavian Journal of Psychology	not population of interest; non-ortho; whiplash;
The correspondence between persistent self- reported post-traumatic problems and general practitioners' reports after a major disaster	Drogendijk, A. N.; Dirkzwager, A. J.; Grievink, L.; Van der Velden, P. G.; Marcelissen, F. G.; Kleber, R. J.	2007	Psychological Medicine	Target population absent
Prevalence of depressive symptoms in postmenopausal women with low bone mineral density and/or prevalent vertebral fracture: results from the Multiple Outcomes of Raloxifene Evaluation (MORE) study	Silverman, S. L.; Shen, W.; Minshall, M. E.; Xie, S.; Moses, K. H.	2007	Journal of Rheumatology	not target population; injury as outcome
Coping, affective distress, and psychosocial adjustment among people with traumatic upper limb amputations	Desmond, D. M.	2007	Journal of Psychosomatic Research	cross-sectional; concurrent measurements

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Women in novel occupational roles: mental health trends in the UK Armed Forces	Rona, R. J.; Fear, N. T.; Hull, L.; Wessely, S.	2007	International Journal of Epidemiology	not target population; no ortho trauma
Pain and fractures are independently related to lower walking speed and grip strength: results from the population study "Good Ageing in Skane"	Ekstrom, H.; Elmstahl, S.	2006	Acta Orthopaedica	Unclear population; osteoporosis- related fractures?
Psychological stress reactions of women in Sweden who have been assaulted: acute response and fourmonth follow-up	Renck, B.	2006	Nursing Outlook	<6 months follow-up
Education to improve the triage of mental health patients in general hospital emergency departments	Clarke, D. E.; Brown, A. M.; Hughes, L.; Motluk, L.	2006	Accident & Emergency Nursing	Target population absent
Predicting quality of life six months after traumatic injury	Kiely, J. M.; Brasel, K. J.; Weidner, K. L.; Guse, C. E.; Weigelt, J. A.	2006	Journal of Trauma-Injury Infection & Critical Care	not best available evidence; very low quality
The meaning of self-perception of health in the UK armed forces	Rona, R. J.; Hooper, R.; French, C.; Jones, M.; Wessely, S.	2006	British Journal of Health Psychology	not target population; no ortho trauma
Best practices in wound care prevention and treatment	Ayello, E. A.; Baranoski, S.; Salati, D. S.	2006	Nursing Management	review
A psychometric analysis of Project Liberty's adult enhanced services referral tool	Norris, F. H.; Donahue, S. A.; Felton, C. J.; Watson, P. J.; Hamblen, J. L.; Marshall, R. D.	2006	Psychiatric Services	Target population absent
Exposure to war-related traumatic events, prevalence of PTSD, and general psychiatric morbidity in a civilian population from Southern Lebanon	Farhood, L.; Dimassi, H.; Lehtinen, T.	2006	Journal of Transcultural Nursing	not target population; no ortho trauma subanalysis
Reliability and sensitivity to change of measurement instruments used in a traumatic brain injury population	van Baalen, B.; Odding, E.; van Woensel, M. P.; Roebroeck, M. E.	2006	Clinical Rehabilitation	No ortho trauma; TBI only
Evaluating a theory of stress and adjustment when predicting long-term psychosocial outcome after brain injury	Rutterford, N. A.; Wood, R. L.	2006	Journal of the International Neuropsychological Society	No ortho trauma; TBI only
Demographic and cognitive predictors of long-term psychosocial outcome following traumatic brain injury	Wood, R. L.; Rutterford, N. A.	2006	Journal of the International Neuropsychological Society	No ortho trauma; TBI only
Self-reported psychosocial health among adults with traumatic brain injury	McCarthy, M. L.; Dikmen, S. S.; Langlois, J. A.; Selassie, A. W.; Gu, J. K.; Horner, M. D.	2006	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
Risk factors for psychological distress following injury	Mason, S.; Turpin, G.; Woods, D.; Wardrope, J.; Rowlands, A.	2006	British Journal of Clinical Psychology	unclear population; unclear trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Insomnia in patients with traumatic brain injury: frequency, characteristics, and risk factors	Ouellet, M. C.; Beaulieu-Bonneau, S.; Morin, C. M.	2006	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
A new instrument for measuring self-efficacy in patients with an anterior cruciate ligament injury	Thomee, P.; Wahrborg, P.; Borjesson, M.; Thomee, R.; Eriksson, B. I.; Karlsson, J.	2006	Scandinavian Journal of Medicine & Science in Sports	not target population; ACL tear
Affective distress and amputation-related pain among older men with long-term, traumatic limb amputations	Desmond, D. M.; MacLachlan, M.	2006	Journal of Pain & Symptom Management	not best available evidence; very low quality
Functional status and quality of life in survivors of injury treated at tertiary trauma centers: what are we neglecting?	Sampalis, J. S.; Liberman, M.; Davis, L.; Angelopoulos, J.; Longo, N.; Joch, M.; Sampalis, F.; Nikolis, A.; Lavoie, A.; Denis, R.; Mulder, D. S.	2006	Journal of Trauma-Injury Infection & Critical Care	not target population; unclear trauma
Correlation of SF-12 and SF-36 in a trauma population	Kiely, J. M.; Brasel, K. J.; Guse, C. E.; Weigelt, J. A.	2006	Journal of Surgical Research	insufficient data for target comparison
Medical downgrading, self-perception of health, and psychological symptoms in the British Armed Forces	Rona, R. J.; Hooper, R.; Greenberg, N.; Jones, M.; Wessely, S.	2006	Occupational & Environmental Medicine	not target population; no ortho trauma subanalysis
The impact of major depression on outcome following mild-to-moderate traumatic brain injury in older adults	Rapoport, M. J.; Kiss, A.; Feinstein, A.	2006	Journal of Affective Disorders	No ortho trauma; TBI only
Environmental barriers experienced by amputees: the Craig Hospital Inventory of Environmental Factors-Short Form	Ephraim, P. L.; MacKenzie, E. J.; Wegener, S. T.; Dillingham, T. R.; Pezzin, L. E.	2006	Archives of Physical Medicine & Rehabilitation	not target population; no injury sub- analysis
Psychosocial adjustment 17 years after severe brain injury	Wood, R. L.; Rutterford, N. A.	2006	Journal of Neurology, Neurosurgery & Psychiatry	No ortho trauma; TBI only
Psycho-social factors and coping strategies as predictors of chronic evolution and quality of life in patients with low back pain: a prospective study	Koleck, M.; Mazaux, J. M.; Rascle, N.; Bruchon-Schweitzer, M.	2006	European Journal of Pain	not target population; no ortho trauma
Trauma narratives and emotional processing	Eid, J.; Johnsen, B. H.; Saus, E. R.	2005	Scandinavian Journal of Psychology	<6 months follow-up
Cognitive appraisal accuracy moderates the relationship between injury severity and psychosocial outcomes in traumatic brain injury	Kervick, R. B.; Kaemingk, K. L.	2005	Brain Injury	No ortho trauma; TBI only
Alexithymia after traumatic brain injury: its relation to magnetic resonance imaging findings and psychiatric disorders	Koponen, S.; Taiminen, T.; Honkalampi, K.; Joukamaa, M.; Viinamaki, H.; Kurki, T.; Portin, R.; Himanen, L.; Isoniemi, H.; Hinkka, S.; Tenovuo, O.	2005	Psychosomatic Medicine	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Health status among emergency department patients approximately one year after consecutive disasters in New York City	Fernandez, W. G.; Galea, S.; Miller, J.; Ahern, J.; Chiang, W.; Kennedy, E. L.; Garritano, J.	2005	Academic Emergency Medicine	not target population; no ortho trauma
Recovery after musculoskeletal trauma in men and women	Sutherland, A. G.; Alexander, D. A.; Hutchison, J. D.	2005	Journal of Trauma-Injury Infection & Critical Care	not best available evidence; very low quality
Psychosocial aspects of road traffic traumabenefits of an early intervention?	Andersson, A. L.; Dahlback, L. O.; Bunketorp, O.	2005	Injury	Include; PICO 1; inadequate quality due to lack of confounding adjustment in analysis of psychosocial variables
Factor structure of the Trinity Amputation and Prosthesis Experience Scales (TAPES) with individuals with acquired upper limb amputations	Desmond, D. M.; MacLachlan, M.	2005	American Journal of Physical Medicine & Rehabilitation	no target comparison; reliability
Influence of workers' compensation eligibility upon functional recovery 10 to 28 years after polytrauma	Zelle, B. A.; Panzica, M.; Vogt, M. T.; Sittaro, N. A.; Krettek, C.; Pape, H. C.	2005	American Journal of Surgery	not best available evidence; very low quality
Delirium is associated with poor rehabilitation outcome in elderly patients treated for femoral neck fractures	Olofsson, B.; Lundstrom, M.; Borssen, B.; Nyberg, L.; Gustafson, Y.	2005	Scandinavian Journal of Caring Sciences	Include; PICO 1; less than 4 months follow up.
Spaghetti wrist trauma: functional recovery, return to work, and psychological effects	Jaquet, J. B.; van der Jagt, I.; Kuypers, P. D.; Schreuders, T. A.; Kalmijn, A. R.; Hovius, S. E.	2005	Plastic & Reconstructive Surgery	not target population; no ortho trauma
Long-term follow-up after severe suicide attempt by multiple blunt trauma	Pajonk, F. G.; Ruchholtz, S.; Waydhas, C.; Schneider-Axmann, T.	2005	European Psychiatry: the Journal of the Association of European Psychiatrists	insufficient data; no ortho trauma
Gambling task performance in traumatic brain injury: relationships to injury severity, atrophy, lesion location, and cognitive and psychosocial outcome	Levine, B.; Black, S. E.; Cheung, G.; Campbell, A.; O'Toole, C.; Schwartz, M. L.	2005	Cognitive & Behavioral Neurology	No ortho trauma; TBI only
Predictors of emotional adjustment following traumatic injury: personal, social, and material resources	Cordova, M. J.; Walser, R.; Neff, J.; Ruzek, J. I.	2005	Prehospital & Disaster Medicine	<60 total pts
Trauma, resilience and saliostasis: effects of treatment in post-traumatic stress disorder	Davidson, J. R.; Payne, V. M.; Connor, K. M.; Foa, E. B.; Rothbaum, B. O.; Hertzberg, M. A.; Weisler, R. H.	2005	International Clinical Psychopharmacology	not target population; no ortho trauma subanalysis
Is it an accident? Recurrent traumatic life events in level I trauma center patients compared to the general population	Ramstad, S. M.; Russo, J.; Zatzick, D. F.	2004	Journal of Traumatic Stress	not target population; no ortho trauma subanalysis
Patterns of alcohol and substance use and abuse in persons with spinal cord injury: risk factors and correlates	Tate, D. G.; Forchheimer, M. B.; Krause, J. S.; Meade, M. A.; Bombardier, C. H.	2004	Archives of Physical Medicine & Rehabilitation	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Life-altering outcomes after lower extremity injury sustained in motor vehicle crashes	Read, K. M.; Kufera, J. A.; Dischinger, P. C.; Kerns, T. J.; Ho, S. M.; Burgess, A. R.; Burch, C. A.	2004	Journal of Trauma-Injury Infection & Critical Care	<30 patients per factor group
Psychometric properties of the life events checklist	Gray, M. J.; Litz, B. T.; Hsu, J. L.; Lombardo, T. W.	2004	Assessment	Target population absent
Social cognitive theory of posttraumatic recovery: the role of perceived self-efficacy	Benight, C. C.; Bandura, A.	2004	Behaviour Research & Therapy	no quantitative data; review
Violence-related injury and intimate partner violence in an urban emergency department	Lipsky, S.; Caetano, R.; Field, C. A.; Bazargan, S.	2004	Journal of Trauma-Injury Infection & Critical Care	Include; PICO 1; not specific to traumatic injury patients.
Patterns of recurrent pressure ulcers after spinal cord injury: identification of risk and protective factors 5 or more years after onset	Krause, J. S.; Broderick, L.	2004	Archives of Physical Medicine & Rehabilitation	Target population absent,SCI
Assessing support needs for people with traumatic brain injury: the Care and Needs Scale (CANS)	Tate, R. L.	2004	Brain Injury	No ortho trauma; TBI only
A controlled prospective inception cohort study on the post-concussion syndrome outside the medicolegal context	Mickeviciene, D.; Schrader, H.; Obelieniene, D.; Surkiene, D.; Kunickas, R.; Stovner, L. J.; Sand, T.	2004	European Journal of Neurology	No ortho trauma; TBI only
Identification of strategies used to cope with chronic pain in older persons receiving primary care from a Veterans Affairs Medical Center	Barry, L. C.; Kerns, R. D.; Guo, Z.; Duong, B. D.; Iannone, L. P.; Reid, M. C.	2004	Journal of the American Geriatrics Society	No ortho trauma
Use and satisfaction with prosthetic limb devices and related services	Pezzin, L. E.; Dillingham, T. R.; Mackenzie, E. J.; Ephraim, P.; Rossbach, P.	2004	Archives of Physical Medicine & Rehabilitation	not target population; no subanalysis of trauma pts
All symptoms are not created equal: the prominent role of hyperarousal in the natural course of posttraumatic psychological distress	Schell, T. L.; Marshall, G. N.; Jaycox, L. H.	2004	Journal of Abnormal Psychology	Include; PICO 1; did study blunt or penetrating trauma, but it was unclear if the injuries were orthopedic in nature
Relationship between depression and psychosocial functioning after traumatic brain injury	Hibbard, M. R.; Ashman, T. A.; Spielman, L. A.; Chun, D.; Charatz, H. J.; Melvin, S.	2004	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
Positive change following trauma and adversity: a review	Linley, P. A.; Joseph, S.	2004	Journal of Traumatic Stress	systematic review
Psychosocial correlates of the impact of road traffic accidents among South African drivers and passengers	Peltzer, K.; Renner, W.	2004	Accident Analysis & Prevention	Include; PICO 1; study population not specific to those with taumatic injuries
Distribution and determinants of health and work status in a comprehensive population of injury patients	Meerding, W. J.; Looman, C. W.; Essink-Bot, M. L.; Toet, H.; Mulder, S.; van Beeck, E. F.	2004	Journal of Trauma-Injury Infection & Critical Care	not target population; no fracture sub- analysis
Post-traumatic stress disorder after critical illness requiring general intensive care	Cuthbertson, B. H.; Hull, A.; Strachan, M.; Scott, J.	2004	Intensive Care Medicine	<6 months follow-up

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Stress reactions among Swedish peacekeeping soldiers serving in Bosnia: a longitudinal study	Michel, P. O.; Lundin, T.; Larsson, G.	2003	Journal of Traumatic Stress	Target population absent
Falls in community-dwelling older persons followinig hip fracture: impact on self-efficacy, balance and handicap	Whitehead, C.; Miller, M.; Crotty, M.	2003	Clinical Rehabilitation	not target population; elderly hip fracture
Spirituality, resilience, and anger in survivors of violent trauma: a community survey	Connor, K. M.; Davidson, J. R.; Lee, L. C.	2003	Journal of Traumatic Stress	not target population; no ortho trauma subanalysis
Psychological distress among black and white Americans: differential effects of social support, negative interaction and personal control	Lincoln, K. D.; Chatters, L. M.; Taylor, R. J.	2003	Journal of Health & Social Behavior	not target population; no ortho trauma
Occupational disability after hospitalization for the treatment of an injury of the anterior cruciate ligament	Dunn, W. R.; Lincoln, A. E.; Hinton, R. Y.; Smith, G. S.; Amoroso, P. J.	2003	Journal of Bone & Joint Surgery - American Volume	not target population; ACL tear
Predictors of psychological distress in Lebanese hostages of war	Saab, B. R.; Chaaya, M.; Doumit, M.; Farhood, L.	2003	Social Science & Medicine	not target population; no ortho trauma
The relationship between self-disclosure and symptoms of posttraumatic stress disorder in peacekeepers deployed to Somalia	Bolton, E. E.; Glenn, D. M.; Orsillo, S.; Roemer, L.; Litz, B. T.	2003	Journal of Traumatic Stress	not target population; no ortho trauma
The health effects of peace-keeping in the UK Armed Forces: Bosnia 1992-1996. Predictors of psychological symptoms	Hotopf, M.; David, A. S.; Hull, L.; Ismail, K.; Palmer, I.; Unwin, C.; Wessely, S.	2003	Psychological Medicine	not target population; no ortho trauma subanalysis
The relationship of perceived control to outcomes in older women undergoing surgery for fractured neck of femur	Shaw, C.; McColl, E.; Bond, S.	2003	Journal of Clinical Nursing	not target population; < 6 mo follow up
The clinical significance of major depression following mild traumatic brain injury	Rapoport, M. J.; McCullagh, S.; Streiner, D.; Feinstein, A.	2003	Psychosomatics	No ortho trauma; TBI only; Post TBI injury outcomes
The role of perceived control in the process of older peoples' recovery of physical functions after fall-related injuries: a prospective study	Kempen, G. I.; Ormel, J.; Scaf-Klomp, W.; Van Sonderen, E.; Ranchor, A. V.; Sanderman, R.	2003	Journals of Gerontology Series B-Psychological Sciences & Social Sciences	not target population; elderly hip fxs
Physical and psychological outcomes 8 months after serious gunshot injury	Greenspan, A. I.; Kellermann, A. L.	2002	Journal of Trauma-Injury Infection & Critical Care	not target population; <75% ortho trauma
A 3-year follow-up study of psychosocial functioning and general symptoms in settled refugees	Lie, B.	2002	Acta Psychiatrica Scandinavica	not target population; no ortho trauma
Characteristics of intoxicated trauma patients	Blondell, R. D.; Looney, S. W.; Hottman, L. M.; Boaz, P. W.	2002	Journal of Addictive Diseases	insufficient data for target outcome/population

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The mental health of UK Gulf war veterans: phase 2 of a two phase cohort study	Ismail, K.; Kent, K.; Brugha, T.; Hotopf, M.; Hull, L.; Seed, P.; Palmer, I.; Reid, S.; Unwin, C.; David, A. S.; Wessely, S.	2002	ВМЈ	No ortho trauma
Patients' self-treatment with alternative treatment before presenting to the ED	Zun, L. S.; Gossman, W.; Lilienstein, D.; Downey, L.	2002	American Journal of Emergency Medicine	insufficient data; ortho trauma <60
Outcomes after injury: a comparison of workplace and nonworkplace injury	Mason, S.; Wardrope, J.; Turpin, G.; Rowlands, A.	2002	Journal of Trauma-Injury Infection & Critical Care	Include; PICO 1; not specific to orthopedic trauma injuries
Suicidality after traumatic brain injury: demographic, injury and clinical correlates	Simpson, G.; Tate, R.	2002	Psychological Medicine	No ortho trauma; TBI only
The effect of sensitization and coping style on post- traumatic stress symptoms and quality of life: two longitudinal studies	Johnsen, B. H.; Eid, J.; Laberg, J. C.; Thayer, J. F.	2002	Scandinavian Journal of Psychology	not target population; no ortho trauma
Pre-injury status and adaptation following traumatic brain injury	MacMillan, P. J.; Hart, R. P.; Martelli, M. F.; Zasler, N. D.	2002	Brain Injury	No ortho trauma; TBI only
Posttraumatic stress symptomatology is associated with unexplained illness attributed to Persian Gulf War military service	Ford, J. D.; Campbell, K. A.; Storzbach, D.; Binder, L. M.; Anger, W. K.; Rohlman, D. S.	2001	Psychosomatic Medicine	No ortho trauma
Neurotrauma in Pakistan	Raja, I. A.; Vohra, A. H.; Ahmed, M.	2001	World Journal of Surgery	Doesn't address question of interest;
SPRINT: a brief global assessment of post-traumatic stress disorder	Connor, K. M.; Davidson, J. R.	2001	International Clinical Psychopharmacology	not target population; no ortho trauma
A brief report on the Penn Inventory for posttraumatic stress disorder	Scragg, P.; Grey, N.; Lee, D.; Young, K.; Turner, S.	2001	Journal of Traumatic Stress	Unclear population
Hardiness: an examination of its relationship with positive and negative long term changes following trauma	Waysman, M.; Schwarzwald, J.; Solomon, Z.	2001	Journal of Traumatic Stress	No ortho trauma
Prevalence of Gulf war veterans who believe they have Gulf war syndrome: questionnaire study	Chalder, T.; Hotopf, M.; Unwin, C.; Hull, L.; Ismail, K.; David, A.; Wessely, S.	2001	ВМЈ	No ortho trauma
Post-traumatic stress disorder symptoms following a head injury: does amnesia for the event influence the development of symptoms?	Turnbull, S. J.; Campbell, E. A.; Swann, I. J.	2001	Brain Injury	No ortho trauma; TBI only
The long-term consequences of war: the experience of World War II	Hunt, N.; Robbins, I.	2001	Aging & Mental Health	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Long-term physical impairment and functional outcomes after complex facial fractures	Girotto, J. A.; MacKenzie, E.; Fowler, C.; Redett, R.; Robertson, B.; Manson, P. N.	2001	Plastic & Reconstructive Surgery	not target population; facial fractures
Factors associated with perceived quality of life many years after traumatic brain injury	Steadman-Pare, D.; Colantonio, A.; Ratcliff, G.; Chase, S.; Vernich, L.	2001	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Utility of a composite measure to detect problematic alcohol use in persons with traumatic brain injury	Cherner, M.; Temkin, N. R.; Machamer, J. E.; Dikmen, S. S.	2001	Archives of Physical Medicine & Rehabilitation	No ortho trauma; TBI only
Predictors of posttraumatic stress among victims of motor vehicle accidents	Dougall, A. L.; Ursano, R. J.; Posluszny, D. M.; Fullerton, C. S.; Baum, A.	2001	Psychosomatic Medicine	not target population; unclear trauma
Calming the aftershocks	Barker, M.	2001	Occupational Health & Safety	review
Traditional injury scoring underestimates the relative consequences of orthopedic injury	Michaels, A. J.; Madey, S. M.; Krieg, J. C.; Long, W. B.	2001	Journal of Trauma-Injury Infection & Critical Care	no factor of interest
Posttraumatic stress disorder and psychosocial functioning after severe traumatic brain injury	Bryant, R. A.; Marosszeky, J. E.; Crooks, J.; Baguley, I. J.; Gurka, J. A.	2001	Journal of Nervous & Mental Disease	No ortho trauma; TBI only
Psychological problems following ICU treatment	Scragg, P.; Jones, A.; Fauvel, N.	2001	Anaesthesia	not target population; no ortho trauma
Predictors of psychological distress following serious injury	Richmond, T. S.; Kauder, D.	2000	Journal of Traumatic Stress	<6 months follow-up
Using study circles in the workplace as an educational method of facilitating readjustment after a traumatic life experience	Barski-Carrow, B.	2000	Death Studies	review
Assessment of strategic self-regulation in traumatic brain injury: its relationship to injury severity and psychosocial outcome	Levine, B.; Dawson, D.; Boutet, I.; Schwartz, M. L.; Stuss, D. T.	2000	Neuropsychology	No ortho trauma; TBI only
Sickness Impact Profile Score versus a Modified Short-Form survey for functional outcome assessment: acceptability, reliability, and validity in critically ill patients with prolonged intensive care unit stays	Lipsett, P. A.; Swoboda, S. M.; Campbell, K. A.; Cornwell, E., 3rd; Dorman, T.; Pronovost, P. J.	2000	Journal of Trauma-Injury Infection & Critical Care	insufficient data; ortho trauma <60
Occupational risk factors for ill health in Gulf veterans of the United Kingdom	Ismail, K.; Blatchley, N.; Hotopf, M.; Hull, L.; Palmer, I.; Unwin, C.; David, A.; Wessely, S.	2000	Journal of Epidemiology & Community Health	No ortho trauma
Prognosis of functional recovery 1 year after hip fracture: typical patient profiles through cluster analysis	Michel, J. P.; Hoffmeyer, P.; Klopfenstein, C.; Bruchez, M.; Grab, B.; d'Epinay, C. L.	2000	Journals of Gerontology Series A-Biological Sciences & Medical Sciences	Include; PICO 1; unclear if all had high energy falls

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Psychological and physical health effects of sexual assaults and nonsexual traumas among male and female United States Army soldiers	Martin, L.; Rosen, L. N.; Durand, D. B.; Knudson, K. H.; Stretch, R. H.	2000	Behavioral Medicine	Target population absent
Factors associated with insomnia among post-acute traumatic brain injury survivors	Fichtenberg, N. L.; Millis, S. R.; Mann, N. R.; Zafonte, R. D.; Millard, A. E.	2000	Brain Injury	No ortho trauma; TBI only
Individual predictors of traumatic reactions in firefighters	Regehr, C.; Hill, J.; Glancy, G. D.	2000	Journal of Nervous & Mental Disease	not target population; no ortho trauma subanalysis
Clients' perspectives on problems many years after traumatic brain injury	Dean, S.; Colantonio, A.; Ratcliff, G.; Chase, S.	2000	Psychological Reports	No ortho trauma; TBI only
Organic personality disorder after traumatic brain injury: cognitive, anatomic and psychosocial factors. A 6 month follow-up	Franulic, A.; Horta, E.; Maturana, R.; Scherpenisse, J.; Carbonell, C.	2000	Brain Injury	No ortho trauma; TBI only
Outcome from injury: general health, work status, and satisfaction 12 months after trauma	Michaels, A. J.; Michaels, C. E.; Smith, J. S.; Moon, C. H.; Peterson, C.; Long, W. B.	2000	Journal of Trauma-Injury Infection & Critical Care	not target population; no subanalysis of ortho pt factors
Psychological distress and family satisfaction following traumatic brain injury: injured individuals and their primary, secondary, and tertiary carers	Perlesz, A.; Kinsella, G.; Crowe, S.	2000	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Trauma exposure, resilience, social support, and PTSD construct validity among former prisoners of war	Gold, P. B.; Engdahl, B. E.; Eberly, R. E.; Blake, R. J.; Page, W. F.; Frueh, B. C.	2000	Social Psychiatry & Psychiatric Epidemiology	No ortho trauma
Early psychological reactions to life-threatening injuries	Schnyder, U.; Morgeli, H.; Nigg, C.; Klaghofer, R.; Renner, N.; Trentz, O.; Buddeberg, C.	2000	Critical Care Medicine	<6 month follow-up
Alcohol problems in women admitted to a level I trauma center: a gender-based comparison	Gentilello, L. M.; Rivara, F. P.; Donovan, D. M.; Villaveces, A.; Daranciang, E.; Dunn, C. W.; Ries, R. R.	2000	Journal of Trauma-Injury Infection & Critical Care	No ortho trauma; TBI only
Experience of musculoskeletal pain. Comparison of immigrant and Swedish patient	Soares, J. J.; Grossi, G.	1999	Scandinavian Journal of Caring Sciences	No ortho trauma
Return to work experience of injured workers in a case management program	Brines, J.; Salazar, M. K.; Graham, K. Y.; Pergola, T.	1999	AAOHN Journal	No ortho trauma
Cognitive performance in multiple trauma patients 3 years after injury	Finset, A.; Anke, A. W.; Hofft, E.; Roaldsen, K. S.; Pillgram-Larsen, J.; Stanghelle, J. K.	1999	Psychosomatic Medicine	63% head injury; no ortho subgroup
Psychosocial adjustment after traumatic brain injury: what are the important variables?	Tate, R. L.; Broe, G. A.	1999	Psychological Medicine	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Social support, social selection and self-assessed health status: results from the veterans health study in the United States	Ren, X. S.; Skinner, K.; Lee, A.; Kazis, L.	1999	Social Science & Medicine	Not population of interest
Quality of life after prolonged intensive care	Niskanen, M.; Ruokonen, E.; Takala, J.; Rissanen, P.; Kari, A.	1999	Critical Care Medicine	not target population; no ortho trauma subanalysis
Long-term results and quality of life after parasuicidal multiple blunt trauma	Ruchholtz, S.; Pajonk, F. G.; Waydhas, C.; Lewan, U.; Nast-Kolb, D.; Schweiberer, L.	1999	Critical Care Medicine	No ortho trauma; TBI only
Posttraumatic stress disorder in a national sample of female and male Vietnam veterans: risk factors, war-zone stressors, and resilience-recovery variables	King, D. W.; King, L. A.; Foy, D. W.; Keane, T. M.; Fairbank, J. A.	1999	Journal of Abnormal Psychology	No ortho trauma
Modeling physical health and functional health status: the role of combat exposure, posttraumatic stress disorder, and personal resource attributes	Taft, C. T.; Stern, A. S.; King, L. A.; King, D. W.	1999	Journal of Traumatic Stress	No ortho trauma
Health of UK servicemen who served in Persian Gulf War	Unwin, C.; Blatchley, N.; Coker, W.; Ferry, S.; Hotopf, M.; Hull, L.; Ismail, K.; Palmer, I.; David, A.; Wessely, S.	1999	Lancet	No ortho trauma
Early childhood trauma and disorders of extreme stress as predictors of treatment outcome with chronic posttraumatic stress disorder	Ford, J. D.; Kidd, P.	1998	Journal of Traumatic Stress	No ortho trauma
Conversational discourse abilities following severe traumatic brain injury: a follow-up study	Snow, P.; Douglas, J.; Ponsford, J.	1998	Brain Injury	No ortho trauma; TBI only; not targeted to veterans
The quality circle of hip fracture care	Leininger, S. M.; Cohen, P. Z.	1998	Nursing Case Management	review
Outcome after major trauma: discharge and 6- month follow-up results from the Trauma Recovery Project	Holbrook, T. L.; Anderson, J. P.; Sieber, W. J.; Browner, D.; Hoyt, D. B.	1998	Journal of Trauma-Injury Infection & Critical Care	not target population; unclear trauma
Neuropsychological, psychosocial and vocational correlates of the Glasgow Outcome Scale at 6 months post-injury: a study of moderate to severe traumatic brain injury patients	Satz, P.; Zaucha, K.; Forney, D. L.; McCleary, C.; Asarnow, R. F.; Light, R.; Levin, H.; Kelly, D.; Bergsneider, M.; Hovda, D.; Martin, N.; Caron, M. J.; Namerow, N.; Becker, D.	1998	Brain Injury	No ortho trauma; TBI only
A prospective study of predictors of disability at 3 months after non-central nervous system trauma	Richmond, T. S.; Kauder, D.; Schwab, C. W.	1998	Journal of Trauma-Injury Infection & Critical Care	insufficient data; ortho trauma <75%
Mood disorders following traumatic brain injury: identifying the extent of the problem and the people at risk	Bowen, A.; Neumann, V.; Conner, M.; Tennant, A.; Chamberlain, M. A.	1998	Brain Injury	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
An eighteen-year follow-up study of Israeli prisoners of war and combat veterans	Neria, Y.; Solomon, Z.; Dekel, R.	1998	Journal of Nervous & Mental Disease	No ortho trauma
Resilience-recovery factors in post-traumatic stress disorder among female and male Vietnam veterans: hardiness, postwar social support, and additional stressful life events	King, L. A.; King, D. W.; Fairbank, J. A.; Keane, T. M.; Adams, G. A.	1998	Journal of Personality & Social Psychology	No ortho trauma
Cocaine dependence with and without PTSD among subjects in the National Institute on Drug Abuse Collaborative Cocaine Treatment Study	Najavits, L. M.; Gastfriend, D. R.; Barber, J. P.; Reif, S.; Muenz, L. R.; Blaine, J.; Frank, A.; Crits-Christoph, P.; Thase, M.; Weiss, R. D.	1998	American Journal of Psychiatry	No target population; no ortho subgroup
High rates of psychosocial complications after road traffic injuries	Andersson, A. L.; Bunketorp, O.; Allebeck, P.	1997	Injury	Include; PICO 1; not specific to orthopedic trauma injuries. some patients just had superficial injuries and lacerations
The role of blood pressure, cortisol, and prolactin among soldiers injured in the 1991-1993 war in Croatia	Sivik, T.; Delimar, D.; Korenjak, P.; Delimar, N.	1997	Integrative Physiological & Behavioral Science	not target population; injury as factor
Quality of life issues among women with physical disabilities or breast cancer	Tate, D. G.; Riley, B. B.; Perna, R.; Roller, S.	1997	Archives of Physical Medicine & Rehabilitation	<60 trauma pts
Outcomes 5 years post-traumatic brain injury (with further reference to neurophysical impairment and disability)	Hillier, S. L.; Sharpe, M. H.; Metzer, J.	1997	Brain Injury	No ortho trauma; TBI only
An explanatory model of variables influencing postinjury disability	Richmond, T. S.	1997	Nursing Research	insufficient data; ortho trauma <75%
Use of a screening instrument in women's health care: detecting relationships among victimization history, psychological distress, and medical complaints	Read, J. P.; Stern, A. L.; Wolfe, J.; Ouimette, P. C.	1997	Women & Health	Target population absent
Help-seeking in Vietnam veterans: post-traumatic stress disorder and other predictors	Marshall, R. P.; Jorm, A. F.; Grayson, D. A.; Dobson, M.; O'Toole, B.	1997	Australian & New Zealand Journal of Public Health	No ortho trauma
The Australian Vietnam Veterans Health Study: III. psychological health of Australian Vietnam veterans and its relationship to combat	O'Toole, B. I.; Marshall, R. P.; Grayson, D. A.; Schureck, R. J.; Dobson, M.; Ffrench, M.; Pulvertaft, B.; Meldrum, L.; Bolton, J.; Vennard, J.	1996	International Journal of Epidemiology	not target population; no subanalysis of ortho pts
Ways of coping with psychological distress after trauma	Charlton, P. F.; Thompson, J. A.	1996	British Journal of Clinical Psychology	not target population; no subanalysis of ortho pts
Sexual adjustment and quality of relationship in spinal paraplegia: a controlled study	Kreuter, M.; Sullivan, M.; Siosteen, A.	1996	Archives of Physical Medicine & Rehabilitation	not target population; SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The predictors of surgical procedure and the effects on functional recovery in elderly with subcapital fractures	Young, Y.; German, P.; Brant, L.; Kenzora, J.; Magaziner, J.	1996	Journals of Gerontology Series A-Biological Sciences & Medical Sciences	Include; PICO 1; 34% of patient population had osteoporosis or cancer, and it is likely the fractures were pathologic rather than traumatic injuries in these patients
Personality and psychosocial function after brain injury	Malia, K.; Powell, G.; Torode, S.	1995	Brain Injury	No ortho trauma; TBI only
The effect of prior stressful experience on coping with war trauma and captivity	Solomon, Z.	1995	Psychological Medicine	not target population; no ortho trauma
Assessment of psychological distress in Persian Gulf troops: ethnicity and gender comparisons	Sutker, P. B.; Davis, J. M.; Uddo, M.; Ditta, S. R.	1995	Journal of Personality Assessment	not target population; no ortho trauma
Long-term outcome after whiplash injury. A 2-year follow-up considering features of injury mechanism and somatic, radiologic, and psychosocial findings	Radanov, B. P.; Sturzenegger, M.; Di Stefano, G.	1995	Medicine	not population of interest; whiplash
Psychosocial sequelae of the 1989 Newcastle earthquake: I. Community disaster experiences and psychological morbidity 6 months post-disaster	Carr, V. J.; Lewin, T. J.; Webster, R. A.; Hazell, P. L.; Kenardy, J. A.; Carter, G. L.	1995	Psychological Medicine	no ortho trauma
Predictors of mortality and institutionalization after hip fracture: the New Haven EPESE cohort. Established Populations for Epidemiologic Studies of the Elderly	Marottoli, R. A.; Berkman, L. F.; Leo-Summers, L.; Cooney, L. M., Jr.	1994	American Journal of Public Health	No ortho trauma, Dead pts data
Psychosis as precipitating trauma for PTSD: a treatment strategy	Williams-Keeler, L.; Milliken, H.; Jones, B.	1994	American Journal of Orthopsychiatry	review
Evidence for construct validity of the TMJ scale in a sample of chronic post-traumatic headache patients	Chibnall, J. T.; Duckro, P. N.; Greenberg, M. S.	1994	Cranio	not target population; no ortho trauma
Psychosocial consequences of traffic accidents: a two year follow-up	Andersson, A. L.; Dahlback, L. O.; Allebeck, P.	1994	Scandinavian Journal of Social Medicine	case series; no comparison group data
When is the burn injury healed?: psychosocial implications of care	Molter, N. C.	1993	AACN Clinical Issues in Critical Care Nursing	review
Quality of life assessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower-extremity amputation	Lerner, R. K.; Esterhai, J. L., Jr.; Polomano, R. C.; Cheatle, M. D.; Heppenstall, R. B.	1993	Clinical Orthopaedics & Related Research	not target population; injury as factor
Factors associated with hip osteoarthritis: data from the First National Health and Nutrition Examination Survey (NHANES-I)	Tepper, S.; Hochberg, M. C.	1993	American Journal of Epidemiology	not target population; elderly hip fracture

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The Herald of Free Enterprise disaster: measuring post-traumatic symptoms 30 months on	Joseph, S.; Yule, W.; Williams, R.; Hodgkinson, P.	1993	British Journal of Clinical Psychology	no ortho trauma
The Katz Adjustment Scale: modification for use with victims of traumatic brain and spinal injury	Jackson, H. F.; Hopewell, C. A.; Glass, C. A.; Warburg, R.; Dewey, M.; Ghadiali, E.	1992	Brain Injury	<30 patients per factor group
Late psychosocial outcome in severe traumatic brain injury. Preliminary results of a third follow-up study after 20 years	Thomsen, I. V.	1992	Scandinavian Journal of Rehabilitation Medicine - Supplementum	<60 total pts; TBI only
A study of recovery in trauma patients	Glancy, K. E.; Glancy, C. J.; Lucke, J. F.; Mahurin, K.; Rhodes, M.; Tinkoff, G. H.	1992	Journal of Trauma-Injury Infection & Critical Care	No ortho trauma; < 5% burn pts
Spinal cord injuries. Clinical, functional, and emotional status	Lundqvist, C.; Siosteen, A.; Blomstrand, C.; Lind, B.; Sullivan, M.	1991	Spine	Target population absent,SCI
Combat-related PTSD and psychosocial adjustment problems among substance abusing veterans	McFall, M. E.; Mackay, P. W.; Donovan, D. M.	1991	Journal of Nervous & Mental Disease	No ortho trauma
Effects of mild, moderate and severe closed head injury on long-term vocational status	Stambrook, M.; Moore, A. D.; Peters, L. C.; Deviaene, C.; Hawryluk, G. A.	1990	Brain Injury	No ortho trauma; TBI only
Psychological distress after assaults and accidents	Shepherd, J. P.; Qureshi, R.; Preston, M. S.; Levers, B. G.	1990	BMJ	No ortho trauma; unclear review
Outcome following physical trauma: a comparative approach	Lyle, D. M.; Quine, S.; Pierce, J. P.; Thomson, P. C.	1990	International Disability Studies	<30 patients per factor group
The psychosocial consequences of traumatic injury	Landsman, I. S.; Baum, C. G.; Arnkoff, D. B.; Craig, M. J.; Lynch, I.; Copes, W. S.; Champion, H. R.	1990	Journal of Behavioral Medicine	No ortho trauma
Exploring patterns of alcohol misuse in treatment- seeking UK veterans: A cross-sectional study	Murphy, D.; Turgoose, D.	2019	Addictive Behaviors	No ortho trauma; TBI only
Sex differences in cerebral perfusion changes after mild traumatic brain injury: Longitudinal investigation and correlation with outcome	Bai, G.; Bai, L.; Cao, J.; Sun, C.; Wang, S.; Yin, B.; Zhuang, J.; Wang, Z.; Gan, S.; Niu, X.; Huang, W.; Xu, H.; Shao, M.; Yan, Z.; Zhang, M.	2019	Brain Research	No ortho trauma; TBI only
Does resiliency mediate the association of psychological adaptability with disability and pain in patients with an upper extremity injury or illness?	Kortlever, J. T. P.; Keulen, M. H. F.; Teunis, T.; Ring, D.; Driscoll, M. D.; Reichel, L. M.; Vagner, G. A.	2019	Journal of Psychosomatic Research	not target population; no subanalysis of trauma pts
Effect of resiliency and age on musculoskeletal injuries and lost workdays in emergency medical service personnel	Dropkin, J.; Power, P.; Rasul, R.; Moline, J.; Kim, H.	2019	International Journal of Industrial Ergonomics	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
A new hybrid classification system for traumatic brain injury which helps predict long-term consciousness: a single-center retrospective study	Yan, Y.; Song, J.; Yao, S.; Gao, Y.; Peng, G.; Cao, C.; Liao, W.; Yang, W.; Lan, Z.; Xie, H.; Huang, H.; Du, H.; Xu, G.	2018	Brain Injury	No ortho trauma; TBI only
Another piece to the epidemiological puzzle of traumatic spinal cord injury in Cape Town, South Africa: A population-based study	Phillips, J.; Braaf, J.; Joseph, C.	2018	South African Medical Journal	Spinal Cord Injury
Cognitive Function 3 and 12 Months After ICU Discharge-A Prospective Cohort Study	Estrup, S.; Kjer, C. K. W.; Vilhelmsen, F.; Poulsen, L. M.; GĂ,genur, I.; Mathiesen, O.	2018	Critical care medicine	No ortho trauma; TBI only; no ortho injuries
Identifying Predictors of Time to Soft-Tissue Reconstruction following Open Tibia Fractures	Shammas, R. L.; Mundy, L. R.; Truong, T.; Weber, J. M.; Grier, A. J.; Cho, E. H.; Peskoe, S. B.; Gage, M. J.; Hollenbeck, S. T.	2018	Plastic and reconstructive surgery	<6 month follow-up
A Comparative Analysis of the Injury Patterns and In-Hospital Mortality Rates of Belted and Unbelted Motor-Vehicle Occupants - Puerto Rico, January 2000 to December 2014	Layrisse, V.; GarcÃa-RodrÃguez, O.; Ramos-Meléndez, E.; RodrÃguez-Ortiz, P.	2018	Puerto Rico health sciences journal	insufficient data for target factors
Musculoskeletal injuries and absenteeism among healthcare professionalså??ICD-10 characterization	Amaro, J.; Magalhães, J.; Leite, M.; Aguiar, B.; Ponte, P.; Barrocas, J.; Norton, P.	2018	PLoS ONE	not target population; no fracture sub- analysis
Functional independence after acquired brain injury: Prospective effects of health self-efficacy and cognitive impairment	Parker, H. A.; Rapport, L. J.; Williams, M. W.; Hanks, R. A.; Lumley, M. A.; Bogg, T.	2018	Rehabilitation Psychology	No ortho trauma; TBI only
What Factors Are Associated With Disability After Upper Extremity Injuries? A Systematic Review	Jayakumar, P.; Overbeek, C. L.; Lamb, S.; Williams, M.; Funes, C.; Gwilym, S.; Ring, D.; Vranceanu, A. M.	2018	Clinical orthopaedics and related research	systematic review
Factors affecting time off work in patients with traumatic hand injuriesâ??A bio-psycho-social perspective	Eisele, A.; Dereskewitz, C.; Kus, S.; Oberhauser, C.; Rudolf, K. D.; Coenen, M.; Best, C.; Dölz, B.; Drummer, N.; Franz, A.; Wei�enberg, K.; Müller, W. L.; Siemers, F.; Betz, C.; Franz, A.; Hanebuth, G.; Sauerbier, M.; Bickert, B.; Struckmann, V.; Kneser, U.; Daigeler, A.; Höffken, O.; Sachs, C.; Lehnhardt, M.; Bonness, S.; Freund, K.; Schröder-Kraft, C.; Thielitz, A.; John, S. M.; Drisch, S.; Heidenreich, C.; Stein, V.; Baas, N.; Jänsch, P.; Wickert, M.; Eisenschenk, A.; Goehtz, F.; Weihs	2018	Injury	not target population; insufficient data

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Depression and associated variables in people over 50 years in Spain	Portellano-Ortiz, C.; Garre-Olmo, J.; Calvó-Perxas, L.; Conde-Sala, J. L.	2018	Revista de Psiquiatria y Salud Mental	No target population; no ortho subgroup
Knee dislocation with popliteal artery disruption: A nationwide analysis from 2005 to 2013	Naziri, Q.; Beyer, G. A.; Shah, N. V.; Solow, M.; Hayden, A. J.; Nadarajah, V.; Ho, D.; Newman, J. M.; Boylan, M. R.; Basu, N. N.; Zikria, B. A.; Urban, W. P.	2018	Journal of Orthopaedics	No ortho trauma
The physical and mental health burden of obesity in U.S. veterans: Results from the National Health and Resilience in Veterans Study	Stefanovics, E. A.; Potenza, M. N.; Pietrzak, R. H.	2018	Journal of Psychiatric Research	No ortho trauma; TBI only
The Association Between Daily Posttraumatic Stress Symptoms and Pain Over the First 14Â Days After Injury: An Experience Sampling Study	Pacella, M. L.; Girard, J. M.; Wright, A. G. C.; Suffoletto, B.; Callaway, C. W.	2018	Academic Emergency Medicine	<6 months follow-up
Male gender and age range 20-29Â years are the most important non-modifiable risk factors for recurrence after primary post-traumatic shoulder dislocation	Szyluk, K.; JasiÅ?ski, A.; Niemiec, P.; Mielnik, M.; Widuchowski, W.; Koczy, B.	2018	Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA	No ortho trauma
Negative impact of litigation procedures on patient outcomes four years after severe traumatic brain injury: results from the PariS-traumatic brain injury study	Bayen, E.; Jourdan, C.; Ghout, I.; Pradat-Diehl, P.; Darnoux, E.; Nelson, G.; Vallat-Azouvi, C.; Charenton, J.; Aegerter, P.; Ruet, A.; Azouvi, P.	2018	Disability and rehabilitation	No ortho trauma; TBI only
Predictors of pain and functional outcomes after operative treatment for rotator cuff tears	Jain, N. B.; Ayers, G. D.; Fan, R.; Kuhn, J. E.; Baumgarten, K. M.; Matzkin, E.; Higgins, L. D.	2018	Journal of Shoulder and Elbow Surgery	<60 total patients
Cumulative Adversity as a Correlate of Posttraumatic Growth: The Effects of Multiple Traumas, Discrimination, and Sexual Harassment	Jirek, S. L.; Saunders, D. G.	2018	Journal of Aggression, Maltreatment and Trauma	<60 total patients
Positive psychology perspective on traumatic brain injury recovery and rehabilitation	Rabinowitz, A. R.; Arnett, P. A.	2018	Applied neuropsychology. Adult	irrelevant systematic review*
Psychological morbidities and positive psychological outcomes in people with traumatic spinal cord injury in Mainland China	Wang, Y.; Xie, H.; Zhao, X.	2018	Spinal Cord	not target population; SCI
A qualitative investigation of the attitudes and beliefs about physical activity and post-traumatic osteoarthritis in young adults 3â??10years after an intra-articular knee injury	Ezzat, A. M.; Brussoni, M.; Whittaker, J. L.; Emery, C. A.	2018	Physical Therapy in Sport	No ortho trauma; ACL data

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Analysis of the occurrence of deep venous thrombosis in lower extremity fractures: A clinical study	Li, Q.; Chen, X.; Wang, Y.; Li, L.	2018	Pakistan Journal of Medical Sciences	Include; PICO 1; unclear if follow up was 6 months or greater
Associations of time-related deployment variables with risk of suicide attempt among soldiers: Results from the army study to assess risk and resilience in servicemembers (Army STARRS)	Ursano, R. J.; Kessler, R. C.; Naifeh, J. A.; Mash, H. H.; Fullerton, C. S.; Aliaga, P. A.; Wynn, G. H.; Ng, T. H. H.; Dinh, H. M.; Sampson, N. A.; Kao, T. C.; Bliese, P. D.; Stein, M. B.	2018	JAMA Psychiatry	not target population; no ortho trauma
The Optimal Volume Fraction in Percutaneous Vertebroplasty Evaluated by Pain Relief, Cement Dispersion, and Cement Leakage: A Prospective Cohort Study of 130 Patients with Painful Osteoporotic Vertebral Compression Fracture in the Thoracolumbar Vertebra	Sun, H. B.; Jing, X. S.; Liu, Y. Z.; Qi, M.; Wang, X. K.; Hai, Y.	2018	World Neurosurgery	not target comparison; treatment study
The impact of body composition, pain and resilience on physical activity, physical function and physical performance at 2 months post hip fracture	Resnick, B.; Hebel, J. R.; Gruber-Baldini, A. L.; Hicks, G. E.; Hochberg, M. C.; Orwig, D.; Eastlack, M.; Magaziner, J.	2018	Archives of Gerontology and Geriatrics	<6 months follow up
Assessment of emotion processing skills in acquired brain injury using an ability-based test of emotional intelligence	Hall, S. E.; Wrench, J. M.; Wilson, S. J.	2018	Psychological Assessment	No ortho trauma; TBI only
Raised Anxiety Levels Among Outpatients Preparing to Undergo a Medical Imaging Procedure: Prevalence and Correlates	Forshaw, K. L.; Boyes, A. W.; Carey, M. L.; Hall, A. E.; Symonds, M.; Brown, S.; Sanson-Fisher, R. W.	2018	Journal of the American College of Radiology	No ortho trauma
Improvement rate of patients with severe brain injury during post-acute intensive rehabilitation	Formisano, R.; Contrada, M.; Aloisi, M.; Buzzi, M. G.; Cicinelli, P.; Vedova, C. D.; Laurenza, L.; Matteis, M.; Spanedda, F.; Vinicola, V.; Iosa, M.	2018	Neurological Sciences	No ortho trauma; TBI only
A Comparison of Veterans with Post-traumatic Stress Disorder, with Mild Traumatic Brain Injury and with Both Disorders: Understanding Multimorbidity	Kulas, J. F.; Rosenheck, R. A.	2018	Military medicine	No ortho trauma; TBI only
New episodes of musculoskeletal conditions among employed people in Norway, sickness certification and return to work: A multiregister-based cohort study from primary care	Gjesdal, S.; Holmaas, T. H.; Monstad, K.; Hetlevik, Ã?	2018	BMJ Open	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Trends in vertebral augmentation for spinal fractures in myeloma patients: A 2002-2012 population-based study using a large national cancer registry	Chokshi, F. H.; Howard, D. H.; Jarvik, J. G.; Duszak, R.	2018	Journal of NeuroInterventional Surgery	no ortho trauma
Physical health conditions associated with full and subthreshold PTSD in U.S. military veterans: Results from the National Health and Resilience in Veterans Study	El-Gabalawy, R.; Blaney, C.; Tsai, J.; Sumner, J. A.; Pietrzak, R. H.	2018	Journal of Affective Disorders	No ortho trauma
Developing predictive models for return to work using the Military Power, Performance and Prevention (MP3) musculoskeletal injury risk algorithm: a study protocol for an injury risk assessment programme	Rhon, D. I.; Teyhen, D. S.; Shaffer, S. W.; Goffar, S. L.; Kiesel, K.; Plisky, P. P.	2018	Injury prevention: journal of the International Society for Child and Adolescent Injury Prevention	study protocol; no results
Traumatic Brain Injury Severity, Comorbidity, Social Support, Family Functioning, and Community Reintegration Among Veterans of the Afghanistan and Iraq Wars	Pugh, M. J.; Swan, A. A.; Carlson, K. F.; Jaramillo, C. A.; Eapen, B. C.; Dillahunt-Aspillaga, C.; Amuan, M. E.; Delgado, R. E.; McConnell, K.; Finley, E. P.; Grafman, J. H.	2018	Archives of Physical Medicine and Rehabilitation	No ortho trauma; TBI only
Quality of life and psychological consequences in elderly patients after a hip fracture: A review	Alexiou, K. I.; Roushias, A.; Evaritimidis, S.; Malizos, K. N.	2018	Clinical Interventions in Aging	irrelevant systematic review*
Pre-injury psychosocial and demographic predictors of long-term functional outcomes post-TBI	Seagly, K. S.; Oâ??Neil, R. L.; Hanks, R. A.	2018	Brain Injury	No ortho trauma; TBI only
Are psychosocial factors associated with patient- reported outcome measures in patients with rotator cuff tears? A systematic review	Coronado, R. A.; Seitz, A. L.; Pelote, E.; Archer, K. R.; Jain, N. B.	2018	Clinical Orthopaedics and Related Research	systematic review; non-trauma
Hand posturing is a nonverbal indicator of catastrophic thinking for finger, hand, or wrist injury	Wilkens, S. C.; Lans, J.; Bargon, C. A.; Ring, D.; Chen, N. C.	2018	Clinical Orthopaedics and Related Research	no factor of interest
Return-to-Work Barriers Among Manual Workers After Hand Injuries: 1-Year Follow-up Cohort Study	Marom, B. S.; Ratzon, N. Z.; Carel, R. S.; Sharabi, M.	2018	Archives of Physical Medicine and Rehabilitation	not target population; no ortho sub- analysis
Predictive factors for thirty day mortality in geriatric patients with hip fractures: a prospective study	Forni, C.; Gazineo, D.; Dâ??Alessandro, F.; Fiorani, A.; Morri, M.; Sabattini, T.; Ambrosi, E.; Chiari, P.	2018	International Orthopaedics	No comparison of interest
Ankle fractures: What role does level of insurance play in recovery and outcomes?	Bakhsh, W.; Childs, S.; Judd, K.; Soles, G.; Humphrey, C.; Gorczyca, J.; Ketz, J.	2018	Trauma (United Kingdom)	insufficient data
Examining driving and participation 5 years after traumatic brain injury	Erler, K. S.; Juengst, S. B.; Smith, D. L.; Oâ??Neil-Pirozzi, T. M.; Novack, T. A.; Bogner, J. A.; Kaminski, J.; Giacino, J. T.; Whiteneck, G. G.	2018	OTJR Occupation, Participation and Health	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Alcohol and Drug Use before and during the First Year after Traumatic Brain Injury	Beaulieu-Bonneau, S.; St-Onge, F.; Blackburn, M. C.; Banville, A.; Paradis-Giroux, A. A.; Ouellet, M. C.	2018	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Lower extremity injuries in novice runners: Incidence, types, time patterns, sociodemographic and motivational risk factors in a prospective cohort study	Vlahek, P.; MatijeviÄ?, V.	2018	Acta Clinica Croatica	injury as outcome
The role of BMI in hip fracture surgery	Akinleye, S. D.; Garofolo, G.; Culbertson, M. D.; Homel, P.; Erez, O.	2018	Geriatric Orthopaedic Surgery and Rehabilitation	<6 months follow-up
Responsiveness of the Traumatic Brain Injuryâ??Quality of Life (TBI-QOL) Measurement System	Poritz, J. M. P.; Sherer, M.; Kisala, P. A.; Tulsky, D.; Leon-Novelo, L.; Ngan, E.	2018	Archives of Physical Medicine and Rehabilitation	No ortho trauma; TBI only
Temporal profile of care following mild traumatic brain injury: predictors of hospital admission, follow-up referral and six-month outcome	Yue, J. K.; Winkler, E. A.; Sharma, S.; Vassar, M. J.; Ratcliff, J. J.; Korley, F. K.; Seabury, S. A.; Ferguson, A. R.; Lingsma, H. F.; Meeuws, S.; Adeoye, O. M.; Rick, J. W.; Robinson, C. K.; Duarte, S. M.; Yuh, E. L.; Mukherjee, P.; Dikmen, S. S.; McAllister, T. W.; Diaz-Arrastia, R.; Valadka, A. B.; Gordon, W. A.; Okonkwo, D. O.; Manley, G. T.	2017	Brain Injury	No ortho trauma; TBI only
Does age matter? A mixed methods study examining determinants of good recovery and resilience in young and middle-aged adults following moderate-to-severe traumatic brain injury	Arbour, C.; Gosselin, N.; Levert, M. J.; Gauvin-Lepage, J.; Michallet, B.; Lefebvre, H.	2017	Journal of advanced nursing	No ortho trauma; TBI only
Differences in Brain Architecture in Remote Mild Traumatic Brain Injury	Rajesh, A.; Cooke, G. E.; Monti, J. M.; Jahn, A.; Daugherty, A. M.; Cohen, N. J.; Kramer, A. F.	2017	Journal of Neurotrauma	No ortho trauma; TBI only
Correlation Between Recovery of Triceps Surae Muscle Strength and Level of Activity After Open Repair of Acute Achilles Tendon Rupture	Toyooka, S.; Takeda, H.; Nakajima, K.; Masujima, A.; Miyamoto, W.; Pagliazzi, G.; Nakagawa, T.; Kawano, H.	2017	Foot and Ankle International	not target population; acute achiles Tendon rupture
Abnormal Pain Response After a Compensable Shoulder Injury	Razmjou, H.; Boljanovic, D.; Elmaraghy, A.; Macritchie, I.; Roknic, C.; Medeiros, D.; Richards, R. R.	2017	Orthopaedic Journal of Sports Medicine	<60 target population
Biopsychosocial factors predict quality of life in thoracolumbar spine surgery	Tripp, D. A.; Abraham, E.; Lambert, M.; Wagg, K.; Bigney, E.; Daly, E.; Verreault, P.; Manson, N.	2017	Quality of Life Research	<60 target population
Pre-discharge rehabilitation after hip surgery reduces 30-day readmissions in older adults: National Health Insurance Serviceâ??Senior Cohort (2007â??2012)	Bu, N.; Kim, S.; Choi, H.; Kim, B. S.; Choi, H.; Kim, S.; Won, C. W.	2017	European Geriatric Medicine	not target population; elderly hip fracture

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Quality of return to work in patients with mild traumatic brain injury: a prospective investigation of associations among post-concussion symptoms, neuropsychological functions, working status and stability	Chu, S. Y.; Tsai, Y. H.; Xiao, S. H.; Huang, S. J.; Yang, C. C.	2017	Brain Injury	No ortho trauma; TBI only
Mortality, Geriatric, and Nongeriatric Surgical Risk Factors among the Eldest Old: A Prospective Observational Study	Pelavski, A. D.; De Miguel, M.; Alcaraz Garcia-Tejedor, G.; Villarino, L.; Lacasta, A.; Señas, L.; Rochera, M. I.	2017	Anesthesia and Analgesia	<6 months follow-up
Complications of Spinal Cord Injury Over the First Year After Discharge From Inpatient Rehabilitation	Stillman, M. D.; Barber, J.; Burns, S.; Williams, S.; Hoffman, J. M.	2017	Archives of Physical Medicine and Rehabilitation	Spinal Cord Injury
Differential Influence of Social Support in Emerging Adulthood Across Sources of Support and Profiles of Interpersonal and Non-Interpersonal Potentially Traumatic Experiences	Howard Sharp, K. M.; Schwartz, L. E.; Barnes, S. E.; Jamison, L. E.; Miller-Graff, L. E.; Howell, K. H.	2017	Journal of Aggression, Maltreatment and Trauma	Target population absent
A prospective cohort study on symptoms of common mental disorders among current and retired professional ice hockey players	Gouttebarge, V.; Kerkhoffs, G. M. M. J.	2017	Physician and Sportsmedicine	not target population; no injury sub- analysis
Development and preliminary performance of a risk factor screen to predict posttraumatic psychological disorder after trauma exposure	Carlson, E. B.; Palmieri, P. A.; Spain, D. A.	2017	General Hospital Psychiatry	Target population absent
The high burden of traumatic brain injury and comorbidities amongst homeless adults with mental illness	Topolovec-Vranic, J.; Schuler, A.; Gozdzik, A.; Somers, J.; Bourque, P. Ã?; Frankish, C. J.; Jbilou, J.; Pakzad, S.; Palma Lazgare, L. I.; Hwang, S. W.	2017	Journal of Psychiatric Research	No ortho trauma; TBI only
The impact of social support, unit cohesion, and trait resilience on PTSD in treatment-seeking military personnel with PTSD: The role of posttraumatic cognitions	Zang, Y.; Gallagher, T.; McLean, C. P.; Tannahill, H. S.; Yarvis, J. S.; Foa, E. B.	2017	Journal of Psychiatric Research	Target population absent
Perioperative Periprosthetic Fractures Associated With Primary Total Hip Arthroplasty	Park, K. J.; Menendez, M. E.; Barnes, C. L.	2017	Journal of Arthroplasty	wrong population; non-traumatic; peri- prosthetic fracture after THA
Epigenetic alterations of the BDNF gene in combat- related post-traumatic stress disorder	Kim, T. Y.; Kim, S. J.; Chung, H. G.; Choi, J. H.; Kim, S. H.; Kang, J. I.	2017	Acta Psychiatrica Scandinavica	No ortho trauma
Acute to chronic pain transition in extremity trauma: A narrative review for future preventive interventions (part 2)	Bérubé, M.; ChoiniÃ"re, M.; Laflamme, Y. G.; Gélinas, C.	2017	International journal of orthopaedic and trauma nursing	systematic review

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Functional incapacity related to rotator cuff syndrome in workers. Is it influenced by social characteristics and medical management?	Champagne, R.; Bodin, J.; Fouquet, N.; Roquelaure, Y.; Petit, A.	2017	Journal of Hand Therapy	no ortho trauma
The impact of fragility fractures on work and characteristics associated with time to return to work	Rotondi, N. K.; Beaton, D. E.; Ilieff, M.; Adhihetty, C.; Linton, D.; Bogoch, E.; Sale, J.; Hogg-Johnson, S.; Jaglal, S.; Jain, R.; Weldon, J.	2017	Osteoporosis International	not target population; fragility fractures
Outcome of expedited rotator cuff surgery in injured workers: Determinants of successful recovery	Razmjou, H.; Boljanovic, D.; Lincoln, S.; Holtby, R.; Gallay, S.; Henry, P.; Macritchie, I.; Borthwick, C.; Mayer, L.; Roknic, C.; Shore, D.; Kamino, A.; Grossman, J.; Hill, J.; Singh, G.; Travers, N.; Yanofsky, L.; Wilson, M.; Sumar, S.; Savona, A.; De Medeiros, F.; Mann, H.; Champsi, A.; Chau, S.; Medeiros, D.; Richards, R. R.	2017	Orthopaedic Journal of Sports Medicine	not target population; no subanalysis of trauma pts
SHORT-TERM OUTCOME OF OPERATED TRAUMATIC BRAIN INJURY PATIENTS FOR INTRACRANIAL HEMORRHAGE AT TIKUR ANBESSA SPECIALIZED TEACHING HOSPITAL (TASTH), ADDIS ABABA, ETHIOPIA	Biluts, H.; Kassahun,; Abebe, M.	2017	Ethiopian medical journal	No ortho trauma; TBI only
Risk Factors for Institutionalization after Traumatic Brain Injury Inpatient Rehabilitation	Eum, R. S.; Brown, A. W.; Watanabe, T. K.; Zasler, N. D.; Goldstein, R.; Seel, R. T.; Roth, E. J.; Zafonte, R. D.; Glenn, M. B.	2017	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Predictors of social integration for individuals with brain injury: An application of the ICF model	Ditchman, N.; Sheehan, L.; Rafajko, S.; Haak, C.; Kazukauskas, K.	2016	Brain Injury	No ortho trauma; TBI only
Comparing Comorbidity Indices to Predict Post- Acute Rehabilitation Outcomes in Older Adults	Kumar, A.; Graham, J. E.; Resnik, L.; Karmarkar, A. M.; Tan, A.; Deutsch, A.; Ottenbacher, K. J.	2016	American journal of physical medicine & rehabilitation	not target population; elderly fracture
Into the bowels of depression: Unravelling medical symptoms associated with depression by applying machine-learning techniques to a community based population sample	Dipnall, J. F.; Pasco, J. A.; Berk, M.; Williams, L. J.; Dodd, S.; Jacka, F. N.; Meyer, D.	2016	PLoS ONE	not target population; no injury sub- analysis
Perceived functional impairment and spirituality/religiosity as predictors of depression in a Sri Lankan spinal cord injury patient population	Xue, S.; Arya, S.; Embuldeniya, A.; Narammalage, H.; Da Silva, T.; Williams, S.; Ravindran, A.	2016	Spinal Cord	Spinal Cord Injury

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Heart rate variability: Pre-deployment predictor of post-deployment PTSD symptoms	Pyne, J. M.; Constans, J. I.; Wiederhold, M. D.; Gibson, D. P.; Kimbrell, T.; Kramer, T. L.; Pitcock, J. A.; Han, X.; Williams, D. K.; Chartrand, D.; Gevirtz, R. N.; Spira, J.; Wiederhold, B. K.; McCraty, R.; McCune, T. R.	2016	Biological Psychology	No ortho trauma
Acute to chronic pain transition in extremity trauma: A narrative review for future preventive interventions (part 1)	Bérubé, M.; ChoiniÃ"re, M.; Laflamme, Y. G.; Gélinas, C.	2016	International journal of orthopaedic and trauma nursing	systematic review
Factors related to a decline in upper extremity function among patients with a wrist fracture due to a fall	González, N.; Antón-Ladislao, A.; Orive, M.; Zabala, J.; GarcÃa-Gutiérrez, S.; Las Hayas, C.; Quintana, J. M.; Quintana López, J. M.; Gutiérrez, S. G.; Hayas RodrÃguez, C. L.; Echenagusia, J. Z.; Calzada, M. O.; Hernández, N. G.; Larracoechea, U. A.; Ladislao, A. A.; Guerrero, I. L.; González, A. B.; Sanado Lampreave, L. A.; Gamilla Iglesias, I. J.; Sanzberro, E. U.; Alba, R. F.; Garnica, A. I.; Sanz, E. U.; Arenaza Merino, J. C.; Azkorra, L. L.; Calatrava, C. G.; Rivas, F.; Rubio, G. N	2016	International Journal of Clinical Practice	not target population; elderly wrist fracture
Mindfulness and Coping Are Inversely Related to Psychiatric Symptoms in Patients and Informal Caregivers in the Neuroscience ICU: Implications for Clinical Care	Shaffer, K. M.; Riklin, E.; Jacobs, J. M.; Rosand, J.; Vranceanu, A. M.	2016	Critical Care Medicine	Target population absent
Diffuse axonal injury: Epidemiology, outcome and associated risk factors	Vieira, R. C. A.; Paiva, W. S.; De Oliveira, D. V.; Teixeira, M. J.; De Andrade, A. F.; De Sousa, R. M. C.	2016	Frontiers in Neurology	Target population absent
Prevalence, correlates, and predictors of insomnia in the US army prior to deployment	Taylor, D. J.; Pruiksma, K. E.; Hale, W. J.; Kelly, K.; Maurer, D.; Peterson, A. L.; Mintz, J.; Litz, B. T.; Williamson, D. E.	2016	Sleep	Target population absent
Contradictions and conflicts in brain injury rehabilitation. A systematic inquiry into models of rehabilitation	Glintborg, C.; Mateu, N. C.; HÃ, gsbro, K.	2016	Scandinavian Journal of Disability Research	No ortho trauma; TBI only
Analysis of mortality and epidemiology in 2617 cases of traumatic brain injury: Korean Neuro-Trauma Data Bank System 2010-2014	Song, S. Y.; Lee, S. K.; Eom, K. S.; Seo, B. R.; Rim, B. C.; Cho, B. M.; Jung, H. H.; Kim, J. H.; Lee, J. H.; Kim, J. H.; Kim, M. S.; Choi, S. W.; Nam, T. K.; Song, Y. J.	2016	Journal of Korean Neurosurgical Society	No ortho trauma; TBI only
Clinician and Patient-reported Outcomes Are Associated With Psychological Factors in Patients With Chronic Shoulder Pain	Wolfensberger, A.; Vuistiner, P.; Konzelmann, M.; Plomb-Holmes, C.; Léger, B.; Luthi, F.	2016	Clinical Orthopaedics and Related Research	<60 target population

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Annual incidence rates of hip symptoms and three hip OA outcomes from a U.S. population-based cohort study: the Johnston County Osteoarthritis Project	Moss, A. S.; Murphy, L. B.; Helmick, C. G.; Schwartz, T. A.; Barbour, K. E.; Renner, J. B.; Kalsbeek, W.; Jordan, J. M.	2016	Osteoarthritis and Cartilage	No comparison of interest
Population mental health among U.S. military veterans: results of the Veterans Health Module of the Behavioral Risk Factor Surveillance System, 2011â??2012	Blosnich, J. R.; Brenner, L. A.; Bossarte, R. M.	2016	Annals of Epidemiology	wrong population; not ortho trauma
Resilience and Other Possible Outcomes After Mild Traumatic Brain Injury: a Systematic Review	Sullivan, K. A.; Kempe, C. B.; Edmed, S. L.; Bonanno, G. A.	2016	Neuropsychology review	irrelevant systematic review*
Vitamin D deficiency in adult fracture patients: prevalence and risk factors	Gorter, E. A.; Krijnen, P.; Schipper, I. B.	2016	European journal of trauma and emergency surgery : official publication of the European Trauma Society	No comparison of interest
Physical exercise and burnout facets predict injuries in a population-based sample of French career firefighters	Vaulerin, J.; d'Arripe-Longueville, F.; Emile, M.; Colson, S. S.	2016	Applied Ergonomics	not target population; no subanalysis of ortho pts
Incidence and prognostic factors of chronic pain after isolated musculoskeletal extremity injury	Pierik, J. G. J.; Ijzerman, M. J.; Gaakeer, M. I.; Vollenbroek-Hutten, M. M. R.; Van Vugt, A. B.; Doggen, C. J. M.	2016	European Journal of Pain (United Kingdom)	not best available evidence; very low quality
Recovery from Mild Traumatic Brain Injury in Previously Healthy Adults	Losoi, H.; Silverberg, N. D.; Wäljas, M.; Turunen, S.; Rosti-Otajärvi, E.; Helminen, M.; Luoto, T. M.; Julkunen, J.; Ã?hman, J.; Iverson, G. L.	2016	Journal of Neurotrauma	No ortho trauma; TBI only
Open reduction internal fixation has fewer short- term complications than shoulder arthroplasty for proximal humeral fractures	Cvetanovich, G. L.; Chalmers, P. N.; Verma, N. N.; Nicholson, G. P.; Romeo, A. A.	2016	Journal of Shoulder and Elbow Surgery	No comparison of interest
Prevalence of fear of falling in older adults, and its associations with clinical, functional and psychosocial factors: The Frailty in Brazilian Older People-Rio de Janeiro Study	Malini, F. M.; Lourenço, R. A.; Lopes, C. S.	2016	Geriatrics and Gerontology International	not target population; elderly hip fracture
Health-related quality of life in children and youth with acquired brain injury: Two years after injury	Ilmer, E. C.; Lambregts, S. A. M.; Berger, M. A. M.; De Kloet, A. J.; Hilberink, S. R.; Roebroeck, M. E.	2016	European Journal of Paediatric Neurology	No ortho trauma; TBI only; targeted population between 6-22 years
Annual Incidence of Knee Symptoms and Four Knee Osteoarthritis Outcomes in the Johnston County Osteoarthritis Project	Murphy, L. B.; Moss, S.; Do, B. T.; Helmick, C. G.; Schwartz, T. A.; Barbour, K. E.; Renner, J.; Kalsbeek, W.; Jordan, J. M.	2016	Arthritis Care and Research	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Prospective associations between traumatic brain injury and postdeployment tinnitus in active-duty marines	Yurgil, K. A.; Clifford, R. E.; Risbrough, V. B.; Geyer, M. A.; Huang, M.; Barkauskas, D. A.; Vasterling, J. J.; Baker, D. G.	2016	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Sleep disturbance and upper-extremity disability	Peters, R. M.; Menendez, M. E.; Mellema, J. J.; Ring, D.; Vranceanu, A. M.	2016	Archives of Bone and Joint Surgery	mixed population; majority not-ortho traumas of interest
Trajectories of life satisfaction over the first 10 years after traumatic brain injury: Race, gender, and functional ability	Williamson, M. L. C.; Elliott, T. R.; Bogner, J.; Dreer, L. E.; Arango-Lasprilla, J. C.; Kolakowsky-Hayner, S. A.; Pretz, C. R.; Lequerica, A.; Perrin, P. B.	2016	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Conditional risk for posttraumatic stress disorder in an epidemiological study of a Brazilian urban population	Luz, M. P.; Coutinho, E. S. F.; Berger, W.; Mendlowicz, M. V.; Vilete, L. M. P.; Mello, M. F.; Quintana, M. I.; Bressan, R. A.; Andreoli, S. B.; Mari, J. J.; Figueira, I.	2016	Journal of Psychiatric Research	No ortho trauma
EFT (Emotional Freedom Techniques) and Resiliency in Veterans at Risk for PTSD: A Randomized Controlled Trial	Church, D.; Sparks, T.; Clond, M.	2016	Explore: The Journal of Science and Healing	<10 pts per group
Prescription Stimulants and PTSD Among U.S. Military Service Members	Crum-Cianflone, N. F.; Frasco, M. A.; Armenta, R. F.; Phillips, C. J.; Horton, J.; Ryan, M. A.; Russell, D. W.; LeardMann, C.	2015	Journal of traumatic stress	No ortho trauma
Sleep disturbance and psychologic distress: prevalence and risk indicators for temporomandibular disorders in a Chinese population	Lei, J.; Liu, M. Q.; Yap, A. U.; Fu, K. Y.	2015	Journal of oral & facial pain and headache	No ortho trauma; Mayofacial data comparison only
Prevalence, associated factors, mood and cognitive outcomes of traumatic brain injury in later life: The health in men study (HIMS)	Almeida, O. P.; Hankey, G. J.; Yeap, B. B.; Golledge, J.; Flicker, L.	2015	International Journal of Geriatric Psychiatry	No ortho trauma; TBI only
Prospective longitudinal evaluation of the effect of deployment-acquired traumatic brain injury on posttraumatic stress and related disorders: Results from the army study to assess risk and resilience in servicemembers (army STARRS)	Stein, M. B.; Kessler, R. C.; Heeringa, S. G.; Jain, S.; Campbell-Sills, L.; Colpe, L. J.; Fullerton, C. S.; Nock, M. K.; Sampson, N. A.; Schoenbaum, M.; Sun, X.; Thomas, M. L.; Ursano, R. J.	2015	American Journal of Psychiatry	No ortho trauma; TBI only
Prospective Analysis of Health and Mortality Risk in Veteran and Non-Veteran Participants in the Women's Health Initiative	Weitlauf, J. C.; LaCroix, A. Z.; Bird, C. E.; Woods, N. F.; Washington, D. L.; Katon, J. G.; LaMonte, M. J.; Goldstein, M. K.; Bassuk, S. S.; Sarto, G. E.; Stefanick, M. L.	2015	Women's Health Issues	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The efficacy of celecoxib in preventing heterotopic ossification recurrence after open arthrolysis for post-traumatic elbow stiffness in adults	Sun, Y.; Cai, J.; Li, F.; Liu, S.; Ruan, H.; Fan, C.	2015	Journal of Shoulder and Elbow Surgery	No ortho trauma ; elbow injury treatment
Modeling community integration in workers with delayed recovery from mild traumatic brain injury	Mollayeva, T.; Shapiro, C. M.; Mollayeva, S.; Cassidy, J. D.; Colantonio, A.	2015	BMC Neurology	No ortho trauma; TBI only
Resilience and symptom reporting following mild traumatic brain injury in military service members	Merritt, V. C.; Lange, R. T.; French, L. M.	2015	Brain Injury	No ortho trauma; TBI only
Psychosocial correlates of depression following spinal injury: A systematic review	Kraft, R.; Dorstyn, D.	2015	Journal of Spinal Cord Medicine	systematic review; irrelevant topic SCI
Resilience Is Associated with Outcome from Mild Traumatic Brain Injury	Losoi, H.; Silverberg, N. D.; Wäljas, M.; Turunen, S.; Rosti-Otajärvi, E.; Helminen, M.; Luoto, T. M. A.; Julkunen, J.; �hman, J.; Iverson, G. L.	2015	Journal of Neurotrauma	No ortho trauma; TBI only
Resilience is associated with fatigue after mild traumatic brain injury	Losoi, H.; Wäljas, M.; Turunen, S.; Brander, A.; Helminen, M.; Luoto, T. M.; Rosti-Otajärvi, E.; Julkunen, J.; Ã?hman, J.	2015	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Incidence of acute care adverse events and long- term health-related quality of life in patients with TSCI	Street, J. T.; Noonan, V. K.; Cheung, A.; Fisher, C. G.; Dvorak, M. F.	2015	Spine Journal	Target population absent,SCI
A prospective biopsychosocial study of the persistent post-concussion symptoms following mild traumatic brain injury	Wäljas, M.; Iverson, G. L.; Lange, R. T.; Hakulinen, U.; Dastidar, P.; Huhtala, H.; Liimatainen, S.; Hartikainen, K.; �hman, J.	2015	Journal of Neurotrauma	No ortho trauma; TBI only
Systematic review of multivariable prognostic models for mild traumatic brain injury	Silverberg, N. D.; Gardner, A. J.; Brubacher, J. R.; Panenka, W. J.; Li, J. J.; Iverson, G. L.	2015	Journal of Neurotrauma	irrelevant systematic review*
Understanding and meeting information needs following unintentional injury: Comparing the accounts of patients, carers and service providers	Kellezi, B.; Beckett, K.; Earthy, S.; Barnes, J.; Sleney, J.; Clarkson, J.; Regel, S.; Jones, T.; Kendrick, D.	2015	Injury	no quantitative data comparison
Injury patterns, severity and outcomes among older adults who sustained brain injury following a same level fall: a retrospective analysis	Scheetz, L. J.	2015	International emergency nursing	not target population; no fracture sub- analysis
Does Disability Correlate With Impairment After Hand Injury?	Farzad, M.; Asgari, A.; Dashab, F.; Layeghi, F.; Karimlou, M.; Hosseini, S. A.; Rassafiani, M.	2015	Clinical Orthopaedics and Related Research	mixed/unclear population; majority not- ortho traumas of interest

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Biopsychosocial influence on shoulder pain: Risk subgroups translated across preclinical and clinical prospective cohorts	George, S. Z.; Wallace, M. R.; Wu, S. S.; Moser, M. W.; Wright, T. W.; Farmer, K. W.; Borsa, P. A.; Parr, J. J.; Greenfield, W. H.; Dai, Y.; Li, H.; Fillingim, R. B.	2015	Pain	No ortho trauma
Towards Measuring Community Understanding of Traumatic Brain Injury: The Structure and Potential Utility of the Head Injury Knowledge Scale	Thomas, M.; Jobse, E.	2015	Brain Impairment	No ortho trauma; TBI only
Suicidal Ideation among Florida National Guard Members: Combat Deployment and Non- Deployment Risk and Protective Factors	Vanderploeg, R. D.; Nazem, S.; Brenner, L. A.; Belanger, H. G.; Donnell, A. J.; Scott, S. G.	2015	Archives of suicide research: official journal of the International Academy for Suicide Research	No ortho trauma
Prognostic indicators of social outcomes in persons who sustained an injury in a road traffic crash	Gopinath, B.; Jagnoor, J.; Harris, I. A.; Nicholas, M.; Casey, P.; Blyth, F.; Maher, C. G.; Cameron, I. D.	2015	Injury	not target population; no subanalysis of target pts
Correlates of suicidal ideation in physically injured trauma survivors	O'Connor, S. S.; Dinsio, K.; Wang, J.; Russo, J.; Rivara, F. P.; Love, J.; McFadden, C.; Lapping-Carr, L.; Peterson, R.; Zatzick, D. F.	2014	Suicide & life-threatening behavior	No ortho trauma; TBI only
Psychological distress is associated with greater perceived disability and pain in patients presenting to a shoulder clinic	Menendez, M. E.; Baker, D. K.; Oladeji, L. O.; Fryberger, C. T.; McGwin, G.; Ponce, B. A.	2015	Journal of Bone and Joint Surgery - American Volume	No ortho trauma; no injuries
Psychosocial factors and surgical outcomes: Are elderly depressed patients less satisfied with surgery?	Adogwa, O.; Carr, K.; Fatemi, P.; Verla, T.; Gazcon, G.; Gottfried, O.; Bagley, C.; Cheng, J.	2014	Spine	no ortho trauma
Locus of pain control associated with medication adherence behaviors among patients after an orthopedic procedure	Porto, T. M.; Machado, D. C.; Martins, R. O.; Galato, D.; Piovezan, A. P.	2014	Patient Preference and Adherence	<6 months follow-up
The Influence of Musculoskeletal Conditions, Behavioral Health Diagnoses, and Demographic Factors on Injury-Related Outcome in a High- Demand Population	Schoenfeld, A. J.; Goodman, G. P.; Burks, R.; Black, M. A.; Nelson, J. H.; Belmont Jr, P. J.	2014	Journal of Bone and Joint Surgery - American Volume	insufficient data for target comparison
Predicting non return to work after orthopaedic trauma: The Wallis Occupational Rehabilitation RisK (WORRK) model	Luthi, F.; Deriaz, O.; Vuistiner, P.; Burrus, C.; Hilfiker, R.	2014	PLoS ONE	duplicate of 24718689
Population-based, inception cohort study of the incidence, course, and prognosis of mild traumatic brain injury after motor vehicle collisions	Cassidy, J. D.; Boyle, E.; Carroll, L. J.	2014	Archives of Physical Medicine and Rehabilitation	not target population; no subanalysis of ortho pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Increased risk of major depression in the three years following a femoral neck fracture-a national population-based follow-up study	Chang, C. Y.; Chen, W. L.; Liou, Y. F.; Ke, C. C.; Lee, H. C.; Huang, H. L.; Ciou, L. P.; Chou, C. C.; Yang, M. C.; Ho, S. Y.; Lin, Y. R.	2014	PLoS ONE	case control; majority control patients in analysis
One year after mild injury: Comparison of health status and quality of life between patients with whiplash versus other injuries	Hours, M.; Khati, I.; Charnay, P.; Chossegros, L.; Tardy, H.; Tournier, C.; Perrine, A. L.; Luauté, J.; Laumon, B.	2014	Journal of Rheumatology	not target population; no subanalysis of ortho pts
Psychological factors predicting outcome after traumatic injury: The role of resilience	Rainey, E. E.; Petrey, L. B.; Reynolds, M.; Agtarap, S.; Warren, A. M.	2014	American Journal of Surgery	Very low quality
Prospective prediction of functional difficulties among recently separated Veterans	Larson, G. E.; Norman, S. B.	2014	Journal of Rehabilitation Research and Development	not target population; no subanalysis of ortho pts
Mediating effects of cognitive effort and depression on intelligence, memory, and executive functions in individuals with mild traumatic brain injury	Na, K. S.; Jung, H. Y.; Lee, S. I.; Kim, S. G.	2014	Psychiatry Investigation	No ortho trauma; TBI only; not targeted population
Treatment of generalized war-related health concerns placing TBI and PTSD in context	Hoge, C. W.; Castro, C. A.; Yurgil, K. A.; Barkauskas, D. A.; Vasterling, J. J.; Nievergelt, C. M.; Larson, G. E.; Schork, N. J.; Litz, B. T.; Nash, W. P.; Baker, D. G.	2014	JAMA - Journal of the American Medical Association	No ortho trauma; TBI only
Biopsychosocial influence on exercise-induced injury: Genetic and psychological combinations are predictive of shoulder pain phenotypes	George, S. Z.; Parr, J. J.; Wallace, M. R.; Wu, S. S.; Borsa, P. A.; Dai, Y.; Fillingim, R. B.	2014	Journal of Pain	Target population absent
Racial and ethnic disparities in functioning at discharge and follow-up among patients with motor complete spinal cord injury	Fyffe, D. C.; Deutsch, A.; Botticello, A. L.; Kirshblum, S.; Ottenbacher, K. J.	2014	Archives of Physical Medicine and Rehabilitation	No ortho trauma :irrelevant SCI injury data
Identification of risk factors for the occurrence of cement leakage during percutaneous vertebroplasty for painful osteoporotic or malignant vertebral fracture	Tomé-Bermejo, F.; Piñera, A. R.; Duran-쥬쳌Ivarez, C.; Román, B. L. S.; Mahillo, I.; Alvarez, L.; Pérez-Higueras, A.	2014	Spine	not target population; osteoporotic/malignant fracture
Sexual healthcare for wounded warriors with serious combat-related injuries and disabilities	Tepper, M. S.	2014	Sexual Medicine Reviews	Review (not systematic)
Disentangling Sense of Coherence and Resilience in case of multiple traumas	Fossion, P.; Leys, C.; Kempenaers, C.; Braun, S.; Verbanck, P.; Linkowski, P.	2014	Journal of Affective Disorders	No ortho trauma; childhood trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Off-label use of second generation antipsychotics for post-traumatic stress disorder in the Department of Veterans Affairs: Time trends and sociodemographic, comorbidity, and regional correlates	Bauer, M. S.; Lee, A.; Li, M.; Bajor, L.; Rasmusson, A.; Kazis, L. E.	2014	Pharmacoepidemiology and Drug Safety	No ortho trauma; TBI only
Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress	Minassian, A.; Geyer, M. A.; Baker, D. G.; Nievergelt, C. M.; O'Connor D, T.; Risbrough, V. B.	2014	Psychosomatic Medicine	No ortho trauma; TBI only
Correlation of psychosocial factor with functional outcome: One year after Hip fracture surgery	Chua, B. U.; Bonifacio, L. R.	2014	Malaysian Orthopaedic Journal	not best available evidence; very low quality
Psychological stress as a modulator of functional recovery following spinal cord injury	Bouchard, S. M.; Hook, M. A.	2014	Frontiers in Neurology	No ortho trauma
Evaluation of functional restoration outcomes for chronic disabling occupational cervical disorders	Hartzell, M. M.; Mayer, T. G.; Asih, S.; Neblett, R.; Gatchel, R. J.	2014	Journal of Occupational and Environmental Medicine	no ortho trauma
Hip fractures in patients admitted to emergency departments may increase the risk of acute affective disorders: A national population-based study	Chou, C. T.; Chou, C. C.; Law, Y. Y.; Lin, Y. R.	2014	Journal of Acute Medicine	<60 target pts
FIM motor scores for classifying community discharge after inpatient rehabilitation for hip fracture	Wang, C. Y.; Graham, J. E.; Karmarkar, A. M.; Reistetter, T. A.; Protas, E. J.; Ottenbacher, K. J.	2014	PM and R	not target population; elderly hip fxs
Effects of impairment in activities of daily living on predicting mortality following hip fracture surgery in studies using administrative healthcare databases	Seitz, D. P.; Anderson, G. M.; Austin, P. C.; Gruneir, A.; Gill, S. S.; Bell, C. M.; Rochon, P. A.	2014	BMC geriatrics	No ortho trauma
Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: an epidemiological study	Tohme, S.; Delhumeau, C.; Zuercher, M.; Haller, G.; Walder, B.	2014	Scandinavian journal of trauma, resuscitation and emergency medicine	No ortho trauma; TBI only
The role of emotional health in functional outcomes after orthopaedic surgery: Extending the biopsychosocial model to orthopaedics. AOA critical issues	Ayers, D. C.; Franklin, P. D.; Ring, D. C.	2013	Journal of Bone and Joint Surgery - Series A	review
Penetrating trauma in urban women: Patterns of injury and violence	Jacovides, C. L.; Bruns, B.; Holena, D. N.; Sims, C. A.; Wiebe, D. J.; Reilly, P. M.; Pascual, J. L.	2013	Journal of Surgical Research	Target population absent

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Trauma and suicidality in war affected communities	Jankovic, J.; Bremner, S.; Bogic, M.; Lecic-Tosevski, D.; Ajdukovic, D.; Franciskovic, T.; Galeazzi, G. M.; Kucukalic, A.; Morina, N.; Popovski, M.; Schýtzwohl, M.; Priebe, S.	2013	European Psychiatry	No ortho trauma
Risk factors for postoperative wound complications of calcaneal fractures following plate fixation	Ding, L.; He, Z.; Xiao, H.; Chai, L.; Xue, F.	2013	Foot and Ankle International	No target outcomes; no PROs
Difficulties in functioning 1 year after injury: The role of preinjury sociodemographic and health characteristics, health care and injury-related factors	Langley, J.; Davie, G.; Wilson, S.; Lilley, R.; Ameratunga, S.; Wyeth, E.; Derrett, S.	2013	Archives of Physical Medicine and Rehabilitation	not target population; no fracture sub- analysis
Surgery or Consultation: A Population-Based Cohort Study of Use of Orthopaedic Surgeon Services	Badley, E. M.; Canizares, M.; MacKay, C.; Mahomed, N. N.; Davis, A. M.	2013	PLoS ONE	No ortho trauma; no ortho injury data
Baseline prevalence of heart diseases, hypertension, diabetes, and obesity in persons with acute traumatic spinal cord injury: Potential threats in the recovery trajectory	Selassie, A.; Snipe, L.; Focht, K. L.; Welldaregay, W.	2013	Topics in Spinal Cord Injury Rehabilitation	No ortho trauma
Preinjury resilience and mood as predictors of early outcome following mild traumatic brain injury	McCauley, S. R.; Wilde, E. A.; Miller, E. R.; Frisby, M. L.; Garza, H. M.; Varghese, R.; Levin, H. S.; Robertson, C. S.; McCarthy, J. J.	2013	Journal of Neurotrauma	No ortho trauma; TBI only
Recovering from traumatic occupational hand injury following surgery: a biopsychosocial perspective	Roesler, M. L.; Glendon, A. I.; O'Callaghan, F. V.	2013	Journal of occupational rehabilitation	<6 months follow up
Health status and (health-related) quality of life during the recovery of distal radius fractures: a systematic review	Van Son, M. A.; De Vries, J.; Roukema, J. A.; Den Oudsten, B. L.	2013	Quality of life research: an international journal of quality of life aspects of treatment, care and rehabilitation	systematic review
Does timing of surgery affect hospitalization costs and length of stay for acute care following a traumatic spinal cord injury?	Mac-Thiong, J. M.; Feldman, D. E.; Thompson, C.; Bourassa-Moreau, E.; Parent, S.	2012	Journal of Neurotrauma	SCI
Return to preinjury sports participation following anterior cruciate ligament reconstruction: Contributions of demographic, knee impairment, and self-report measures	Lentz, T. A.; Zeppieri Jr, G.; Tillman, S. M.; Indelicato, P. A.; Moser, M. W.; George, S. Z.; Chmielewski, T. L.	2012	Journal of Orthopaedic and Sports Physical Therapy	not best available evidence for target factors
Psychiatric sequelae of traumatic brain injury: Retrospective analysis of 75 subjects from Kaduna, Nigeria	Nuhu, F. T.; Yusuf, A. J.	2012	Nigerian Journal of Clinical Practice	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Anxiety and depression in marines sent to war in Iraq and afghanistan	Booth-Kewley, S.; Highfill-Mcroy, R. M.; Larson, G. E.; Garland, C. F.; Gaskin, T. A.	2012	Journal of Nervous and Mental Disease	No ortho trauma; TBI only
Improving treatments and outcomes: An emerging role for zinc in traumatic brain injury	Cope, E. C.; Morris, D. R.; Levenson, C. W.	2012	Nutrition Reviews	Review (not systematic)
Effect of expectations and concerns in rotator cuff disorders and correlations with preoperative patient characteristics	Oh, J. H.; Yoon, J. P.; Kim, J. Y.; Kim, S. H.	2012	Journal of Shoulder and Elbow Surgery	Unclear population; unclear trauma;
Self-perceived health and return to work following work-related hand injury	Chen, Y. H.; Lin, H. T.; Lin, Y. T.; Chao, Y. H.; Lin, C. H.; Wei, F. C.; Lien, S. H.	2012	Occupational Medicine	insufficient data for target comparison
The long-term impact of war on health and wellbeing in Northern Vietnam: Some glimpses from a recent survey	Teerawichitchainan, B.; Korinek, K.	2012	Social Science and Medicine	No ortho trauma
The epidemiology of reoperation after flexor tendon repair	Dy, C. J.; Daluiski, A.; Do, H. T.; Hernandez-Soria, A.; Marx, R.; Lyman, S.	2012	Journal of Hand Surgery	No ortho trauma
Risk factors for back, neck and shoulder musculoskeletal injuries and claims in ambulance officers	Broniecki, M.; Esterman, A.; Grantham, H.	2012	Journal of Musculoskeletal Research	not target population; unclear trauma
The prevalence of psychological distress in a sample of facial trauma victims. A comparative cross-sectional study between UK and Australia	Islam, S.; Ahmed, M.; Walton, G. M.; Dinan, T. G.; Hoffman, G. R.	2012	Journal of Cranio- Maxillofacial Surgery	no extremity; facial trauma
Development of a cumulative psychosocial factor index for problematic recovery following work-related musculoskeletal injuries	Wideman, T. H.; Sullivan, M. J.	2012	Physical therapy	No ortho trauma
Predicting the long-term impact of acquired severe injuries on functional health status: The role of optimism, emotional distress and pain	Vassend, O.; Quale, A. J.; RÃ, ise, O.; Schanke, A. K.	2011	Spinal Cord	SCI
Ethanol intoxication is associated with a lower incidence of admission coagulopathy in severe traumatic brain injury patients	Lustenberger, T.; Inaba, K.; Barmparas, G.; Talving, P.; Plurad, D.; Lam, L.; Konstantinidis, A.; Demetriades, D.	2011	Journal of Neurotrauma	No ortho trauma; TBI only
Legal sequelae of occupational back injuries: A longitudinal analysis of missouri judicial records	Tait, R. C.; Chibnall, J. T.	2011	Spine	Target population absent
A systematic review of factors contributing to outcomes in patients with traumatic brain injury	Kim, Y. J.	2011	Journal of Clinical Nursing	irrelevant systematic review*

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Permanent post-concussion symptoms after mild head injury	King, N. S.; Kirwilliam, S.	2011	Brain Injury	Target population absent
Complaints related to mandibular function impairment after closed treatment of fractures of the mandibular condyle	Niezen, E. T.; Bos, R. R. M.; de Bont, L. G. M.; Stegenga, B.; Dijkstra, P. U.	2010	International Journal of Oral and Maxillofacial Surgery	Target population absent
Exploration of the resilience construct in posttraumatic stress disorder severity and functional correlates in military combat veterans who have served since September 11, 2001	Green, K. T.; Calhoun, P. S.; Dennis, M. F.; Beckham, J. C.; Miller-Mumford, M.; Fernandez, A.; Taber, K. H.; Yoash-Gantz, R. E.; Moore, S. D.; Tupler, L. A.	2010	Journal of Clinical Psychiatry	not target population; no subanalysis of ortho pts
The impact of prefracture and hip fracture characteristics on mortality in older persons in brazil	Pereira, S. R. M.; Puts, M. T. E.; Portela, M. C.; Sayeg, M. A.	2010	Clinical Orthopaedics and Related Research	not target population; elderly hip fxs
Symptoms of Acute Posttraumatic Stress Disorder in Patients With Acute Hand Injuries	Opsteegh, L.; Reinders-Messelink, H. A.; Groothoff, J. W.; Postema, K.; Dijkstra, P. U.; van der Sluis, C. K.	2010	Journal of Hand Surgery	no target factors; very low quality
Sociodemographic, clinical, and work characteristics associated with return-to-work outcomes following surgery for work-related knee injury	Fan, J. K.; McLeod, C. B.; Koehoorn, M.	2010	Scandinavian Journal of Work, Environment and Health	no target population; non-trauma meniscus
Medical treatment predicts mortality after hip fracture	JuliebÃ,, V.; Krogseth, M.; Skovlund, E.; Engedal, K.; Wyller, T. B.	2010	The journals of gerontology. Series A, Biological sciences and medical sciences	No ortho trauma
Postinjury Personality and Outcome in Acquired Brain Injury: The Millon Behavioral Medicine Diagnostic	Beck, K. D.; Franks, S. F.; Hall, J. R.	2010	PM and R	No ortho trauma; TBI only
Post-concussion symptoms after mild traumatic brain injury: Influence of demographic factors and injury severity in a 1-year cohort study	RÃ,e, C.; Sveen, U.; Alvsker, K.; Bautz-Holter, E.	2009	Disability and Rehabilitation	No ortho trauma; TBI only
The contribution of traumatic brain injury to the medical and economic outcomes of motor vehicle-related injuries in Ohio	Rochette, L. M.; Conner, K. A.; Smith, G. A.	2009	Journal of safety research	No ortho trauma; TBI only, MVA injuries
Musculoskeletal impairments in the Norwegian working population: The prognostic role of diagnoses and socioeconomic status - A prospective study of sickness absence and transition to disability pension	Gjesdal, S.; Bratberg, E.; MÃ land, J. G.	2009	Spine	unclear injuries, trauma, and location

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Outcomes and presurgery correlates of lumbar discectomy in Utah Workers' Compensation patients	DeBerard, M. S.; LaCaille, R. A.; Spielmans, G.; Colledge, A.; Parlin, M. A.	2009	Spine Journal	no target population; non-trauma injury
The criterion-related validity of the IADL Profile with measures of executive functions, indices of trauma severity and sociodemographic characteristics	Bottari, C.; Dassa, C.; Rainville, C.; Dutil, Ã?	2009	Brain Injury	No ortho trauma; TBI only
Evidence of Beneficial Effect of Physical Therapy After Lower-Extremity Trauma	Castillo, R. C.; MacKenzie, E. J.; Archer, K. R.; Bosse, M. J.; Webb, L. X.	2008	Archives of Physical Medicine and Rehabilitation	no RF data of interest
Lifetime risk of symptomatic knee osteoarthritis	Murphy, L.; Schwartz, T. A.; Helmick, C. G.; Renner, J. B.; Tudor, G.; Koch, G.; Dragomir, A.; Kalsbeek, W. D.; Luta, G.; Jordan, J. M.	2008	Arthritis Care and Research	knee injury as a risk factor
Race/ethnicity and outcomes following inpatient rehabilitation for hip fracture	Graham, J. E.; Chang, P. F. J.; Bergés, I. M.; Granger, C. V.; Ottenbacher, K. J.	2008	Journals of Gerontology - Series A Biological Sciences and Medical Sciences	not target population; elderly hip fracture
Neighborhood Characteristics and Outcomes After Traumatic Brain Injury	Corrigan, J. D.; Bogner, J. A.	2008	Archives of Physical Medicine and Rehabilitation	No ortho trauma; TBI only
Factors associated with hospital mortality in traumatic injuries: Incentive for trauma care integration	Culica, D.; Aday, L. A.	2008	Public Health	Unclear population; ortho?
A systematic literature review of psychological factors and the development of late whiplash syndrome	Williamson, E.; Williams, M.; Gates, S.; Lamb, S. E.	2008	Pain	irrelevant systematic review*
Incidence and prediction of psychiatric morbidity after a motor vehicle accident in Japan: The Tachikawa Cohort of Motor Vehicle Accident Study	Matsuoka, Y.; Nishi, D.; Nakajima, S.; Kim, Y.; Homma, M.; Otomo, Y.	2008	Critical Care Medicine	insufficient data for 6mo FU
A biopsychosocial perspective of aggression in the context of traumatic brain injury	Johansson, S.; Jamora, C. W.; Ruff, R.; Pack, N. M.	2008	Brain Injury	No ortho trauma; TBI only
Outcomes during and after inpatient rehabilitation: Comparison between adults and older adults	Gosselin, S.; Desrosiers, J.; Corriveau, H.; Hébert, R.; Rochette, A.; Provencher, V.; CÃ′té, S.; Tousignant, M.	2008	Journal of Rehabilitation Medicine	not target population; no subanalysis of ortho pts
Risk factors for depressive symptoms after mild-to- moderate traumatic brain injury	Bay, E.; Donders, J.	2008	Brain Injury	No ortho trauma; TBI only
Factors influencing neck pain intensity in whiplash-associated disorders in Sweden	Holm, L. W.; Carroll, L. J.; David Cassidy, J.; Ahlbom, A.	2007	Clinical Journal of Pain	No ortho trauma; neck pain related data
Depression and occupational disability in five diagnostic groups: A review of recent research	Crisp, R.	2007	Disability and Rehabilitation	review; no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Work-related physical and psychosocial risk factors for sick leave in patients with neck or upper extremity complaints	Bot, S. D. M.; Terwee, C. B.; van der Windt, D. A. W. M.; van der Beek, A. J.; Bouter, L. M.; Dekker, J.	2007	International Archives of Occupational and Environmental Health	<6 months follow-up
Physical, social and emotional function after work accidents: A medicolegal perspective	Holtedahl, R.; Veiersted, K. B.	2007	Work	no subanalysis of target population
The association of socioeconomic status and psychosocial and physical workplace factors with musculoskeletal injury in hospital workers	Gillen, M.; Yen, I. H.; Trupin, L.; Swig, L.; Rugulies, R.; Mullen, K.; Font, A.; Burian, D.; Ryan, G.; Janowitz, I.; Quinlan, P. A.; Frank, J.; Blanc, P.	2007	American Journal of Industrial Medicine	No ortho trauma; no ortho injury data
Suicidality in people surviving a traumatic brain injury: Prevalence, risk factors and implications for clinical management	Simpson, G. K.; Tate, R. L.	2007	Brain Injury	irrelevant systematic review*
Functional Outcomes From Inpatient Rehabilitation After Traumatic Brain Injury: How Do Hispanics Fare?	Arango-Lasprilla, J. C.; Rosenthal, M.; DeLuca, J.; Cifu, D. X.; Hanks, R.; Komaroff, E.	2007	Archives of Physical Medicine and Rehabilitation	No ortho trauma; TBI only
Predictors of Rehabilitation Outcomes: A Comparison of Israeli and Italian Geriatric Post- Acute Care (PAC) Facilities Using the Minimum Data Set (MDS)	Gindin, J.; Walter-Ginzburg, A.; Geitzen, M.; Epstein, S.; Levi, S.; Landi, F.; Bernabei, R.	2007	Journal of the American Medical Directors Association	No ortho trauma
Traumatic brain injury and functional outcomes: Does minority status matter?	Arango-Lasprilla, J. C.; Rosenthal, M.; Deluca, J.; Komaroff, E.; Sherer, M.; Cifu, D.; Hanks, R.	2007	Brain Injury	No ortho trauma; TBI only
Illness perceptions and outcome in mild head injury: A longitudinal study	Whittaker, R.; Kemp, S.; House, A.	2007	Journal of Neurology, Neurosurgery and Psychiatry	No ortho trauma
Predicting treatment failure in the subacute injury phase using the Ã?rebro musculoskeletal pain questionnaire: An observational prospective study in a workers' compensation system	Margison, D. A.; French, D. J.	2007	Journal of Occupational and Environmental Medicine	Target population absent
Factors Associated With Early Opioid Prescription Among Workers With Low Back Injuries	Stover, B. D.; Turner, J. A.; Franklin, G.; Gluck, J. V.; Fulton-Kehoe, D.; Sheppard, L.; Wickizer, T. M.; Kaufman, J.; Egan, K.	2006	Journal of Pain	No comparison of interest
Self-reported upper extremity health status correlates with depression	Ring, D.; Kadzielski, J.; Fabian, L.; Zurakowski, D.; Malhotra, L. R.; Jupiter, J. B.	2006	Journal of Bone and Joint Surgery - Series A	<60 target patients
The dynamic course of musculoskeletal disorders in an assembly line factory	Aublet-Cuvelier, A.; Aptel, M.; Weber, H.	2006	International Archives of Occupational and Environmental Health	No ortho trauma; company employee data
Outcome from serious injury in older adults	Jacoby, S. F.; Ackerson, T. H.; Richmond, T. S.	2006	Journal of Nursing Scholarship	systematic review

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Gender differences in functioning after hip fracture	Hawkes, W. G.; Wehren, L.; Orwig, D.; Hebel, J. R.; Magaziner, J.	2006	Journals of Gerontology - Series A Biological Sciences and Medical Sciences	not target population; elderly hip fracture
Prediction of long-term occupational performance outcomes for adults after moderate to severe traumatic brain injury	Devitt, R.; Colantonio, A.; Dawson, D.; Teare, G.; Ratcliff, G.; Chase, S.	2006	Disability and Rehabilitation	No ortho trauma; TBI only
Traumatic brain injury rehabilitation: State of the science	Gordon, W. A.; Zafonte, R.; Cicerone, K.; Cantor, J.; Brown, M.; Lombard, L.; Goldsmith, R.; Chandna, T.	2006	American Journal of Physical Medicine and Rehabilitation	irrelevant systematic review*
Does physical trauma lead to an increase in the risk of new onset widespread pain?	Wynne-Jones, G.; Macfarlane, G. J.; Silman, A. J.; Jones, G. T.	2006	Annals of the Rheumatic Diseases	not target population; no subanalysis of ortho pts
Chronic pain: the role of psychosocial factors in common musculoskeletal disorders	Henderson, M.; Bass, C.	2006	Psychiatry	review
Late-life emergence of early-life trauma: The phenomenon of late-onset stress symptomatology among aging combat veterans	Davison, E. H.; Pless, A. P.; Gugliucci, M. R.; King, L. A.; King, D. W.; Salgado, D. M.; Spiro, Iii A.; Bachrach, P.	2006	Research on Aging	<60 total pts
A comparison of self-perceived physical and psycho-social worker profiles of people with direct work injury, chronic low back pain, and cumulative trauma	Cheng, J. C. K.; Li-Tsang, C. W. P.	2005	Work	<30 patients per factor group
Course and prognosis of elbow complaints: A cohort study in general practice	Bot, S. D. M.; Van Der Waal, J. M.; Terwee, C. B.; Van Der Windt, D. A. W. M.; Bouter, L. M.; Dekker, J.	2005	Annals of the Rheumatic Diseases	wrong population; no trauma
Onset of neck pain after a motor vehicle accident: A case-control study	Wiles, N. J.; Jones, G. T.; Silman, A. J.; Macfarlane, G. J.	2005	Journal of Rheumatology	wrong population; no ortho trauma
Does memory of a traumatic event increase the risk for posttraumatic stress disorder in patients with traumatic brain injury? A prospective study	Gil, S.; Caspi, Y.; Ben-Ari, I. Z.; Koren, D.; Klein, E.	2005	American Journal of Psychiatry	No ortho trauma; TBI only
Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures	Jiang, H. X.; Majumdar, S. R.; Dick, D. A.; Moreau, M.; Raso, J.; Otto, D. D.; Johnston, D. W. C.	2005	Journal of Bone and Mineral Research	no target population; no ortho trauma (elderly hip fracture)
Gender differences in predictors of suicidal thoughts and attempts among homeless veterans that abuse substances	Benda, B. B.	2005	Suicide and Life- Threatening Behavior	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The development of persistent pain and psychological morbidity after motor vehicle collision: Integrating the potential role of stress response systems into a biopsychosocial model	McLean, S. A.; Clauw, D. J.; Abelson, J. L.; Liberzon, I.	2005	Psychosomatic Medicine	review
Cognitive status and incident disability in older Mexican Americans: Findings from the Hispanic established population for the epidemiological study of the elderly	Raji, M. A.; Al Snih, S.; Ray, L. A.; Patel, K. V.; Markides, K. S.	2004	Ethnicity and Disease	No ortho trauma
Toward an explanatory model of social participation for adults with traumatic brain injury	Dumont, C.; Gervais, M.; Fougeyrollas, P.; Bertrand, R.	2004	Journal of Head Trauma Rehabilitation	no ortho trauma; TBI only
Natural history of depression in traumatic brain injury	Dikmen, S. S.; Bombardier, C. H.; MacHamer, J. E.; Fann, J. R.; Temkin, N. R.	2004	Archives of Physical Medicine and Rehabilitation	not best available evidence; very low quality
Reported Exposures, Stressors, and Life Events among Gulf War Registry Veterans	Boyd, K. C.; Hallman, W. K.; Wartenberg, D.; Fiedler, N.; Brewer, N. T.; Kipen, H. M.	2003	Journal of Occupational and Environmental Medicine	No ortho trauma; no ortho injury data
Predicting vocational adjustment following traumatic brain injury: A test of a psychosocial theory	Kendall, E.	2003	Journal of Vocational Rehabilitation	No ortho trauma
Predictors of postconcussion symptom complex in community dwelling male veterans	Luis, C. A.; Vanderploeg, R. D.; Curtiss, G.	2003	Journal of the International Neuropsychological Society	No ortho trauma; TBI only
Chronic neck pain of traumatic and non-traumatic origin: A population-based study	Guez, M.; Hildingsson, C.; Stegmayr, B.; Toolanen, G.	2003	Acta Orthopaedica Scandinavica	No ortho trauma; neck pain data only
Familial disability patterns in individuals with chronic work-related spine injury/illness	Lea, R. D.; Etheredge, G. D.; Freeman, J. N.; Wax, B. L.	2003	Spine	not target population; no subanalysis of injury pts
Sources of variation in readmission rates, length of stay, and operative time associated with rotator cuff surgery	Green, L. B.; Pietrobon, R.; Paxton, E.; Higgins, L. D.; Fithian, D.	2003	Journal of Bone and Joint Surgery - Series A	not target population; RC tear
Predicting mortality in older patients. The VELCA Study	Minicuci, N.; Maggi, S.; Noale, M.; Trabucchi, M.; Spolaore, P.; Crepaldi, G.; Bosello, O.; Costa, G.; Fazzini, P.; Ferrari, G.; Giuseppe Grezzana, L.; Marcer, M.; Pasoli, C.; Sommavilla, M.; Zamboni, M.; Zardini, P.; Zavatteri, G.; Jori, M.	2003	Aging - Clinical and Experimental Research	no subanalysis of target population
Contributing factors to chronic myofascial pain: A case-control study	Velly, A. M.; Gornitsky, M.; Philippe, P.	2003	Pain	not target population; oral trauma
Gender-related differences in treatment outcomes for patients with musculoskeletal disorders	McGeary, D. D.; Mayer, T. G.; Gatchel, R. J.; Anagnostis, C.; Proctor, T. J.	2003	Spine Journal	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Depression after traumatic brain injury: A National Institute on Disability and Rehabilitation Research Model Systems multicenter investigation	Seel, R. T.; Kreutzer, J. S.; Rosenthal, M.; Hammond, F. M.; Corrigan, J. D.; Black, K.	2003	Archives of Physical Medicine and Rehabilitation	No ortho trauma; TBI only
Biopsychosocial multivariate predictive model of occupational low back disability	Schultz, I. Z.; Crook, J. M.; Berkowitz, J.; Meloche, G. R.; Milner, R.; Zuberbier, O. A.; Meloche, W.	2002	Spine	No ortho trauma
Work-related upper extremity injuries: Prevalence, cost and risk factors in military and civilian populations	Fabrizio, A. J.	2002	Work	review
Risk and protective factors for physical functioning in older adults with and without chronic conditions: MacArthur studies of successful aging	Seeman, T.; Chen, X.	2002	Journals of Gerontology - Series B Psychological Sciences and Social Sciences	no target population; no ortho trauma
Satisfaction of life and late psycho-social outcome after severe brain injury: a nine-year follow-up study in Aquitaine	Mazaux, J. M.; Croze, P.; Quintard, B.; Rouxel, L.; Joseph, P. A.; Richer, E.; Debelleix, X.; Barat, M.	2002	Acta neurochirurgica. Supplement	TBI only
Differential effects of premorbid physical and emotional health on recovery from acute events	Ostir, G. V.; Goodwin, J. S.; Markides, K. S.; Ottenbacher, K. J.; Balfour, J.; Guralnik, J. M.	2002	Journal of the American Geriatrics Society	No ortho trauma
Prevalence of post-traumatic stress disorder symptoms after severe traumatic brain injury in a representative community sample	Williams, W. H.; Evans, J. J.; Wilson, B. A.; Needham, P.	2002	Brain Injury	No ortho trauma; TBI only
Demonstration of the healthy worker survivor effect in a cohort of workers in the construction industry	Siebert, U.; Rothenbacher, D.; Daniel, U.; Brenner, H.	2001	Occupational and Environmental Medicine	No ortho trauma
Psychosocial job factors and return-to-work after compensated low back injury: A disability phase-specific analysis	Krause, N.; Dasinger, L. K.; Deegan, L. J.; Rudolph, L.; Brand, R. J.	2001	American Journal of Industrial Medicine	No ortho trauma
The influence on seeking care because of neck and shoulder disorders from work-related exposures	Wigaeus Tornqvist, E.; Kilbom, �; Vingård, E.; Alfredsson, L.; Hagberg, M.; Theorell, T.; Waldenström, M.; Wiktorin, C.; Hogstedt, C.	2001	Epidemiology	no target population; no ortho trauma
Institutionalization in the elderly: The role of chronic diseases and dementia. Cross-sectional and longitudinal data from a population-based study	Agýero-Torres, H.; Von Strauss, E.; Viitanen, M.; Winblad, B.; Fratiglioni, L.	2001	Journal of Clinical Epidemiology	No ortho trauma
Recurrent disabling work-related spinal disorders after prior injury claims in a chronic low back pain population	Evans, T. H.; Mayer, T. G.; Gatchel, R. J.	2001	Spine Journal	No ortho trauma; or injury

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Traumatic brain injury (TBI) 10-20 years later: A comprehensive outcome study of psychiatric symptomatology, cognitive abilities and psychosocial functioning	Hoofien, D.; Gilboa, A.; Vakil, E.; Donovick, P. J.	2001	Brain Injury	No ortho trauma; TBI only
Protective factors and posttraumatic stress disorder in veterans with spinal cord injury	Danner, G.; Radnitz, C. L.	2000	International Journal of Rehabilitation and Health	wrong population; spinal cord injury; unclear if any ortho injuries
Imbalance of demand and supply for regionalized injury services: A case study in Greece	Petridou, E.; Gatsoulis, N.; Dessypris, N.; Skalkidis, Y.; Voros, D.; Papadimitriou, Y.; Trichopoulos, D.	2000	International Journal for Quality in Health Care	No ortho trauma
Risk factors for spread of primary adult onset blepharospasm: A multicentre investigation of the Italian movement disorders study group	Defazio, G.; Berardelli, A.; Abbruzzese, G.; Coviello, V.; Carella, F.; De Berardinis, M. T.; Galardi, G.; Girlanda, P.; Maurri, S.; Mucchiut, M.; Albanese, A.; Basciani, M.; Bertolasi, L.; Liguori, R.; Tambasco, N.; Santoro, L.; Assennato, G.; Livrea, P.	1999	Journal of Neurology Neurosurgery and Psychiatry	No ortho trauma
Factors affecting the results of the clock drawing test in elderly patients hospitalized for physical rehabilitation	Lieberman, D.; Galinsky, D.; Fried, V.; Grinshpun, Y.; Mytlis, N.; Tylis, R.; Lieberman, D.	1999	International Journal of Geriatric Psychiatry	No ortho trauma
Psychometric assessment of patients with chronic upper extremity pain attributed to workplace exposure	Dzwierzynski, W. W.; Grunert, B. K.; Rusch, M. D.; Zader, G.; Keller, D.	1999	Journal of Hand Surgery	no ortho trauma; unclear UE injury <30 patients per factor group
The Beck Depression Inventory: Is it a suitable measure of depression for individuals with traumatic brain injury?	Sliwinski, M.; Gordon, W. A.; Bogdany, J.	1998	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Psychosocial factors at work and their association with professional ballet dancers' musculoskeletal disorders	Ramel, E. M.; Moritz, U.	1998	Medical Problems of Performing Artists	Target population absent
'It is not only the kind of injury that matters, but the kind of head': The contribution of premorbib psychosocial factors to rehabilitation outcomes after severe traumatic brain injury	Tate, R. L.	1998	Neuropsychological Rehabilitation	not target population; TBI only
Social impairment and depression after traumatic brain injury	Gomez-Hernandez, R.; Max, J. E.; Kosier, T.; Paradiso, S.; Robinson, R. G.	1997	Archives of Physical Medicine and Rehabilitation	No ortho trauma; TBI only
Mobility in older patients with hip fractures: examining prefracture status, complications, and outcomes at discharge from the acute-care hospital	Myers, A. H.; Palmer, M. H.; Engel, B. T.; Warrenfeltz, D. J.; Parker, J. A.	1996	Journal of orthopaedic trauma	No ortho trauma
A prospective longitudinal multicenter analysis of alcohol use patterns among persons with traumatic brain injury	Kreutzer, J. S.; Witol, A. D.; Sander, A. M.; Cifu, D. X.; Marwitz, J. H.; Delmonico, R.	1996	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
A multicenter longitudinal investigation of return to work and community integration following traumatic brain injury	Sander, A. M.; Kreutzer, J. S.; Rosenthal, M.; Delmonico, R.; Young, M. E.	1996	Journal of Head Trauma Rehabilitation	No ortho trauma; TBI only
Temporomandibular and cervical spine disorders: Self-reported signs and symptoms	De Wijer, A.; De Leeuw, J. R. J.; Steenks, M. H.; Bosman, F.	1996	Spine	Target population absent
Factors related to successful rehabilitation after hip fracture: A case-control study	Lieberman, D.; Fried, V.; Castel, H.; Weitzmann, S.; Lowenthal, M. N.; Galinsky, D.	1996	Disability and Rehabilitation	No ortho trauma
Very late outcome after focal wartime brain wounds	Newcombe, F.	1996	Journal of Clinical and Experimental Neuropsychology	review
Factors influencing failure to return to work due to traumatic brain injury	Greenspan, A. I.; Wrigley, J. M.; Kresnow, M.; Branche- Dorsey, C. M.; Fine, P. R.	1996	Brain Injury	No ortho trauma; TBI only RTW data
Psychosocial factors at work in relation to back and limb disorders	Leino, P. I.; Hanninen, V.	1995	Scandinavian Journal of Work, Environment and Health	Doesn't address question of interest;
Disorders of the neck and upper in women in the fish processing industry	Ohlsson, K.; Hansson, G. A.; Balogh, I.; Stromberg, U.; Palsson, B.; Nordander, C.; Rylander, L.; Skerfving, S.	1994	Occupational and Environmental Medicine	no target population; non-trauma injury
VDT-related musculoskeletal symptoms: Interactions between work posture and psychosocial work factors	Faucett, J.; Rempel, D.	1994	American Journal of Industrial Medicine	No ortho trauma
Psychometric characteristics of 66 patients with reflex sympathetic dystrophy	Van Houdenhove, B.; Vervaeke, G.; Onghena, P.; Vasquez, G.; Vandeput, C.; Stans, L.; Igodt, P.; Vertommen, H.	1994	European Journal of Pain	No ortho trauma
Emotional and psychosocial problems after brain injury	Gainotti, G.	1993	Neuropsychological Rehabilitation	No ortho trauma; TBI only
Comparison between acute- and delayed-onset depression following traumatic brain injury	Jorge, R. E.; Robinson, R. G.; Arndt, S. V.; Forrester, A. W.; Geisler, F.; Starkstein, S. E.	1993	Journal of Neuropsychiatry and Clinical Neurosciences	not target population; TBI only
The contribution of alcohol intoxication to head injuries	Vazquez-Barquero, J. L.; Gaite, L.; Diez-Manrique, J. F.; Alvarez, C.; Herrera, S.; Vazquez-Barquero, A.	1991	European Journal of Psychiatry	No ortho trauma
Medical-encounter mental health diagnoses, non-fatal injury and polypharmacy indicators of risk for accident death in the US Army enlisted soldiers, 2004å??2009	Lewandowski-Romps, Lisa; Schroeder, Heather M.; Berglund, Patricia A.; Colpe, Lisa J.; Cox, Kenneth; Hauret, Keith; Hay, Jeffrey D.; Jones, Bruce; Little, Roderick J. A.; Mitchell, Colter; Schoenbaum, Michael; Schulz, Paul; Stein, Murray B.; Ursano, Robert J.; Heeringa, Steven G.	2018	Preventive Medicine: An International Journal Devoted to Practice and Theory	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
U-shaped association of body mass index in early adulthood with unintentional mortality from injuries: A cohort study of Swedish men with 35 years of follow-up	Jia, T.; Tynelius, P.; Rasmussen, F.	2016	International Journal of Obesity	No ortho trauma
Using established predictors of post-traumatic stress to explain variations in recovery outcomes among orthopedic patients	Cremeans-Smith, Julie K.; Contrera, Kevin; Speering, Leann; Miller, Eric T.; Pfefferle, Kiel; Greene, Kenneth; Delahanty, Douglas L.	2015	Journal of Health Psychology	No ortho trauma
Physical injury and posttraumatic stress reactions. A study of the survivors of the 2011 shooting massacre on UtÃ, ya Island, Norway	Bugge, Ingrid; Dyb, Grete; Stensland, Synne Ã?ien; Ekeberg, Ã?ivind; Wentzel-Larsen, Tore; Diseth, Trond H.	2015	Journal of Psychosomatic Research	mixed population; majority of pop. was uninjured, no sub-analysis
The role of mental toughness in coping and injury response in female roller derby and rugby athletes	Madrigal, Leilani; Wurst, Katherine; Gill, Diane L.	2016	Journal of Clinical Sport Psychology	No ortho trauma; sport injuries
The risks of major osteoporotic fractures in patients with schizophrenia: A population-based 10-year follow-up study	Tsai, Kuan-Yi; Lee, Ching-Chih; Chou, Yu-Mei; Shen, Shih-Pei; Su, Chao-Yueh; Wu, Hung-Chi; Huang, Min-Wei; Shie, Jia-Pei; Chou, Frank Huang-Chih	2014	Schizophrenia Research	No ortho trauma; no ortho injury data
Preoperative serum metabolites are associated with postoperative delirium in elderly hip-fracture patients	Guo, Yong; Zhang, Yinan; Jia, Peiyu; Wang, Wenying; Zhou, Quanhong; Sun, Lulu; Zhao, Aihua; Zhang, Xin; Wang, Xuemin; Li, Yingchuan; Zhang, Junfeng; Jiang, Wei	2017	The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences	No ortho trauma
Sex differences in hip fracture surgery: Preoperative risk factors for delirium and postoperative outcomes	Oh, Esther S.; Sieber, Frederick E.; Leoutsakos, Jeannieâ?쳌Marie; Inouye, Sharon K.; Lee, Hochang B.	2016	Journal of the American Geriatrics Society	No ortho trauma
Persistent disability is a risk factor for late-onset mental disorder after serious injury	Holmes, Alex C. N.; O'Donnell, Meaghan L.; Williamson, Owen; Hogg, Malcolm; Arnold, Carolyn	2014	Australian and New Zealand Journal of Psychiatry	No ortho trauma; no ortho injury data
A systematic review of studies identifying predictors of poor return to work outcomes following workplace injury	Street, Tamara D.; Lacey, Sarah J.	2015	Work: Journal of Prevention, Assessment & Rehabilitation	systematic review
A populationâ?쳌based, incidence cohort study of midâ?쳌back pain after traffic collisions: Factors associated with global recovery	Johansson, M. S.; Boyle, E.; Hartvigsen, J.; Stochkendahl, M. Jensen; Carroll, L.; Cassidy, J. D.	2015	European Journal of Pain	No ortho trauma
Development, implementation, and outcomes of a residential vocational rehabilitation program for injured Service members and Veterans	Webster, Joseph; Han Kim, Jeong; Hawley, Carolyn; Barbir, Lara; Barton, Sharon; Young, Cynthia	2018	Journal of Vocational Rehabilitation	No ortho trauma
Patient-related outcome of unstable pelvic ring fractures stabilized with a minimal invasive screwrod system	Kerschbaum, Maximilian; Hausmann, Nadine; Worlicek, Michael; Pfeifer, Christian; Nerlich, Michael; Schmitz, Paul	2017	Health and Quality of Life Outcomes	Doesn't address question of interest; no comparison of interest

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Return to driving in the first 6 months of community integration after acquired brain injury	Fleming, Jennifer; Liddle, Jacki; Nalder, Emily; Weir, Nicole; Cornwell, Petrea	2014	NeuroRehabilitation	No ortho trauma; TBI only
Does the length of disability between injury and functional restoration program entry affect treatment outcomes for patients with chronic disabling occupational musculoskeletal disorders?	Asih, Sali; Neblett, Randy; Mayer, Tom G.; Gatchel, Robert J.	2018	Journal of Occupational Rehabilitation	No ortho trauma
Psychosocial factors impacting workplace injury rehabilitation: Evaluation of a concise screening tool	McLinton, Sareen; McLinton, Sarven Savia; van Linden, Martin	2018	Journal of Occupational Rehabilitation	insufficient data for 6mo FU
Prevalence of abuse and intimate partner violence surgical evaluation (PRAISE) in orthopaedic fracture clinics: A multinational prevalence study	Sprague, Sheila	2013	The Lancet	Doesn't address question of interest; no comparison of interest
Predictors of Operation Enduring Freedom/Operation Iraqi Freedom veterans' engagement in mental health treatment	Hearne, Catherine R. M.	2013	Military Medicine	No ortho trauma
The impact of psychological symptoms on return to work in workers after occupational injury	Lin, Kuan-Han; Guo, Nai-Wen; Shiao, Shu-Chu; Liao, Shih-Cheng; Hu, Pei-Yi; Hsu, Jin-Huei; Hwang, Yaw- Huei; Guo, Yue Leon	2013	Journal of Occupational Rehabilitation	not target population; no subanalysis of ortho pts
Chronic pain acceptance incrementally predicts disability in polytrauma-exposed veterans at baseline and 1-year follow-up	Cook, Andrew J.; Meyer, Eric C.; Evans, Lianna D.; Vowles, Kevin E.; Klocek, John W.; Kimbrel, Nathan A.; Gulliver, Suzy Bird; Morissette, Sandra B.	2015	Behaviour Research and Therapy	unclear trauma
â??Smokerâ??s paradoxâ?쳌 in patients treated for severe injuries: Lower risk of mortality after trauma observed in current smokers	Bell, Teresa M.; Bayt, Demetria R.; Zarzaur, Ben L.	2015	Nicotine & Tobacco Research	insufficient data for 6mo FU
Factors associated with non-return to work in the severely injured victims 3 years after a road accident: A prospective study	Pélissier, C.; Fort, E.; Fontana, L.; Charbotel, B.; Hours, M.	2017	Accident Analysis and Prevention	insufficient data for target population subset
Factors affecting health care utilization in OEF/OIF veterans: The impact of PTSD and pain	Lang, Katie P.; Veazey-Morris, Katherine; Berlin, Kristoffer S.; Andrasik, Frank	2016	Military Medicine	No ortho trauma; TBI only
The role of injury and trauma-related variables in the onset and course of symptoms of posttraumatic stress disorder	Sijbrandij, Marit; Engelhard, Iris M.; de Vries, Giel-Jan; Luitse, Jan S. K.; Carlier, Ingrid V. E.; Gersons, Berthold P. R.; Olff, Miranda	2013	Journal of Clinical Psychology in Medical Settings	not target population; no fracture sub- analysis

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Incidence and risk factors of injuries and their impact on academic success: A prospective study in PETE students	Bliekendaal, S.; Goossens, L.; Stubbe, J. H.	2017	Scandinavian Journal of Medicine & Science in Sports	No ortho trauma
Effects of personal and occupational stress on injuries in a young, physically active population: A survey of military personnel	Bedno, Sheryl; Hauret, Keith; Loringer, Kelly; Kao, Tzu-Cheg; Mallon, Timothy; Jones, Bruce	2014	Military Medicine	No ortho trauma
Depression, posttraumatic stress, and risk factors following spinal cord injury	Schönenberg, Michael; Reimitz, Martina; Jusyte, Aiste; Maier, Doris; Badke, Andreas; Hautzinger, Martin	2014	International Journal of Behavioral Medicine	Target population absent,SCI
Body-region-specific injuries as predictors of psychosocial outcomes among those injured in combat: Results from the Wounded Warrior Recovery Project	Woodruff, Susan I.; Galarneau, Michael R.; McCabe, Cameron T.; Luu, Bethi N.; Sack, Daniel I.; Han, Peggy P.	2017	Military Psychology	No ortho trauma
Compensable injury and quality of life	Athanasou, James A.	2015	Australian Journal of Rehabilitation Counselling	No ortho trauma; TBI only
Association between traumatic brain injury and risk of suicide	Madsen, Trine; Erlangsen, Annette; Orlovska, Sonja; Mofaddy, Ramy; Nordentoft, Merete; Benros, Michael E.	2018	JAMA: Journal of the American Medical Association	not target population; no injury sub- analysis
Psychosocial factors affecting resilience in Nepalese individuals with earthquake-related spinal cord injury: A cross-sectional study	Bhattarai, Muna; Maneewat, Khomapak; Sae-Sia, Wipa	2018	BMC Psychiatry	No ortho trauma
Comparison among different versions of Connor- Davidson Resilience Scale (CD-RISC) in rehabilitation patients after unintentional injury	Peng, Li; Zhang, Jiajia; Chen, Han; Zhang, Yu; Li, Min; Yu, Yongju; Liu, Botao	2014	African Journal of Psychiatry	No ortho trauma; no ortho injury data
Motivational interviewing increases physical activity and self-efficacy in people living in the community after hip fracture: A randomized controlled trial	O'Halloran, Paul D.; Shields, Nora; Blackstock, Felicity; Wintle, Elizabeth; Taylor, Nicholas F.	2016	Clinical Rehabilitation	n<30 in control and treatment group
Patterns of emotional response to ACL reconstruction surgery	Shapiro, Jamie L.; Brewer, Britton W.; Cornelius, Allen E.; Van Raalte, Judy L.	2017	Journal of Clinical Sport Psychology	No ortho trauma
Incidence of skeletal fractures after traumatic spinal cord injury: A 10-year follow-up study	Gifre, Laia; Vidal, Joan; Carrasco, Josep; Portell, Enric; Puig, Josep; Monegal, Ana; Guañabens, Nðria; Peris, Pilar	2014	Clinical Rehabilitation	wrong population; spinal cord injury
Risk of perpetrating intimate partner violence amongst men exposed to torture in conflict-affected Timor-Leste	Rees, Susan; Mohsin, Mohammed; Tay, Alvin Kuowei; Steel, Zachary; Tam, Natalino; da Costa, Zelia; Soares, Cesarina; Tol, Wietse; Eapen, Valsamma; Dadds, Mark; Silove, Derrick	2018	Global Mental Health	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The low fall as a surrogate marker of frailty predicts long-term mortality in older trauma patients	Wong, Ting Hway; Nguyen, Hai V.; Chiu, Ming Terk; Chow, Khuan Yew; Ong, Marcus Eng Hock; Lim, Gek Hsiang; Nadkarni, Nivedita Vikas; Bautista, Dianne Carrol Tan; Cheng, Jolene Yu Xuan; Loo, Lynette Mee Ann; Seow, Dennis Chuen Chai	2015	PLoS ONE	not target population; no extremity sub- analysis
Effect of mandatory unit and individual physical training on fitness in military men and women	Anderson, Morgan K.; Grier, Tyson; Canham-Chervak, Michelle; Bushman, Timothy T.; Nindl, Bradley C.; Jones, Bruce H.	2017	American Journal of Health Promotion	No ortho trauma
Emergency medical service personnelâ??s risk from violence while serving the community	Maguire, Brian J.; O'Neill, Barbara J.	2017	American Journal of Public Health	unclear trauma; no comparisons of interest
Suicide risk among wounded U.S. Service members	Reger, Mark A.; Smolenski, Derek J.; Skopp, Nancy A.; Metzgerâ?쳌Abamukong, Melinda J.; Kang, Han K.; Bullman, Tim A.; Gahm, Gregory A.	2017	Suicide and Life- Threatening Behavior	No ortho trauma
The impact of motor vehicle injury on distress: Moderators and trajectories over time	Wiesenthal, Naomi; Vingilis, Evelyn	2013	Transportation Research Part F: Traffic Psychology and Behaviour	not best available evidence; very low quality
Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip-fractured patients	Calvani, Riccardo; Marton, Anna Maria; Marzetti, Emanuele; Onder, Graziano; Savera, Giulia; Lorenzi, Maria; Serafini, Elisabetta; Bernabei, Roberto; Landi, Francesco	2014	Frontiers in Aging Neuroscience	No ortho trauma
Serum oxytocin, posttraumatic coping and C-reactive protein in motor vehicle accident survivors by gender	Nishi, Daisuke; Hashimoto, Kenji; Noguchi, Hiroko; Kim, Yoshiharu; Matsuoka, Yutaka	2015	Neuropsychobiology	insufficient data for 6mo FU
Outcome after red trauma alarm at an urban Swedish hospital: Implications for prevention	Bagher, Ali; Andersson, Lina; Wingren, Carl Johan; Ottosson, Anders; Wangefjord, Sakarias; Acosta, Stefan	2015	Scandinavian Journal of Public Health	mixed population; included children and elderly;
National Survey of US Long-Haul Truck Driver Health and Injury: Health behaviors	Birdsey, Jan; Sieber, W. Karl; Chen, Guang X.; Hitchcock, Edward M.; Lincoln, Jennifer E.; Nakata, Akinori; Robinson, Cynthia F.; Sweeney, Marie H.	2015	Journal of Occupational and Environmental Medicine	No ortho trauma
Risk of epilepsy after traumatic brain injury: A retrospective population-based cohort study	Yeh, Chun-Chieh; Chen, Ta-Liang; Hu, Chaur-Jong; Chiu, Wen-Ta; Liao, Chien-Chang	2013	Journal of Neurology, Neurosurgery & Psychiatry	No ortho trauma; TBI only
A prospective study of the importance of life goal characteristics and goal adjustment capacities in longer term psychosocial adjustment to lower limb amputation	Coffey, Laura; Gallagher, Pamela; Desmond, Deirdre	2014	Clinical Rehabilitation	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The burden of acute traumatic spinal cord injury among adults in the United States: An update	Selvarajah, Shalini; Hammond, Edward R.; Haider, Adil H.; Abularrage, Christopher J.; Becker, Daniel; Dhiman, Nitasha; Hyder, Omar; Gupta, Deepak; Black Iii, James H.; Schneider, Eric B.	2014	Journal of Neurotrauma	No ortho trauma; non ortho trauma injuries
Examining the relationship between hardiness and perceived stress-related growth in a sport injury context	Salim, Jade; Wadey, Ross; Diss, Ceri	2015	Psychology of Sport and Exercise	No ortho trauma
Electrolyte disorders and aging: Risk factors for delirium in patients undergoing orthopedic surgeries	Wang, Li-Hong; Xu, Dong-Juan; Wei, Xian-Jiao; Chang, Hao-Teng; Xu, Guo-Hong	2016	BMC Psychiatry	No ortho trauma; post surgery electrolyte disorder data
Predictors of not regaining basic mobility after hip fracture surgery	Hulsbæk, Signe; Larsen, Rikke Faebo; Troelsen, Anders	2015	Disability and Rehabilitation: An International, Multidisciplinary Journal	No ortho trauma
Exploring the distribution and determinants of a change in recovery expectations following traumatic injury to Victorian workers	Clay, Fiona J.; Devlin, Anna; Kerr, Emily	2013	Journal of Occupational Rehabilitation	no target outcomes; outcome of expectations for future
Playing through pain and injury: Psychosocial considerations	Weinberg, Robert; Vernau, Daniel; Horn, Thelma	2013	Journal of Clinical Sport Psychology	No ortho trauma; basketball injuries
The role of psychological flexibility in injury rehabilitation	DeGaetano, Jessica J.; Wolanin, Andrew T.; Marks, Donald R.; Eastin, Shiloh M.	2016	Journal of Clinical Sport Psychology	No ortho trauma
Prevalence of fear of falling in older adults, and its associations with clinical, functional and psychosocial factors: The Frailty in Brazilian Older Peopleâ?쳌Rio de Janeiro Study	Malini, Flávia Moura; Lourenço, Roberto Alves; Lopes, Claudia S.	2016	Geriatrics & Gerontology International	No ortho trauma
A personality trait contributes to the occurrence of postoperative delirium: A prospective study	Shin, Jung Eun; Kyeong, Sunghyon; Lee, Jong-Seok; Park, Jin Young; Lee, Woo Suk; Kim, Jae-Jin; Yang, Kyu Hyun	2016	BMC Psychiatry	No ortho trauma
Falls and comorbidity: The pathway to fractures	JÃ, rgensen, Terese Sara HÃ j; Hansen, Annette HÃ, jmann; Sahlberg, Marie; Gislason, Gunnar H.; Torp- Pedersen, Christian; Andersson, Charlotte; Holm, Ellen	2014	Scandinavian Journal of Public Health	No ortho trauma; fracture outcome
Alcohol intoxication and its effects on traumatic spinal cord injury outcomes	Crutcher Ii, Clifford L.; Ugiliweneza, Beatrice; Hodes, Jonathan E.; Kong, Maiying; Boakye, Maxwell	2014	Journal of Neurotrauma	Spinal Cord Injury
A retrospective review of unintentional opioid overdose risk and mitigating factors among acutely injured trauma patients	Baird, Jannette; Faul, Mark; Green, Traci C.; Howland, Jonathan; Adams, Charles A.; George, Ann; Mello, Michael J.	2017	Drug and Alcohol Dependence	insufficient data for 6mo FU

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Assessment for returning to work after spinal cord injuries and patientâ??s vocational preferences	Ullah, Mohammad Mosayed; Sarker, Amit; Chowdhury, Suman Kanti	2015	Work: Journal of Prevention, Assessment & Rehabilitation	Target population absent,SCI
Are there differences in injury mortality among refugees and immigrants compared with native-born?	Norredam, Marie; Olsbjerg, Maja; Petersen, Jorgen H.; Laursen, Bjarne; Krasnik, Allan	2013	Injury Prevention	No ortho trauma;non ortho trauma injury data
Preoperative state anxiety, acute postoperative pain, and analgesic use in persons undergoing lower limb amputation	Raichle, Katherine A.; Osborne, Travis L.; Jensen, Mark P.; Ehde, Dawn M.; Smith, Douglas G.; Robinson, Lawrence R.	2015	The Clinical Journal of Pain	No ortho trauma; limb pain study
Biopsychosocial risk factors for driving cessation: Findings from the Health and Retirement Study	Dugan, Elizabeth; Lee, Chae Man	2013	Journal of Aging and Health	No ortho trauma
Military blast exposure, ageing and white matter integrity	Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.; Salat, David H.	2015	Brain: A Journal of Neurology	No ortho trauma
Moral injury in U.S. Combat veterans: Results from the national health and resilience in veterans study	Wisco, Blair E.; Marx, Brian P.; May, Casey L.; Martini, Brenda; Krystal, John H.; Southwick, Steven M.; Pietrzak, Robert H.	2017	Depression and Anxiety	No ortho trauma
Onset, risk factors, and impact of delirium in patients with traumatic spinal cord injury	Cheung, Antoinette; Thorogood, Nancy P.; Noonan, Vanessa K.; Zhong, Yun; Fisher, Charles G.; Dvorak, Marcel F.; Street, John	2013	Journal of Neurotrauma	Target population absent,SCI
Head injury as risk factor for psychiatric disorders: A nationwide register-based follow-up study of 113,906 persons with head injury	Orlovska, Sonja; Pedersen, Michael Skaarup; Benros, Michael Eriksen; Mortensen, Preben Bo; Agerbo, Esben; Nordentoft, Merete	2014	The American Journal of Psychiatry	No ortho trauma; TBI only
Psychosocial factors at work and occupational injury: Results from the French National SUMER Survey	Lesuffleur, Thomas; Chastang, Jean-François; Sandret, Nicolas; Niedhammer, Isabelle	2015	Journal of Occupational and Environmental Medicine	No ortho trauma
An examination of hardiness throughout the sport injury process	Wadey, Ross; Evans, Lynne; Hanton, Sheldon; Neil, Rich	2012	British Journal of Health Psychology	not target population; no ortho trauma subanalysis
Pain in the aftermath of trauma is a risk factor for post-traumatic stress disorder	Norman, S. B.; Stein, M. B.; Dimsdale, J. E.; Hoyt, D. B.	2008	Psychological Medicine	unclear injuries; no target factors or scales
Psychosocial aspects of injured workers' returning to work (RTW) in Hong Kong	Li-Tsang, Cecilia W. P.; Chan, Henky H. K.; Lam, C. S.; Lo-Hui, Karen Y. L.; Chan, Chetwyn C. H.	2007	Journal of Occupational Rehabilitation	not target population; no subanalysis of ortho pts
Caregiver reports of subsequent injuries among veterans with traumatic brain injury after discharge from inpatient polytrauma rehabilitation programs	Carlson, Kathleen F.; Meis, Laura A.; Jensen, Agnes C.; Simon, Alisha Baines; Gravely, Amy A.; Taylor, Brent C.; Bangerter, Ann; Schaaf, Katy Wilder; Griffin, Joan M.	2012	The Journal of Head Trauma Rehabilitation	not best available evidence; very low quality

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Are patients after severe injury who drop out of a longitudinal study at high risk of mental disorder?	Nishi, Daisuke; Matsuoka, Yutaka; Nakajima, Satomi; Noguchi, Hiroko; Kim, Yoshiharu; Kanba, Shigenobu; Schnyder, Ulrich	2008	Comprehensive Psychiatry	No ortho trauma
Self-reported health status of students in-processing into military medical advanced individual training	Rice, Valerie J. Berg; Mays, Mary Z.; Gable, Clayton	2009	Work: Journal of Prevention, Assessment & Rehabilitation	not target population; no subanalysis of ortho trauma pts
The association between psychosocial care by physicians and patientsâ?? trust: A retrospective analysis of severely injured patients in surgical intensive care units	Thüm, Sonja; Janssen, Christian; Pfaff, Holger; Lefering, Rolf; Neugebauer, Edmund A.; Ommen, Oliver	2012	GMS Psycho-Social- Medicine	No ortho trauma; no ortho injury data
A history of loss of consciousness or post-traumatic amnesia in minor head injury: "Conditio sine qua non" or one of the risk factors?	Smits, M.; Hunink, M. G. M.; Nederkoorn, P. J.; Dekker, H. M.; Vos, P. E.; Kool, D. R.; Hofman, P. A. M.; Twijnstra, A.; de Haan, G. G.; Tanghe, H. L. J.; Dippel, D. W. J.	2007	Journal of Neurology, Neurosurgery & Psychiatry	No ortho trauma; TBI only with neurological damage
The association between county-level injury rates and racial segregation revisited: A multilevel analysis	Fabio, Anthony; Sauber-Schatz, Erin K.; Barbour, Kamil E.; Li, Wei	2009	American Journal of Public Health	No ortho trauma
The workers' compensation experience: A qualitative exploration of workers' beliefs regarding the impact of the compensation system on their recovery and rehabilitation	Wall, Cindy L.; Morrissey, Shirley A.; Ogloff, James R. P.	2009	The International Journal of Disability Management Research	No ortho trauma
Factors associated with phantom limb pain: A 3½-year prospective study	Bosmans, Joline C.; Geertzen, Jan H. B.; Post, Wendy J.; van der Schans, Cees P.; Dijkstra, Pieter U.	2010	Clinical Rehabilitation	No ortho trauma
Predictors for suicidal ideation after occupational injury	Kuo, Chun-Ya; Liao, Shih-Cheng; Lin, Kuan-Han; Wu, Chen-Long; Lee, Ming-Been; Guo, Nai-Wen; Guo, Yue Leon	2012	Psychiatry Research	No ortho trauma; TBI only
Correlates of depressive symptoms in rural elderly Chinese	Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W.; Liang, Chaoke; Hall, Kathleen S.; Ma, Feng; Murrell, Jill R.; Cheng, Yibin; Matesan, Janetta; Li, Ping; Bian, Jianchao; Hendrie, Hugh C.	2009	International Journal of Geriatric Psychiatry	No ortho trauma; TBI only
Aging and delirium: Too much or too little pain medication?	Robinson, Sherry; Vollmer, Charlene; Jirka, Holly; Rich, Catherine; Midiri, Carol; Bisby, Donna	2008	Pain Management Nursing	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The Tachikawa cohort of motor vehicle accident study investigating psychological distress: Design, methods and cohort profiles	Matsuoka, Yutaka; Nishi, Daisuke; Nakajima, Satomi; Yonemoto, Naohiro; Hashimoto, Kenji; Noguchi, Hiroko; Homma, Masato; Otomo, Yasuhiro; Kim, Yoshiharu	2009	Social Psychiatry and Psychiatric Epidemiology: The International Journal for Research in Social and Genetic Epidemiology and Mental Health Services	No ortho trauma; TBI only MVA data
Semiâ??parametric additive risk models: Application to injury duration study	Lim, Hyun J.; Zhang, Xu	2009	Accident Analysis and Prevention	No ortho trauma; no ortho injury data
Injuries and injury risk factors among British army infantry soldiers during predeployment training	Wilkinson, David M.; Blacker, Sam D.; Richmond, Victoria L.; Horner, Fleur E.; Rayson, Mark P.; Spiess, Anita; Knapik, Joseph J.	2011	Injury Prevention	not outcome of interest; injury
Predicting the future development of depression or PTSD after injury	Richmond, Therese S.; Ruzek, Josef; Ackerson, Theimann; Wiebe, Douglas J.; Winston, Flaura; Kassam- Adams, Nancy	2011	General Hospital Psychiatry	<30 per group; 26 w depression; 4 w PTSD
Predictors of sustained return to work after work- related injury or disease: Insights from workers' compensation claims records	Berecki-Gisolf, Janneke; Clay, Fiona J.; Collie, Alex; McClure, Roderick J.	2012	Journal of Occupational Rehabilitation	mixed population; included injured and diseased individuals
Effectiveness of falls clinics: An evaluation of outcomes and client adherence to recommended interventions	Hill, Keith D.; Moore, Kirsten J.; Dorevitch, Michael I.; Day, Lesley M.	2008	Journal of the American Geriatrics Society	No ortho trauma
Risk factors for neurological deficiency one year after blunt-induced traumatic cervical fracture	ter Gunne, Albert F. Pull; Aquarius, Annelies E.; Roukema, Jan-Anne	2009	European Neurology	<30 patients per factor group
The prevalence of injury for stroke caregivers and associated risk factors	Hayes, Jeanne; Chapman, Paula; Young, Linda J.; Rittman, Maude	2009	Topics in Stroke Rehabilitation	<30 patients per factor group
Big-five personality traits and ego-resilience in amputee soldiers	Zeb, Naila; Naqvi, Irum; Zonash, Rabia	2013	Journal of Behavioural Sciences	cross sectional; simultaneous measurement
Depression among injured workers receiving vocational rehabilitation: Contributions of work values, pain, and stress	Stice, Bryan D.; Dik, Bryan J.	2009	Journal of Occupational Rehabilitation	not target population; no subanalysis of ortho pts
Injury risk factors in parachuting and acceptability of the parachute ankle brace	Knapik, Joseph J.; Spiess, Anita; Swedler, David; Grier, Tyson; Darakjy, Salima; Amoroso, Paul; Jones, Bruce H.	2008	Aviation, Space, and Environmental Medicine	no ortho trauma
Mortality after traumatic spinal cord injury: 50 years of follow-up	Hagen, Ellen Merete; Lie, Stein Atle; Rekand, Tiina; Gilhus, Nils Erik; Gronning, Marit	2010	Journal of Neurology, Neurosurgery & Psychiatry	No ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Clinical complications in patients with severe cervical spinal trauma: A ten-year prospective study	Santos, Egmond Alves Silva; Filho, WennerJorzino Santos; Possatti, Lucas Loss; Bittencourt, Lia Rita Azeredo; Fontoura, Emilio Afonso Franca; Boteiho, Ricardo Vieira	2012	Arquivos de Neuro- Psiquiatria	<30 patients per factor group
Psychosocial adjustment patterns of persons with spinal cord injury in Taiwan	Wu, Ming-Yi; Chan, Fong	2007	Disability and Rehabilitation: An International, Multidisciplinary Journal	Target population absent,SCI
Development and validation of the Causes of Re- Injury Worry Questionnaire	Christakou, Anna; Zervas, Yannis; Stavrou, Nektarios A.; Psychountaki, Maria	2011	Psychology, Health & Medicine	no subanalysis of target population
Remote epidural hemorrhage after unilateral decompressive hemicraniectomy in brain-injured patients	Huang, Yu-Hua; Lee, Tao-Chen; Lee, Tsung-Han; Yang, Ka-Yen; Liao, Chen-Chieh	2013	Journal of Neurotrauma	No ortho trauma; TBI only
Psychosocial variables and time to injury onset: A hurdle regression analysis model	Sibold, Jeremy; Zizzi, Samuel	2012	Journal of Athletic Training	No ortho trauma; sports injury data
What leads to the expectation to return to work? Insights from a Theory of Planned Behavior (TPB) model of future work outcomes	Dunstan, Debra A.; Covic, Tanya; Tyson, Graham A.	2013	Work: Journal of Prevention, Assessment & Rehabilitation	wrong follow-up; 3 months
Social support patterns of collegiate athletes before and after injury	Yang, Jingzhen; Peek-Asa, Corinne; Lowe, John B.; Heiden, Erin; Foster, Danny T.	2010	Journal of Athletic Training	Target population absent
Injurious falls are associated with lower household but higher recreational physical activities in community-dwelling older male veterans	Gill, Dawn P.; Zou, G. Y.; Jones, Gareth R.; Speechley, Mark	2008	Gerontology	No ortho trauma
Patient- and hospital-related determinants on subjective evaluation of medical treatment outcome of severely injured patients	Janssen, Christian; Ommen, Oliver; Ruppert, Gero; Pfaff, Holger	2008	Journal of Public Health	not best available evidence; very low quality
Risk factors of subsequent vertebral compression fractures after vertebroplasty	Lu, Kang; Liang, Chengâ?쳌Loong; Hsieh, Chingâ?쳌Hua; Tsai, Yuâ?쳌Duan; Chen, Hanâ?쳌Jung; Liliang, Poâ?쳌Chou	2012	Pain Medicine	No comparison of interest
Psychosocial factors associated with lifetime experiences of serious unintentional injury in South Korea	Ham, Ok Kyung	2008	Public Health Nursing	Target population absent
Ethnoracial variations in acute PTSD symptoms among hospitalized survivors of traumatic injury	Stephens, Kari A.; Sue, Stanley; Roy-Byrne, Peter; Unù⁄₄tzer, Jù⁄₄rgen; Wang, Jin; Jurkovich, Gregory J.; Zatzick, Douglas F.	2010	Journal of Traumatic Stress	insufficient data for 6mo FU

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
I'm going back to work: Back injured clients' perceptions and experiences of their worker roles	Soeker, Mogammad Shaheed; Wegner, Lisa; Pretorius, Blanche	2008	Work: Journal of Prevention, Assessment & Rehabilitation	Target population absent
Obesity paradox in amputation risk among nonelderly diabetic men	Sohn, Min-Woong; Budiman-Mak, Elly; Oh, Elissa H.; Park, Michael S.; Stuck, Rodney M.; Stone, Neil J.; Pearce, William B.	2012	Obesity	No ortho trauma
Work-related musculoskeletal disorders and injuries: Differences among older and younger occupational and physical therapists	King, Phyllis; Huddleston, Wendy; Darragh, Amy R.	2009	Journal of Occupational Rehabilitation	not best available evidence; very low quality
Twenty years of scientific progress in injury and violence research and the next public health frontier	Greenspan, Arlene I.; Noonan, Rita K.	2012	Journal of Safety Research	Target population absent
Fracture-related hip pain in elderly patients with proximal femoral fracture after discharge from stationary treatment	Dasch, Burkhard; Endres, Heinz G.; Maier, Christoph; Lungenhausen, Margitta; Smektala, Rüdiger; Trampisch, Hans J.; Pientka, Ludger	2008	European Journal of Pain	not target population; elderly hip fracture
Prognosis analysis and risk factors related to progressive intracranial haemorrhage in patients with acute traumatic brain injury	Tong, Wu-Song; Zheng, Ping; Zeng, Jing-Song; Guo, Yi-Jun; Yang, Wen-Jin; Li, Gao-Yi; He, Bin; Yu, Hui; Li, Yong-Sheng; Tang, Xin-Fen; Lin, Tong-Shun; Xu, Jun-Fa	2012	Brain Injury	Target population absent
The impact of perceptions of health control and coping modes on negative affect among individuals with spinal cord injuries	Livneh, Hanoch; Martz, Erin	2011	Journal of Clinical Psychology in Medical Settings	Target population absent,SCI
Individual risk factors associated with premature discharge from military service	Larsson, Helena; Broman, Lisbet; Harms-Ringdahl, Karin	2009	Military Medicine	mixed population; majority of pop. was uninjured, no sub-analysis
Association between preseason functional tests and injuries in youth football: A prospective followâ?쳌up	Frisch, A.; Urhausen, A.; Seil, R.; Croisier, J. L.; Windal, T.; Theisen, D.	2011	Scandinavian Journal of Medicine & Science in Sports	not outcome of interest; injury
A prospective study of positive adjustment to lower limb amputation	Unwin, Jennifer; Kacperek, Lynn; Clarke, Chris	2009	Clinical Rehabilitation	mixed population; majority non-trauma
Depressive symptoms predict mucosal wound healing	Bosch, Jos A.; Engeland, Christopher G.; Cacioppo, John T.; Marucha, Phillip T.	2007	Psychosomatic Medicine	Target population absent
Functional neurological recovery after spinal cord injury is impaired in patients with infections	Failli, Vieri; Kopp, Marcel A.; Gericke, Christine; Martus, Peter; Klingbeil, Susann; Brommer, Benedikt; Laginha, InÃas; Chen, Yuying; DeVivo, Michael J.; Dirnagl, Ulrich; Schwab, Jan M.	2012	Brain: A Journal of Neurology	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
24-hour pattern of work-related injury risk of French firemen: Nocturnal peak time	Riedel, Marc; Berrez, Stéphane; Pelisse, Didier; Brousse, Eric; Forget, Coralie; Marlot, Michel; Smolensky, Michael H.; Touitou, Yvan; Reinberg, Alain	2011	Chronobiology International	No comparison of interest
Sleep disturbance immediately prior to trauma predicts subsequent psychiatric disorder	Bryant, Richard A.; Creamer, Mark; O'Donnell, Meaghan; Silove, Derrick; McFarlane, Alexander C.	2010	Sleep: Journal of Sleep and Sleep Disorders Research	Target population absent
The role of perceived injustice in the experience of chronic pain and disability: Scale development and validation	Sullivan, Michael J. L.; Adams, Heather; Horan, Sharon; Maher, Denise; Boland, Dan; Gross, Richard	2008	Journal of Occupational Rehabilitation	no subanalysis of target population
Psychiatric morbidity and functional impairments in survivors of burns, traumatic injuries, and ICU stays for other critical illnesses: A review of the literature	Davydow, Dimitry S.; Katon, Wayne J.; Zatzick, Douglas F.	2009	International Review of Psychiatry	review; bib reviewed
What predicts post-traumatic stress following spinal cord injury?	Hatcher, Mal B.; Whitaker, Chris; Karl, Anke	2009	British Journal of Health Psychology	Target population absent,SCI
Psychosocial adaptation to spinal cord injury: A dimensional perspective	Livneh, Hanoch; Martz, Erin	2005	Psychological Reports	Target population absent,SCI
Social and psychological factors in adjustment to limb amputation	Williamson, Gail M.; Schulz, Richard; Bridges, Michael W.; Behan, Aileen M.	1994	Journal of Social Behavior & Personality	mixed population; majority non-trauma
Reliability of the worker role interview	Biernacki, Susan D.	1993	American Journal of Occupational Therapy	<60 total pts
Explanatory style as a risk factor for traumatic mishaps	Peterson, Christopher; Bishop, Michael P.; Fletcher, Christopher W.; Kaplan, Mara R.; Yesko, Erika S.; Moon, Christina H.; Smith, Joshua S.; Michaels, Claire E.; Michaels, Andrew J.	2001	Cognitive Therapy and Research	insufficient data for 6mo FU
Physical impairments as risk factors for the development of posttraumatic stress disorder	Martz, Erin; Cook, Daniel W.	2001	Rehabilitation Counseling Bulletin	No ortho trauma
Mental links to enhanced healing: An exploratory study	Ievleva, Lydia; Orlick, Terry	1991	The Sport Psychologist	Not population of interest; knee and ankle sprains
Psychosocial antecedents of athletic injury: The effects of life stress and social support on female collegiate gymnasts	Petrie, Trent A.	1992	Behavioral Medicine	Target population absent
Social relationships and psychosocial impairment of persons with spinal cord injury	Elliott, Timothy R.; Herrick, Stephen M.; Witty, Thomas E.; Godshall, Frank; Spruell, Micheal	1992	Psychology & Health	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Public Health Lessons Learned From Analysis of New York City Subway Injuries	Guth, Amber A.; O'Neill, Andrea; Pachter, H. Leon; Diflo, Thomas	2006	American Journal of Public Health	not best available evidence; descriptive stats only
Problem-solving appraisal and psychological adjustment following spinal cord injury	Elliott, Timothy R.; Godshall, Frank J.; Herrick, Stephen M.; Witty, Thomas E.; Spruell, Michael	1991	Cognitive Therapy and Research	Target population absent,SCI
Physician-identified barriers to intimate partner violence screening	Jaffee, Kim D.; Epling, John W.; Grant, William; Ghandour, Reem M.; Callendar, Elizabeth	2005	Journal of Women's Health	Target population absent
Psychosocial sequelae of motor vehicle collisions: A follow-up study	Vingilis, Evelyn; Larkin, Edward; Stoduto, Gina; Parkinson-Heyes, Adele; McLellan, Barry	1996	Accident Analysis and Prevention	insufficient data for target comparison
Psychosocial characteristics of alcohol-involved and nonalcohol-involved seriously injured drivers	Vingilis, Evelyn; Stoduto, Gina; Macartney-Filgate, Michã"le S.; Liban, Carolyn B.; McLellan, Barry A.	1994	Accident Analysis and Prevention	<6 month follow-up
Social networks and marital status predict mortality in older women: Prospective evidence from the Study of Osteoporotic Fractures (SOF)	Rutledge, Thomas; Matthews, Karen; Lui, Li-Yung; Stone, Katie L.; Cauley, Jane A.	2003	Psychosomatic Medicine	no ortho trauma
Sense of coherenceâ??a mediator between disability and handicap?	Schnyder, Ulrich; Büchi, Stefan; Mörgeli, Hanspeter; Sensky, Tom; Klaghofer, Richard	1999	Psychotherapy and Psychosomatics	not target population; unclear trauma
Falls Risk and Functional Decline in Older Fallers Discharged Directly From Emergency Departments	Russell, Melissa A.; Hill, Keith D.; Blackberry, Irene; Day, Lesley L.; Dharmage, Shyamali C.	2006	The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences	not target population; elderly hip fxs
Interview protocols and ergonomics checklist for analysing overexertion back accidents among nursing personnel	Engkvist, Inga-Lill; Hagberg, Mats; Wigaeus-Hjelm, Ewa; Menckel, Ewa; Ekenvall, Lena	1995	Applied Ergonomics	Target population absent
The emotional Stroop task and chronic pain: What is threatening for chronic pain sufferers?	Crombez, Geert; Hermans, Dirk; Adriaensen, Hugo	2000	European Journal of Pain	Target population absent
Short-term persistent depression following hip fracture: A risk factor and target to increase resilience in elderly people	Zimmerman, Sheryl Itkins; Smith, H. David; Gruber-Baldini, Ann; Fox, Kathleen M.; Hebel, J. Richard; Kenzora, John; Felsenthal, Gerald; Magaziner, Jay	1999	Social Work Research	not target population; elderly hip fxs
Clinical expression profiles of Complex Regional Pain Syndrome, Fibromyalgia and a-specific Repetitive Strain Injury: More common denominators than pain?	Marinus, Johan; Van Hilten, Jacobus J.	2006	Disability and Rehabilitation: An International, Multidisciplinary Journal	irrelevant systematic review
Psychological adjustment to lower limb amputation amongst prosthesis users	Atherton, Rachel; Robertson, Noelle	2006	Disability and Rehabilitation: An International, Multidisciplinary Journal	mixed population; majority non-trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Hospitalizations for fall-related injuries among active-duty Army soldiers, 1980-1998	Senier, Laura; Bell, Nicole S.; Yore, Michelle M.; Amoroso, Paul J.	2002	Work: Journal of Prevention, Assessment & Rehabilitation	Add to PICO-4; is a descriptive study rather than predictive study. describes demographic and social factor frequencies among fallers, rather than using those characteristics to predict future outcomes. therefore, study doesn't answer pico question
Certain psychological characteristics of soldiers injured in the 1991â??1993 war in Croatia	Sivik, Tatjana; Delimar, D.; Korenjak, P.; Delimar, N.; Schoenfeld, Rebecca	2000	Stress Medicine	Doesn't address question of interest; compared injured to non-injured
The relationship between catastrophizing and disability in amputees experiencing phantom pain	Whyte, A.; Carroll, L. J.	2004	Disability and Rehabilitation: An International, Multidisciplinary Journal	mixed population; majority non-trauma
Prediction of work functioning following accidental injury: The contribution of PTSD symptom severity and other established risk factors	Matthews, Lynda R.; Chinnery, Darien	2005	International Journal of Psychology	not best available evidence; very low quality
Acute confusional state in the elderly following hip surgery: Incidence, risk factors and complications	Galanakis, Patrizia; Bickel, Horst; Gradinger, Reiner; Von Gumppenberg, Stephan; Förstl, Hans	2001	International Journal of Geriatric Psychiatry	not target population; elderly hip fracture
Post-traumatic stress disorder, depression, anxiety and quality of life in patients with traffic-related injuries	Wang, Ching-Hui; Tsay, Shiow-Luan; Bond, A. Elaine	2005	Journal of Advanced Nursing	<6 months follow up
Self-responsibility and coping with pain: Disparate attitudes toward psychosocial issues in recovery from work place injury	Antoniazzi, M.; Celinski, M.; Alcock, J.	2002	Disability and Rehabilitation: An International, Multidisciplinary Journal	Target population absent
Severe occupational injuries among older workers: Demographic factors, time of injury, place and mechanism of injury, length of stay, and cost data	Grandjean, Cynthia K.; McMullen, Patricia C.; Miller, Kenneth P.; Howie, William O.; Ryan, Kevin; Myers, Alice; Dutton, Richard	2006	Nursing & Health Sciences	Doesn't address question of interest; no comparison of interest
Phantom limb pain and residual limb pain following lower limb amputation: A descriptive analysis	Gallagher, Pamela; Allen, David; MacLachlan, Malcolm	2001	Disability and Rehabilitation: An International, Multidisciplinary Journal	Add to PICO-2; inadequate quality due to lack of confounding adjustment
Incidence of complex regional pain syndrome type I after fractures of the distal radius	Dijkstra, Pieter U.; Groothoff, Johan W.; Duis, Henk Janten; Geertzen, Jan H. B.	2003	European Journal of Pain	Add to PICO-1; event rate (n=1) was too low for statistical analysis of the effect of relevent risk factor on the outcome of interest

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Depression following Traumatic Spinal Cord Injury	Dryden, Donna M.; Saunders, L. Duncan; Rowe, Brian H.; May, Laura A.; Yiannakoulias, Niko; Svenson, Lawrence W.; Schopflocher, Donald P.; Voaklander, Donald C.	2005	Neuroepidemiology	Target population absent,SCI
Behavioral, demographic, and prior morbidity risk factors for accidental death among men: A case-control study of soldiers	Wilson, Abigail L. Garvey; Lange, Jeffrey L.; Brundage, John F.; Frommelt, Robert A.	2003	Preventive Medicine: An International Journal Devoted to Practice and Theory	No ortho trauma
Psychosocial predictors of long-term adjustment to lower-limb amputation and phantom limb pain	Hanley, Marisol A.; Jensen, Mark P.; Ehde, Dawn M.; Hoffman, Amy J.; Patterson, David R.; Robinson, Lawrence R.	2004	Disability and Rehabilitation: An International, Multidisciplinary Journal	mixed population; <80% trauma;
The role of blood pressure, cortisol, and prolactine among soldiers injured in the 1991â??1993 war in Croatia	Sivik, Tatjana; Delimar, Domagoj; Korenjak, Patricia; Delimar, Natasa	1997	Integrative Physiological & Behavioral Science	mixed population; no sub analysis
Psychosocial stress, cognitive performance and disability after common whiplash	Radanov, Bogdan P.; di Stefano, Giuseppe; Schnidrig, Ayesha; Sturzenegger, Matthias	1993	Journal of Psychosomatic Research	Target population absent
Psychosocial outcome following traumatic brain injury in adults: A long-term population-based follow-up	Engberg, A. W.; Teasdale, T. W.	2004	Brain Injury	Target population absent
Predicting posttraumatic distress in hospitalized trauma survivors with acute injuries	Zatzick, Douglas F.; Kang, Sun-Mee; Müller, Hans-Georg; Russo, Joan E.; Rivara, Frederick P.; Katon, Wayne; Jurkovich, Gregory J.; Roy-Byrne, Peter	2002	The American Journal of Psychiatry	general trauma; not best available evidence
Long-term outcome of head injuries: A 23 year follow up study of children with head injuries	Klonoff, Harry; Clark, Campbell; Klonoff, Pamela S.	1993	Journal of Neurology, Neurosurgery & Psychiatry	Target population absent
Lifestyle risks for three disease outcomes in spinal cord injury	Davies, Diane S.; McColl, Mary Ann	2002	Clinical Rehabilitation	Target population absent,SCI
Determinants of Occupational Disability Following a Low Back Injury: A Critical Review of the Literature	Crook, Joan; Milner, Ruth; Schultz, Izabela Z.; Stringer, Bernadette	2002	Journal of Occupational Rehabilitation	irrelevant systematic review
Beliefs in karma and reincarnation among survivors of violent Trauma: A community survey	Davidson, Jonathan R. T.; Connor, Kathryn M.; Lee, Li-Ching	2005	Social Psychiatry and Psychiatric Epidemiology: The International Journal for Research in Social and Genetic Epidemiology and Mental Health Services	Target population absent
Nonresponse Error in Injury-Risk Surveys	Johnson, Timothy P.; Holbrook, Allyson L.; Cho, Young Ik; Bossarte, Robert M.	2006	American Journal of Preventive Medicine	Target population absent

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Mental Toughness as a Determinant of Beliefs, Pain, and Adherence in Sport Injury Rehabilitation	Levy, Andrew R.; Polman, Remco C. J.; Clough, Peter J.; Marchant, David C.; Earle, Keith	2006	Journal of Sport Rehabilitation	Target population absent,SCI
Outcome in consecutive emergency department attenders following a road traffic accident	Mayou, Richard; Bryant, Bridget	2001	The British Journal of Psychiatry	Add to PICO-1; 61% of patient population had minor non orthopedic trauma injuries like abrasions and lacerations
Self-rated health and physical disability in elderly survivors of a major medical event	Wilcox, Victoria L.; Kasl, Stanislav; Idler, Ellen L.	1996	The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences	Add to PICO-1; majority of patient population had non-traumatic injury/illnesses
Injury hospitalization and risks for subsequent self- injury and suicide: A national study from New Zealand	Conner, Kenneth R.; Langley, John; Tomaszewski, Kenneth J.; Conwell, Yeates	2003	American Journal of Public Health	Target population absent
Posttraumatic stress disorder and depression in battle-injured soldiers	Grieger, Thomas A.; Cozza, Stephen J.; Ursano, Robert J.; Hoge, Charles; Martinez, Patricia E.; Engel, Charles C.; Wain, Harold J.	2006	The American Journal of Psychiatry	not best available evidence; very low quality
Increased PTSD Risk With Combat-Related Injury: A Matched Comparison Study of Injured and Uninjured Soldiers Experiencing the Same Combat Events	Koren, Danny; Norman, Doron; Cohen, Ayala; Berman, Jason; Klein, Ehud M.	2005	The American Journal of Psychiatry	factor as outcome
The role of cognitive processing therapy in improving psychosocial functioning, health, and quality of life in veterans with military sexual trauma-related posttraumatic stress disorder	Holliday, R.; Williams, R.; Bird, J.; Mullen, K.; SurÃs, A.	2015	Psychological services	No ortho trauma
Exploring the longitudinal trajectories of posttraumatic stress disorder in injured trauma survivors	Osenbach, J. E.; Lewis, C.; Rosenfeld, B.; Russo, J.; Ingraham, L. M.; Peterson, R.; Wang, J.; Zatzick, D. F.	2014	Psychiatry (new york)	Very low quality
Livestock/animal assets buffer the impact of conflict-related traumatic events on mental health symptoms for rural women	Glass, N.; Perrin, N. A.; Kohli, A.; Remy, M. M.	2014	Plos one	Target population absent
Risk factors associated with post-traumatic stress disorder among Uyghur and Han veterans in Xinjiang region of China	Liu, B.; Li, R.; Lu, D.; Zhao, J.; Guan, S.; Tang, J.; Cui, C.; Song, Z.; Liu, J.	2016	International journal of clinical and experimental medicine	No ortho trauma; PTSD
Dizziness-related disability following mild- moderate traumatic brain injury	Kleffelgaard, I.; Langhammer, B.; Hellstrom, T.; Sandhaug, M.; Tamber, A. L.; Soberg, H. L.	2017	Brain injury	No ortho trauma; TBI only

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Using the WHODAS 2.0 to Assess Functioning Among Veterans Seeking Compensation for Posttraumatic Stress Disorder	Marx, B. P.; Wolf, E. J.; Cornette, M. M.; Schnurr, P. P.; Rosen, M. I.; Friedman, M. J.; Keane, T. M.; Speroff, T.	2015	Psychiatric services (washington, D.C.)	No ortho trauma
A randomised controlled trial of the Flinders Program of chronic condition management in Vietnam veterans with co-morbid alcohol misuse, and psychiatric and medical conditions	Battersby, M. W.; Beattie, J.; Pols, R. G.; Smith, D. P.; Condon, J.; Blunden, S.	2013	Australian and new zealand journal of psychiatry	No ortho trauma
Measuring resilience after spinal cord injury: Development, validation and psychometric characteristics of the SCI-QOL Resilience item bank and short form	Victorson, D.; Tulsky, D. S.; Kisala, P. A.; Kalpakjian, C. Z.; Weiland, B.; Choi, S. W.	2015	Journal of Spinal Cord Medicine	Target population absent, SCI
Leisure time physical activity participation in individuals with spinal cord injury in Malaysia: barriers to exercise	Mat Rosly, M.; Halaki, M.; Hasnan, N.; Mat Rosly, H.; Davis, G. M.; Husain, R.	2018	Spinal Cord	Target population absent,SCI
Determinants of resilience among people who sustained spinal cord injury from the 2015 earthquake in Nepal	Bhattarai, M.; Maneewat, K.; Sae-Sia, W.	2018	Spinal Cord	Target population absent,SCI
Cross-Cultural and Psychometric Properties Assessment of the Exercise Self-Efficacy Scale in Individuals with Spinal Cord Injury	Pisconti, F.; Mahmoud Smaili Santos, S.; Lopes, J.; Rosa Cardoso, J.; Lopes Lavado, E.	2017	Acta Medica Portuguesa	Target population absent, SCI
Burden of care in primary caregivers of individuals with spinal cord injury in Iran: its association with sociodemographic factors	Khazaeipour, Z.; Rezaei-Motlagh, F.; Ahmadipour, E.; Azarnia-Ghavam, M.; Mirzababaei, A.; Salimi, N.; Salehi-Nejad, A.	2017	Spinal Cord	Target population absent,SCI
Association of pain, social support and socioeconomic indicators in patients with spinal cord injury in Iran	Khazacipour, Z.; Ahmadipour, E.; Rahimi-Movaghar, V.; Ahmadipour, F.; Vaccaro, A. R.; Babakhani, B.	2017	Spinal Cord	Target population absent,SCI
Associations with being physically active and the achievement of WHO recommendations on physical activity in people with spinal cord injury	Rauch, A.; Hinrichs, T.; Cieza, A.	2017	Spinal Cord	Target population absent,SCI
The impact of pain on spiritual well-being in people with a spinal cord injury	Siddall, P. J.; McIndoe, L.; Austin, P.; Wrigley, P. J.	2017	Spinal Cord	Target population absent,SCI
An integrative review of standardized clinical evaluation tool utilization in anticholinergic drug trials for neurogenic lower urinary tract dysfunction	Stothers, L.; Tsang, B.; Nigro, M.; Lazare, D.; Macnab, A.	2016	Spinal Cord	irrelevant systematic review*
Psychosocial aspects of spinal cord injury pain: a meta-analysis	Tran, J.; Dorstyn, D. S.; Burke, A. L.	2016	Spinal Cord	irrelevant systematic review*

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Factors Associated With Met Expectations in Patients With Hand and Upper Extremity Disorders: A Pilot Study	Briet, J. P.; Hageman, M. G.; Overbeek, C. L.; Mudgal, C.; Ring, D. C.; Vranceanu, A. M.	2016	Psychosomatics	<60 target patients; no subanalysis of trauma pts
The combined associations of social participation and support with self-rated health and dietary satisfaction in men with spinal cord injury	Hata, K.; Inayama, T.; Matsushita, M.; Shinoda, S.	2016	Spinal Cord	Target population absent,SCI
Return-to-work intentions during spinal cord injury rehabilitation: an audit of employment outcomes	Kennedy, P.; Hasson, L.	2016	Spinal Cord	Target population absent,SCI
Effects of Adult Romantic Attachment and Social Support on Resilience and Depression in Individuals with Spinal Cord Injuries	Dodd, Z.; Driver, S.; Warren, A. M.; Riggs, S.; Clark, M.	2015	Topics in Spinal Cord Injury Rehabilitation	Target population absent,SCI
Does religious coping and spirituality have a moderating role on depression and anxiety in patients with spinal cord injury? A study from Iran	Rahnama, P.; Javidan, A. N.; Saberi, H.; Montazeri, A.; Tavakkoli, S.; Pakpour, A. H.; Hajiaghababaei, M.	2015	Spinal Cord	Target population absent,SCI
Psychological variables associated with employment following spinal cord injury: a meta-analysis	Kent, M. L.; Dorstyn, D. S.	2014	Spinal Cord	Target population absent,SCI
Female sexual dysfunction in patients with spinal cord injury: a study from Iran	Hajiaghababaei, M.; Javidan, A. N.; Saberi, H.; Khoei, E. M.; Khalifa, D. A.; Koenig, H. G.; Pakpour, A. H.	2014	Spinal Cord	Target population absent,SCI
Patient activation and disability in upper extremity illness	Gruber, J. S.; Hageman, M.; Neuhaus, V.; Mudgal, C. S.; Jupiter, J. B.; Ring, D.	2014	Journal of Hand Surgery - American Volume	not target population; no subanalysis of trauma pts
Psychosocial outcomes following spinal cord injury in Iran	Khazaeipour, Z.; Norouzi-Javidan, A.; Kaveh, M.; Khanzadeh Mehrabani, F.; Kazazi, E.; Emami-Razavi, S. H.	2014	Journal of Spinal Cord Medicine	Target population absent,SCI
Insomnia in a chronic musculoskeletal pain with disability population is independent of pain and depression	Asih, S.; Neblett, R.; Mayer, T. G.; Brede, E.; Gatchel, R. J.	2014	Spine Journal: Official Journal of the North American Spine Society	Target population absent
The effect of prior lumbar surgeries on the flexion relaxation phenomenon and its responsiveness to rehabilitative treatment	Neblett, R.; Mayer, T. G.; Brede, E.; Gatchel, R. J.	2014	Spine Journal: Official Journal of the North American Spine Society	Target population absent
Spinal cord injury-related chronic pain in victims of the 2008 Sichuan earthquake: a prospective cohort study	Wen, H.; Reinhardt, J. D.; Gosney, J. E.; Baumberger, M.; Zhang, X.; Li, J.	2013	Spinal Cord	<60 patients
Examining factors that contribute to the process of resilience following spinal cord injury	Kilic, S. A.; Dorstyn, D. S.; Guiver, N. G.	2013	Spinal Cord	Target population absent,SCI
Acceptance of pain in neurological disorders: associations with functioning and psychosocial well-being	Kratz, A. L.; Hirsh, A. T.; Ehde, D. M.; Jensen, M. P.	2013	Rehabilitation Psychology	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Impact of quality improvement strategies on the quality of life and well-being of individuals with spinal cord injury: a systematic review protocol	Munce, S. E.; Perrier, L.; Tricco, A. C.; Straus, S. E.; Fehlings, M. G.; Kastner, M.; Jang, E.; Webster, F.; Jaglal, S. B.	2013	Systematic Reviews	irrelevant systematic review*
Perceived exercise self-efficacy as a predictor of exercise behavior in individuals aging with spinal cord injury	Kroll, T.; Kratz, A.; Kehn, M.; Jensen, M. P.; Groah, S.; Ljungberg, I. H.; Molton, I. R.; Bombardier, C.	2012	American Journal of Physical Medicine & Rehabilitation	Target population absent,SCI
Self-efficacy and self-esteem as predictors of participation in spinal cord injuryan ICF-based study	Geyh, S.; Nick, E.; Stirnimann, D.; Ehrat, S.; Michel, F.; Peter, C.; Lude, P.	2012	Spinal Cord	Target population absent,SCI
Biopsychosocial outcomes in individuals with and without spinal cord injury: a Swiss comparative study	Geyh, S.; Nick, E.; Stirnimann, D.; Ehrat, S.; Muller, R.; Michel, F.	2012	Spinal Cord	Target population absent,SCI
Psychological resources in spinal cord injury: a systematic literature review	Peter, C.; Muller, R.; Cieza, A.; Geyh, S.	2012	Spinal Cord	irrelevant systematic review*
Associations between psychological factors and quality of life ratings in persons with spinal cord injury: a systematic review	van Leeuwen, C. M.; Kraaijeveld, S.; Lindeman, E.; Post, M. W.	2012	Spinal Cord	irrelevant systematic review*
The role of social support and social skills in people with spinal cord injurya systematic review of the literature	Muller, R.; Peter, C.; Cieza, A.; Geyh, S.	2012	Spinal Cord	irrelevant systematic review*
Factors predicting depression among persons with spinal cord injury 1 to 5 years post injury	Arango-Lasprilla, J. C.; Ketchum, J. M.; Starkweather, A.; Nicholls, E.; Wilk, A. R.	2011	Neurorehabilitation	Target population absent,SCI
Psychological factors affecting alcohol use after spinal cord injury	Saunders, L. L.; Krause, J. S.	2011	Spinal Cord	Target population absent,SCI
A multidisciplinary cognitive behavioural programme for coping with chronic neuropathic pain following spinal cord injury: the protocol of the CONECSI trial	Heutink, M.; Post, M. W.; Luthart, P.; Pfennings, L. E.; Dijkstra, C. A.; Lindeman, E.	2010	BMC Neurology	protocol
Cognitive appraisals, coping and quality of life outcomes: a multi-centre study of spinal cord injury rehabilitation	Kennedy, P.; Lude, P.; Elfstrom, M. L.; Smithson, E.	2010	Spinal Cord	Target population absent,SCI
Responsiveness of the Michigan Hand Outcomes Questionnaire and the Disabilities of the Arm, Shoulder, and Hand questionnaire in patients with hand injury	Horng, Y. S.; Lin, M. C.; Feng, C. T.; Huang, C. H.; Wu, H. C.; Wang, J. D.	2010	Journal of Hand Surgery - American Volume	<6 months (avg) follow up; <60 subjects;
Sex differences in pain and psychological functioning in persons with limb loss	Hirsh, A. T.; Dillworth, T. M.; Ehde, D. M.; Jensen, M. P.	2010	Journal of Pain	mixed population - amputation for trauma and other etiology
The relationship between and predictors of quality of life after spinal cord injury at 3 and 15 months after discharge	Mortenson, W. B.; Noreau, L.; Miller, W. C.	2010	Spinal Cord	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Life satisfaction, appraisals and functional outcomes in spinal cord-injured people living in the community	Kennedy, P.; Smithson, E.; McClelland, M.; Short, D.; Royle, J.; Wilson, C.	2010	Spinal Cord	Target population absent,SCI
A multi-centre study of the community needs of people with spinal cord injuries: the first 18 months	Kennedy, P.; Sherlock, O.; McClelland, M.; Short, D.; Royle, J.; Wilson, C.	2010	Spinal Cord	Target population absent,SCI
Posttraumatic stress disorder and depression negatively impact general health status after hand injury	Williams, A. E.; Newman, J. T.; Ozer, K.; Juarros, A.; Morgan, S. J.; Smith, W. R.	2009	Journal of Hand Surgery - American Volume	not best available evidence; very low quality
A preliminary evaluation of the motivational model of pain self-management in persons with spinal cord injury-related pain	Molton, I. R.; Jensen, M. P.; Nielson, W.; Cardenas, D.; Ehde, D. M.	2008	Journal of Pain	Target population absent,SCI
Health-related outcomes of people with spinal cord injurya 10 year longitudinal study	Dorsett, P.; Geraghty, T.	2008	Spinal Cord	Target population absent,SCI
Predicting life satisfaction after spinal cord injury in a Canadian sample	Tonack, M.; Hitzig, S. L.; Craven, B. C.; Campbell, K. A.; Boschen, K. A.; McGillivray, C. F.	2008	Spinal Cord	Target population absent,SCI
Preliminary reliability and validity of a Spinal Cord Injury Secondary Conditions Scale	Kalpakjian, C. Z.; Scelza, W. M.; Forchheimer, M. B.; Toussaint, L. L.	2007	Journal of Spinal Cord Medicine	Target population absent
How to improve satisfaction with hospital stay of severely injured patients	Janssen, C.; Ommen, O.; Neugebauer, E.; Lefering, R.; Pfaff, H.	2007	Langenbecks Archives of Surgery	not best available evidence; very low quality
The course and prognosis of hip complaints in general practice	van der Waal, J. M.; Bot, S. D.; Terwee, C. B.; van der Windt, D. A.; Bouter, L. M.; Dekker, J.	2006	Annals of Behavioral Medicine	no ortho trauma
The London attacksaftermath: Victimhood and resilience	Wessely, S.	2005	New England Journal of Medicine	Target population absent
Relations between coping strategies and health- related quality of life in patients with spinal cord lesion	Elfstrom, M.; Ryden, A.; Kreuter, M.; Taft, C.; Sullivan, M.	2005	Journal of Rehabilitation Medicine	Target population absent,SCI
Health and quality of life of persons with spinal cord lesion in Australia and Sweden	Kreuter, M.; Siosteen, A.; Erkholm, B.; Bystrom, U.; Brown, D. J.	2005	Spinal Cord	Target population absent
Effects of coping on psychological outcome when controlling for background variables: a study of traumatically spinal cord lesioned persons	Elfstrom, M. L.; Kreuter, M.; Ryden, A.; Persson, L. O.; Sullivan, M.	2002	Spinal Cord	Target population absent,SCI
The impact of coping on emotional adjustment to spinal cord injury (SCI): review of the literature and application of a stress appraisal and coping formulation	Galvin, L. R.; Godfrey, H. P.	2001	Spinal Cord	Target population absent,SCI
Ageing with spinal cord injury: cross-sectional and longitudinal effects	Weitzenkamp, D. A.; Jones, R. H.; Whiteneck, G. G.; Young, D. A.	2001	Spinal Cord	Target population absent,SCI

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Effect of age on outcomes of tertiary rehabilitation for chronic disabling spinal disorders	Mayer, T.; Gatchel, R. J.; Evans, T.	2001	Spine	Target population absent,SCI
Coping with spinal cord injury: personal and marital adjustment in the Hong Kong Chinese setting	Chan, R. C.; Lee, P. W.; Lieh-Mak, F.	2000	Spinal Cord	Target population absent,SCI
Subjective health in spinal cord injury after outpatient healthcare follow-up	Dunn, M.; Love, L.; Ravesloot, C.	2000	Spinal Cord	Target population absent,SCI
Correlates of stress in long-term spinal cord injury	Gerhart, K. A.; Weitzenkamp, D. A.; Kennedy, P.; Glass, C. A.; Charlifue, S. W.	1999	Spinal Cord	wrong population; spinal cord injury; unclear if any ortho injuries
Quality of life of spinal cord injured patients in Taiwan: a subgroup study	Lin, K. H.; Chuang, C. C.; Kao, M. J.; Lien, I. N.; Tsauo, J. Y.	1997	Spinal Cord	wrong population; spinal cord injury; unclear if any ortho injuries
Chronic pain/dysaesthesiae in spinal cord injury patients: results of a multicentre study	Stormer, S.; Gerner, H. J.; Gruninger, W.; Metzmacher, K.; Follinger, S.; Wienke, C.; Aldinger, W.; Walker, N.; Zimmermann, M.; Paeslack, V.	1997	Spinal Cord	Target population absent,SCI
The dominant role of psychosocial risk factors in the development of chronic low back pain disability	Gatchel, R. J.; Polatin, P. B.; Mayer, T. G.	1995	Spine	Target population absent
Mortality, morbidity, and psychosocial outcomes of persons spinal cord injured more than 20 years ago	Whiteneck, G. G.; Charlifue, S. W.; Frankel, H. L.; Fraser, M. H.; Gardner, B. P.; Gerhart, K. A.; Krishnan, K. R.; Menter, R. R.; Nuseibeh, I.; Short, D. J.; et al.,	1992	Paraplegia	Target population absent,SCI
Suicide following spinal cord injury	DeVivo, M. J.; Black, K. J.; Richards, J. S.; Stover, S. L.	1991	Paraplegia	Target population absent,SCI
Negotiating reality after physical loss: hope, depression, and disability	Elliott, T. R.; Witty, T. E.; Herrick, S.; Hoffman, J. T.	1991	Journal of Personality & Social Psychology	Target population absent
Is Social Support Associated With Upper Extremity Disability?	Nota, S. P.; Spit, S. A.; Oosterhoff, T. C.; Hageman, M. G.; Ring, D. C.; Vranceanu, A. M.	2016	Clin Orthop Relat Res	not target population; no subanalysis of trauma pts
Role of Depression in Outcomes of Low-Energy Distal Radius Fractures in Patients Older Than 55 Years	Yeoh, J. C.; Pike, J. M.; Slobogean, G. P.; O'Brien, P. J.; Broekhuyse, H. M.; Lefaivre, K. A.	2016	J Orthop Trauma	not target population; low-energy with majority non-op tx
Relationship of age on enjoyment of physical activity in upper extremity illness	Jayakumar, P.; Overbeek, C. L.; Ring, D. C.	2015	Hand (N Y)	not target population; no subanalysis of trauma pts
Changes in Depression, Health Anxiety, and Pain Catastrophizing Between Enrollment and 1 Month After a Radius Fracture	Golkari, S.; Teunis, T.; Ring, D.; Vranceanu, A. M.	2015	Psychosomatics	insufficient data for 6mo FU
What Is the Most Useful Questionnaire for Measurement of Coping Strategies in Response to Nociception?	Kortlever, J. T.; Janssen, S. J.; van Berckel, M. M.; Ring, D.; Vranceanu, A. M.	2015	Clin Orthop Relat Res	not target population; no subanalysis of trauma pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Psychological Distress Mediates the Relationship Between Pain and Disability in Hand or Wrist Fractures	Ross, C.; Juraskova, I.; Lee, H.; Parkitny, L.; Stanton, T. R.; Moseley, G. L.; McAuley, J. H.	2015	J Pain	<6 month follow-up
Does verbal and nonverbal communication of pain correlate with disability?	Janssen, S. J.; Ter Meulen, D. P.; Nota, S. P.; Hageman, M. G.; Ring, D.	2015	Psychosomatics	unclear population; unclear trauma
Recovery-related anxiety and disability following upper limb injury: the importance of context	Mayland, E. C.; Hay-Smith, E. J.; Treharne, G. J.	2015	Disabil Rehabil	insufficient data for 6mo FU
Psychiatric symptoms and acute care service utilization over the course of the year following medical-surgical ICU admission: a longitudinal investigation*	Davydow, D. S.; Hough, C. L.; Zatzick, D.; Katon, W. J.	2014	Crit Care Med	not target population; no subanalysis of ortho pts
The correlation of cognitive flexibility with pain intensity and magnitude of disability in upper extremity illness	Hageman, M. G.; Briet, J. P.; Oosterhoff, T. C.; Bot, A. G.; Ring, D.; Vranceanu, A. M.	2014	J Hand Microsurg	not target population; no subanalysis of trauma pts
Challenges of nurses' deployment to other New York City hospitals in the aftermath of Hurricane Sandy	VanDevanter, N.; Kovner, C. T.; Raveis, V. H.; McCollum, M.; Keller, R.	2014	J Urban Health	Target population absent
Patient-centered care and distal radius fracture outcomes: a prospective cohort study analysis	Constand, M. K.; MacDermid, J. C.; Law, M.; Dal Bello-Haas, V.	2014	J Hand Ther	<6 month follow-up
Measurement of upper extremity disability using the Patient-Reported Outcomes Measurement Information System	Doring, A. C.; Nota, S. P.; Hageman, M. G.; Ring, D. C.	2014	J Hand Surg Am	insufficient data for target comparison; outpatient disabilities
Posttraumatic stress disorder and community collective efficacy following the 2004 Florida hurricanes	Ursano, R. J.; McKibben, J. B.; Reissman, D. B.; Liu, X.; Wang, L.; Sampson, R. J.; Fullerton, C. S.	2014	PLoS One	Target population absent
Social Support Contributes to Outcomes following Distal Radius Fractures	Symonette, C. J.; Macdermid, J.; Grewal, R.	2013	Rehabil Res Pract	Very low quality
A longitudinal investigation of alcohol use over the course of the year following medical-surgical intensive care unit admission	Davydow, D. S.; Zatzick, D.; Hough, C. L.; Katon, W. J.	2013	Psychosomatics	not target population; no subanalysis of ortho pts
A longitudinal investigation of posttraumatic stress and depressive symptoms over the course of the year following medical-surgical intensive care unit admission	Davydow, D. S.; Zatzick, D.; Hough, C. L.; Katon, W. J.	2013	Gen Hosp Psychiatry	not target population; no subanalysis of ortho pts
Determinants of chronic pain 3 years after moderate or serious injury	Holmes, A.; Williamson, O.; Hogg, M.; Arnold, C.; O'Donnell, M. L.	2013	Pain Med	Very low quality
Correspondence of patient word choice with psychologic factors in patients with upper extremity illness	Bot, A. G.; Vranceanu, A. M.; Herndon, J. H.; Ring, D. C.	2012	Clin Orthop Relat Res	not target population; no subanalysis of ortho pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
The influence of job satisfaction, burnout, pain, and worker's compensation status on disability after finger injuries	Kadzielski, J. J.; Bot, A. G.; Ring, D.	2012	J Hand Surg Am	<60 analyzed patients
Determinants of grip strength in healthy subjects compared to that in patients recovering from a distal radius fracture	Bot, A. G.; Mulders, M. A.; Fostvedt, S.; Ring, D.	2012	J Hand Surg Am	<60 target population
Exposure, probable PTSD and lower respiratory illness among World Trade Center rescue, recovery and clean-up workers	Luft, B. J.; Schechter, C.; Kotov, R.; Broihier, J.; Reissman, D.; Guerrera, K.; Udasin, I.; Moline, J.; Harrison, D.; Friedman-Jimenez, G.; Pietrzak, R. H.; Southwick, S. M.; Bromet, E. J.	2012	Psychol Med	Target population absent
Cold intolerance after brachial plexus nerve injury	Novak, C. B.; Anastakis, D. J.; Beaton, D. E.; Mackinnon, S. E.; Katz, J.	2012	Hand (N Y)	Target population absent
The capacity of acute stress disorder to predict posttraumatic psychiatric disorders	Bryant, R. A.; Creamer, M.; O'Donnell, M.; Silove, D.; McFarlane, A. C.	2012	J Psychiatr Res	not best available evidence; very low quality
A systematic review of early prognostic factors for persisting pain following acute orthopedic trauma	Clay, F. J.; Watson, W. L.; Newstead, S. V.; McClure, R. J.	2012	Pain Res Manag	systematic review
Determination of moderate-to-severe postoperative pain on the numeric rating scale: a cut-off point analysis applying four different methods	Gerbershagen, H. J.; Rothaug, J.; Kalkman, C. J.; Meissner, W.	2011	Br J Anaesth	not target population; no ortho sub- analysis
Biomedical and psychosocial factors associated with disability after peripheral nerve injury	Novak, C. B.; Anastakis, D. J.; Beaton, D. E.; Mackinnon, S. E.; Katz, J.	2011	J Bone Joint Surg Am	no ortho trauma; nerve injury
Personality type and patient education in hand therapy	Moorhead, J.; Cooper, C.; Moorhead, P.	2011	J Hand Ther	review
The emotive impact of orthopedic words	Vranceanu, A. M.; Elbon, M.; Ring, D.	2011	J Hand Ther	review
Correlation of return to work outcomes and hand impairment measures among workers with traumatic hand injury	Chang, J. H.; Wu, M.; Lee, C. L.; Guo, Y. L.; Chiu, H. Y.	2011	J Occup Rehabil	insufficient data for 6mo FU
Comorbidity of borderline personality disorder and posttraumatic stress disorder in the U.S. population	Pagura, J.; Stein, M. B.; Bolton, J. M.; Cox, B. J.; Grant, B.; Sareen, J.	2010	J Psychiatr Res	Target population absent
Association between the initial anatomical severity and opportunity of return to work in occupational hand injured patients	Lee, Y. Y.; Chang, J. H.; Shieh, S. J.; Lee, Y. C.; Kuo, L. C.; Lee, Y. L.	2010	J Trauma	no target factors; severity

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Relationships among pain disability, pain intensity, illness intrusiveness, and upper extremity disability in patients with traumatic peripheral nerve injury	Novak, C. B.; Anastakis, D. J.; Beaton, D. E.; Mackinnon, S. E.; Katz, J.	2010	J Hand Surg Am	not target population; nerve injury
A systematic review of early prognostic factors for return to work following acute orthopaedic trauma	Clay, F. J.; Newstead, S. V.; McClure, R. J.	2010	Injury	systematic review
Symptoms of posttraumatic stress disorder among health care workers in earthquake-affected areas in southwest China	Wang, L.; Zhang, J.; Zhou, M.; Shi, Z.; Liu, P.	2010	Psychol Rep	not target population; no subanalysis of ortho pts
Predicting pain and disability in patients with hand fractures: comparing pain anxiety, anxiety sensitivity and pain catastrophizing	Keogh, E.; Book, K.; Thomas, J.; Giddins, G.; Eccleston, C.	2010	Eur J Pain	insufficient data for 6mo FU
Cognitive capacity: no association with recovery of sensibility by Semmes Weinstein test score after peripheral nerve injury of the forearm	Boender, Z. J.; Ultee, J.; Hovius, S. E.	2010	J Plast Reconstr Aesthet Surg	<60 total pts
Sex, trauma, stress hormones and depression	Young, E.; Korszun, A.	2010	Mol Psychiatry	Target population absent
Mutual influence of posttraumatic stress disorder symptoms and chronic pain among injured accident survivors: a longitudinal study	Jenewein, J.; Wittmann, L.; Moergeli, H.; Creutzig, J.; Schnyder, U.	2009	J Trauma Stress	Very low quality
Psychosocial aspects of disabling musculoskeletal pain	Vranceanu, A. M.; Barsky, A.; Ring, D.	2009	J Bone Joint Surg Am	review
Trajectories of self-rated health among veterans: a latent growth curve analysis of the impact of posttraumatic symptoms	Benyamini, Y.; Ein-Dor, T.; Ginzburg, K.; Solomon, Z.	2009	Psychosom Med	no ortho trauma
Predictors of moderate or severe pain 6 months after orthopaedic injury: a prospective cohort study	Williamson, O. D.; Epi, G. D.; Gabbe, B. J.; Physio, B.; Cameron, P. A.; Edwards, E. R.; Richardson, M. D.	2009	J Orthop Trauma	not best available evidence; very low quality
Return to work in the setting of upper extremity illness	Pomerance, J.	2009	J Hand Surg Am	review
Functional outcome and persistent disability after isolated fracture of the femur	Sanders, D. W.; MacLeod, M.; Charyk-Stewart, T.; Lydestad, J.; Domonkos, A.; Tieszer, C.	2008	Can J Surg	<60 total pts
Reduced autobiographical memory specificity predicts depression and posttraumatic stress disorder after recent trauma	Kleim, B.; Ehlers, A.	2008	J Consult Clin Psychol	insufficient data for target factors

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Health status, work limitations, and return-to-work trajectories in injured workers with musculoskeletal disorders	Bultmann, U.; Franche, R. L.; Hogg-Johnson, S.; Cote, P.; Lee, H.; Severin, C.; Vidmar, M.; Carnide, N.	2007	Qual Life Res	no ortho trauma
Differences in PTSD prevalence and associated risk factors among World Trade Center disaster rescue and recovery workers	Perrin, M. A.; DiGrande, L.; Wheeler, K.; Thorpe, L.; Farfel, M.; Brackbill, R.	2007	Am J Psychiatry	injury is factor
Psychological distress after major burn injury	Fauerbach, J. A.; McKibben, J.; Bienvenu, O. J.; Magyar-Russell, G.; Smith, M. T.; Holavanahalli, R.; Patterson, D. R.; Wiechman, S. A.; Blakeney, P.; Lezotte, D.	2007	Psychosom Med	Target population absent
Risk factors for more severe regional musculoskeletal symptoms: a two- year prospective study of a general working population	Andersen, J. H.; Haahr, J. P.; Frost, P.	2007	Arthritis Rheum	no ortho trauma
Depressive symptoms among firefighters and related factors after the response to Hurricane Katrina	Tak, S.; Driscoll, R.; Bernard, B.; West, C.	2007	J Urban Health	Target population absent
The prognostic value of depressive symptoms, fear-avoidance, and self- efficacy for duration of lost-time benefits in workers with musculoskeletal disorders	Lotters, F.; Franche, R. L.; Hogg-Johnson, S.; Burdorf, A.; Pole, J. D.	2006	Occup Environ Med	not target population; disorders excluding major injury
Onset and maintenance of psychiatric disorders after serious accidents	Kuhn, M.; Ehlert, U.; Rumpf, H. J.; Backhaus, J.; Hohagen, F.; Broocks, A.	2006	Eur Arch Psychiatry Clin Neurosci	<60 total pts
Prevalence of chronic pain seven years following limb threatening lower extremity trauma	Castillo, R. C.; MacKenzie, E. J.; Wegener, S. T.; Bosse, M. J.	2006	Pain	not best available evidence; very low quality
Persistent postsurgical pain: risk factors and prevention	Kehlet, H.; Jensen, T. S.; Woolf, C. J.	2006	Lancet	narrative review
Prevalence and determinants of disabilities and return to work after major trauma	Vles, W. J.; Steyerberg, E. W.; Essink-Bot, M. L.; van Beeck, E. F.; Meeuwis, J. D.; Leenen, L. P.	2005	J Trauma	not target population; unclear trauma
Longitudinal trends in trauma mortality and survival in Stoke-on-Trent 1992-1998	Oakley, P. A.; MacKenzie, G.; Templeton, J.; Cook, A. L.; Kirby, R. M.	2004	Injury	not target population; unclear trauma
Can gender differences in the prevalence of mental disorders be explained by sociodemographic factors?	Klose, M.; Jacobi, F.	2004	Arch Womens Ment Health	no ortho trauma
Psychiatric morbidity following injury	O'Donnell, M. L.; Creamer, M.; Pattison, P.; Atkin, C.	2004	Am J Psychiatry	factor as outcome
Motivation in hand-injured patients with and without work-related injury	Lai, C. H.	2004	J Hand Ther	<60 total pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Hyperleptinemia in subjects with persistent partial posttraumatic stress disorder after a major earthquake	Liao, S. C.; Lee, M. B.; Lee, Y. J.; Huang, T. S.	2004	Psychosom Med	not target population; no subanalysis of ortho pts
Psychological distress associated with severe lower-limb injury	McCarthy, M. L.; MacKenzie, E. J.; Edwin, D.; Bosse, M. J.; Castillo, R. C.; Starr, A.	2003	J Bone Joint Surg Am	not best available evidence; very low quality
Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis	Ozer, E. J.; Best, S. R.; Lipsey, T. L.; Weiss, D. S.	2003	Psychol Bull	systematic review
Outcome 3 years after a road traffic accident	Mayou, R.; Bryant, B.	2002	Psychol Med	insufficient data for target population
Psychiatric disorders in rescue workers after the Oklahoma City bombing	North, C. S.; Tivis, L.; McMillen, J. C.; Pfefferbaum, B.; Spitznagel, E. L.; Cox, J.; Nixon, S.; Bunch, K. P.; Smith, E. M.	2002	Am J Psychiatry	not target population; no subanalysis of ortho pts
Gender differences in trauma and posttraumatic stress disorder	Breslau, N.	2002	J Gend Specif Med	not target population; no subanalysis of ortho pts
Rates, trends, and severity of depression after burn injuries	Wiechman, S. A.; Ptacek, J. T.; Patterson, D. R.; Gibran, N. S.; Engrav, L. E.; Heimbach, D. M.	2001	J Burn Care Rehabil	not target population; burn only
Median, ulnar, and combined median-ulnar nerve injuries: functional outcome and return to productivity	Jaquet, J. B.; Luijsterburg, A. J.; Kalmijn, S.; Kuypers, P. D.; Hofman, A.; Hovius, S. E.	2001	J Trauma	no ortho trauma; nerve injury
Determinants of disability after lower extremity fracture	Mock, C.; MacKenzie, E.; Jurkovich, G.; Burgess, A.; Cushing, B.; deLateur, B.; McAndrew, M.; Morris, J.; Swiontkowski, M.	2000	J Trauma	not best available evidence; very low quality
Gender differences in susceptibility to posttraumatic stress disorder	Stein, M. B.; Walker, J. R.; Forde, D. R.	2000	Behav Res Ther	not target comparison; injury is outcome
Outcome after major trauma: 12-month and 18- month follow-up results from the Trauma Recovery Project	Holbrook, T. L.; Anderson, J. P.; Sieber, W. J.; Browner, D.; Hoyt, D. B.	1999	J Trauma	not target population; unclear trauma
Time off work after occupational hand injuries	Skov, O.; Jeune, B.; Lauritsen, J. M.; Barfred, T.	1999	J Hand Surg Br	not best available evidence; very low quality
Posttraumatic stress disorder and drug disorders: testing causal pathways	Chilcoat, H. D.; Breslau, N.	1998	Arch Gen Psychiatry	no ortho trauma
Do psychological factors predict changes in musculoskeletal pain? A prospective, two-year follow-up study of a working population	Estlander, A. M.; Takala, E. P.; Viikari-Juntura, E.	1998	J Occup Environ Med	no ortho trauma
Psychosocial factors limit outcomes after trauma	Michaels, A. J.; Michaels, C. E.; Moon, C. H.; Zimmerman, M. A.; Peterson, C.; Rodriguez, J. L.	1998	J Trauma	<60 total pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Multiple diagnoses in posttraumatic stress disorder in the victims of a natural disaster	McFarlane, A. C.; Papay, P.	1992	J Nerv Ment Dis	no ortho trauma
Workers' disability and return to work	Tate, D. G.	1992	Am J Phys Med Rehabil	not target population; no traumatic cause
Functional outcome after road-crash injury: description of the ESPARR victims cohort and 6- month follow-up results	Hours, M.; Bernard, M.; Charnay, P.; Chossegros, L.; Javouhey, E.; Fort, E.; Boisson, D.; Sancho, P. O.; Laumon, B.	2010	Accid Anal Prev	not target population; no extremity sub- analysis
Urban-rural differences in work disability after an occupational injury	Young, A. E.; Wasiak, R.; Webster, B. S.; Shayne, R. G.	2008	Scand J Work Environ Health	insufficient data for 6mo FU
Time off work in hand injury patients	Wong, J. Y.	2008	J Hand Surg Am	insufficient data for 6mo FU
Quality of life 2-7 years after major trauma	Ulvik, A.; Kvale, R.; Wentzel-Larsen, T.; Flaatten, H.	2008	Acta Anaesthesiol Scand	insufficient data for target population
Delayed return-to-work in workers after non-severe occupational upper extremity fracture in Taiwan	Du, C. L.; Lai, C. F.; Wang, J. D.	2007	J Formos Med Assoc	insufficient data for 6mo FU
Return to work after major trauma	Holtslag, H. R.; Post, M. W.; van der Werken, C.; Lindeman, E.	2007	Clin Rehabil	insufficient data for target factors
Predictors of time lost from work following a distal radius fracture	MacDermid, J. C.; Roth, J. H.; McMurtry, R.	2007	J Occup Rehabil	insufficient data for 6mo FU; only 7% high energy pts
A study of factors influencing return to work after wrist or ankle fractures	Seland, K.; Cherry, N.; Beach, J.	2006	Am J Ind Med	not best available evidence; very low quality
Return to work of road accident victims claiming compensation for personal injury	Cornes, P.	1992	Injury	not target population; no subanalysis of ortho trauma pts
Post-traumatic effects in policing: perceptions, stigmas and help seeking behaviours	Heffren, Cole D. J.; Hausdorf, Peter A.	2016	Police Practice and Research	not target population; no subanalysis of ortho pts
Mental-health conditions, barriers to care, and productivity loss among officers in an urban police department	Fox, J.; Desai, M. M.; Britten, K.; Lucas, G.; Luneau, R.; Rosenthal, M. S.	2012	Conn Med	no ortho trauma
Prediction of return to work outcomes under an injured worker case management program	Kong, W.; Tang, D.; Luo, X.; Yu, I. T.; Liang, Y.; He, Y.	2012	J Occup Rehabil	not best available evidence; very low quality
Associations of demographic and injury-related factors with return to work among job-injured workers with disabilities in South Korea	Park, S. K.	2012	J Rehabil Med	insufficient data for target population; unclear minor injuries
Posttraumatic growth as protection against suicidal ideation after deployment and combat exposure	Bush, N. E.; Skopp, N. A.; McCann, R.; Luxton, D. D.	2011	Mil Med	not target population; no subanalysis of ortho pts

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Factor structure and concurrent validity of the Posttraumatic Growth Inventory-Short Form among veterans from the Iraq War	Kaler, M. E.; Erbes, C. R.; Tedeschi, R. G.; Arbisi, P. A.; Polusny, M. A.	2011	J Trauma Stress	not target population; no subanalysis of ortho pts
Determinants of return to work after occupational injury	He, Y.; Hu, J.; Yu, I. T.; Gu, W.; Liang, Y.	2010	J Occup Rehabil	not target population; no subanalysis of ortho trauma pts
Predictors of posttraumatic stress disorder and return to usual major activity in traumatically injured intensive care unit survivors	Davydow, D. S.; Zatzick, D. F.; Rivara, F. P.; Jurkovich, G. J.; Wang, J.; Roy-Byrne, P. P.; Katon, W. J.; Hough, C. L.; Kross, E. K.; Fan, M. Y.; Joesch, J.; MacKenzie, E. J.	2009	Gen Hosp Psychiatry	not best available evidence; very low quality
Psychosocial aspects of injured workers' returning to work (RTW) in Hong Kong	Li-Tsang, C. W.; Chan, H. H.; Lam, C. S.; Lo-Hui, K. Y.; Chan, C. C.	2007	J Occup Rehabil	not target population; no subanalysis of ortho pts
Coping with serious accidental injury: a one-year follow-up study	Hepp, U.; Moergeli, H.; Buchi, S.; Wittmann, L.; Schnyder, U.	2005	Psychother Psychosom	not best available evidence; very low quality
Gender differences in long-term posttraumatic stress disorder outcomes after major trauma: women are at higher risk of adverse outcomes than men	Holbrook, T. L.; Hoyt, D. B.; Stein, M. B.; Sieber, W. J.	2002	J Trauma	not target population; no subanalysis of target pts
Standardized outcome evaluation after blunt multiple injuries by scoring systems: a clinical follow-up investigation 2 years after injury	Stalp, M.; Koch, C.; Ruchholtz, S.; Regel, G.; Panzica, M.; Krettek, C.; Pape, H. C.	2002	J Trauma	insufficient data for target comparison
Characteristics and outcomes of serious traumatic injury in older adults	Richmond, T. S.; Kauder, D.; Strumpf, N.; Meredith, T.	2002	J Am Geriatr Soc	insufficient data for target population subset
Perceived threat to life predicts posttraumatic stress disorder after major trauma: risk factors and functional outcome	Holbrook, T. L.; Hoyt, D. B.; Stein, M. B.; Sieber, W. J.	2001	J Trauma	not target population; no subanalysis of target pts
The effects of age on accident severity and outcome in Irish road traffic accident patients	Cunningham, C.; Howard, D.; Walsh, J.; Coakley, D.; O'Neill, D.	2001	Ir Med J	insufficient data for target comparison
Prognosis of penetrating trauma in elderly patients: a comparison with younger patients	Nagy, K. K.; Smith, R. F.; Roberts, R. R.; Joseph, K. T.; An, G. C.; Bokhari, F.; Barrett, J.	2000	J Trauma	<60 target pts
The outcome following major trauma in the elderly. Predictors of survival	Pickering, S. A.; Esberger, D.; Moran, C. G.	1999	Injury	insufficient data for 6mo FU
Differences in mortality between elderly and younger adult trauma patients: geriatric status increases risk of delayed death	Perdue, P. W.; Watts, D. D.; Kaufmann, C. R.; Trask, A. L.	1998	J Trauma	<6 month follow-up

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Prospective study of posttraumatic stress disorder and depression following trauma	Shalev, A. Y.; Freedman, S.; Peri, T.; Brandes, D.; Sahar, T.; Orr, S. P.; Pitman, R. K.	1998	Am J Psychiatry	not target population; no ortho trauma sub-analysis
Outcome in elderly injured patients: injury severity versus host factors	van der Sluis, C. K.; Timmer, H. W.; Eisma, W. H.; ten Duis, H. J.	1997	Injury	not target population; elderly hip fracture
Long-term outcomes in blunt trauma: who goes back to work?	Brenneman, F. D.; Redelmeier, D. A.; Boulanger, B. R.; McLellan, B. A.; Culhane, J. P.	1997	J Trauma	not best available evidence; very low quality
The Posttraumatic Growth Inventory: measuring the positive legacy of trauma	Tedeschi, R. G.; Calhoun, L. G.	1996	J Trauma Stress	not target population; no ortho trauma sub-analysis
Assessment and prediction of stress-related growth	Park, C. L.; Cohen, L. H.; Murch, R. L.	1996	J Pers	no ortho trauma
Major trauma in young and old: what is the difference?	van der Sluis, C. K.; Klasen, H. J.; Eisma, W. H.; ten Duis, H. J.	1996	J Trauma	inadequate quality due to lack of confounding adjustment and retrospective design
Factors influencing the duration of work-related disability: a population-based study of Washington State workers' compensation	Cheadle, A.; Franklin, G.; Wolfhagen, C.; Savarino, J.; Liu, P. Y.; Salley, C.; Weaver, M.	1994	Am J Public Health	majority of people had non orthopedic trauma injuries
Acute hospital costs of trauma in the United States: implications for regionalized systems of care	MacKenzie, E. J.; Morris, J. A., Jr.; Smith, G. S.; Fahey, M.	1990	J Trauma	doesn't answer pico questions. looks at descriptive statistics, instead of using prognostic factors to predict outcomes
The Perceived Benefit Scales: Measuring perceived positive life changes after negative events	McMillen, J. Curtis; Fisher, Rachel H.	1998	Social Work Research	not specific to orthpopedic trauma patients. just looks at general stressful life events
Stressor appraisals, coping, and post-event outcomes: The dimensionality and antecedents of stress-related growth	Armeli, Stephen; Gunthert, Kathleen Cimbolic; Cohen, Lawrence H.	2001	Journal of Social and Clinical Psychology	no ortho trauma. just asks about general stressful life events
Confirmatory factor analysis of the Posttraumatic Growth Inventory in a veteran sample with posttraumatic stress disorder	Palmer, Glen A.; Graca, Joseph J.; Occhietti, Kylene E.	2012	Journal of Loss and Trauma	insufficient data. only model fit statistics presented from confirmatory factor analysis to confirm latent contstructs within the ptgi. does not evaluate if ptgi is a valid screening tool
Stigma, pluralistic ignorance, and attitudes toward seeking mental health services among police officers	Karaffa, Kerry M.; Koch, Julie M.	2016	Criminal Justice and Behavior	no ortho trauma
A test of the inventory of attitudes towards seeking mental health services	Hyland, Philip; Boduszek, Daniel; Dhingra, Katie; Shevlin, Mark; Maguire, Rebecca; Morley, Kevin	2015	British Journal of Guidance & Counselling	no ortho trauma

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Maladaptive Coping Strategies and Injury-Related Distress Following Traumatic Physical Injury	Victorson, David; Farmer, Lorie; Burnett, Kent; Ouellette, Anne; Barocas, Joshua	2005	Rehabilitation Psychology	<6 month follow-up
Male police officers and stigma associated with counseling: The role of anticipated risks, anticipated benefits and gender role conflict	Wester, Stephen R.; Arndt, David; Sedivy, Sonya K.; Arndt, Leah	2010	Psychology of Men & Masculinity	no ortho trauma
Posttraumatic growth and its relationship to depressive symptomatology in veterans with PTSD	Palmer, Glen A.; Graca, Joseph J.; Occhietti, Kylene E.	2016	Traumatology	No ortho trauma
Posttraumatic stress, depression, stigma, and barriers to care among U.S. Army healthcare providers	Chapman, Paula L.; Elnitsky, Christine; Thurman, Ryan M.; Pitts, Barbara; Figley, Charles; Unwin, Brian	2014	Traumatology: An International Journal	no ortho trauma
Patterns of positive and negative religious coping with major life stressors	Pargament, Kenneth I.; Smith, Bruce W.; Koenig, Harold G.; Perez, Lisa	1998	Journal for the Scientific Study of Religion	no ortho trauma
Prevalence, risk factors and disability associated with fall-related injury in older adults in low- and middle-incomecountries: results from the WHO Study on global AGEing and adult health (SAGE)	Stewart Williams, J.; Kowal, P.; Hestekin, H.; O'Driscoll, T.; Peltzer, K.; Yawson, A.; Biritwum, R.; Maximova, T.; Salinas Rodriguez, A.; Manrique Espinoza, B.; Wu, F.; Arokiasamy, P.; Chatterji, S.	2015	BMC Med	not target population; elderly falls
Goal management tendencies predict trajectories of adjustment to lower limb amputation up to 15 months post rehabilitation discharge	Coffey, L.; Gallagher, P.; Desmond, D.; Ryall, N.; Wegener, S. T.	2014	Arch Phys Med Rehabil	mixed population; majority non-trauma
Health status of critically ill trauma patients	Aitken, L. M.; Chaboyer, W.; Schuetz, M.; Joyce, C.; Macfarlane, B.	2014	J Clin Nurs	not target population; no extremity sub- analysis
Goal pursuit and goal adjustment as predictors of disability and quality of life among individuals with a lower limb amputation: a prospective study	Coffey, L.; Gallagher, P.; Desmond, D.	2014	Arch Phys Med Rehabil	mixed population; majority non-trauma
Prevalence and predictors of disability 24-months after injury for hospitalised and non-hospitalised participants: results from a longitudinal cohort study in New Zealand	Derrett, S.; Wilson, S.; Samaranayaka, A.; Langley, J.; Wyeth, E.; Ameratunga, S.; Lilley, R.; Davie, G.; Mauiliu, M.	2013	PLoS One	not best available evidence; very low quality
Long-term clinical outcomes of war-related hip disarticulation and transpelvic amputation	Ebrahimzadeh, M. H.; Kachooei, A. R.; Soroush, M. R.; Hasankhani, E. G.; Razi, S.; Birjandinejad, A.	2013	J Bone Joint Surg Am	factor as outcome
A comparison of health outcomes for combat amputee and limb salvage patients injured in Iraq and Afghanistan wars	Melcer, T.; Sechriest, V. F.; Walker, J.; Galarneau, M.	2013	J Trauma Acute Care Surg	not best available evidence; very low quality

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Multicentric study of epidemiological and clinical characteristics of persons injured in motor vehicle accidents in Medellin, Colombia, 2009-2010	Lugo, L. H.; Garcia, H. I.; Cano, B. C.; Arango, J. C.; Alcaraz, O. L.	2013	Colomb Med (Cali)	factor as outcome
Comparison of functional outcomes following bridge synostosis with non- bone-bridging transtibial combat-related amputations	Keeling, J. J.; Shawen, S. B.; Forsberg, J. A.; Kirk, K. L.; Hsu, J. R.; Gwinn, D. E.; Potter, B. K.	2013	J Bone Joint Surg Am	Insufficient data; no regression results
Responsiveness of the Manchester-Oxford Foot Questionnaire (MOXFQ) compared with AOFAS, SF-36 and EQ-5D assessments following foot or ankle surgery	Dawson, J.; Boller, I.; Doll, H.; Lavis, G.; Sharp, R.; Cooke, P.; Jenkinson, C.	2012	J Bone Joint Surg Br	istudies responsiveness to change and is not a validation study
Evaluation of the effects of disabilities due to traffic accidents on the quality of life using SF-36 health survey	Gamsiz Bilgin, N.; Mert, E.; Sezgin, M.	2012	Acta Orthop Traumatol Turc	methods section not descriptive enough to determine eligibility. It is unclear if prognostic and sf-36 outcome measured cross-sectionally at the same time, or if it was measured after the prognostic factors were measured. therefore, it is unclear if the 6 month follow up inclusion criteria is met
Environmental barriers, activity limitations and participation restrictions experienced by people with major limb amputation	Gallagher, P.; O'Donovan, M. A.; Doyle, A.; Desmond, D.	2011	Prosthet Orthot Int	unclear population; unclear trauma
Quality of life after severe trauma: results from the global trauma trial with recombinant Factor VII	Christensen, M. C.; Banner, C.; Lefering, R.; Vallejo- Torres, L.; Morris, S.	2011	J Trauma	insufficient data for 6mo FU
The MOXFQ patient-reported questionnaire: assessment of data quality, reliability and validity in relation to foot and ankle surgery	Dawson, J.; Boller, I.; Doll, H.; Lavis, G.; Sharp, R.; Cooke, P.; Jenkinson, C.	2011	Foot (Edinb)	Unclear population; unclear if trauma;
Factors affecting quality of life in lower limb amputees	Sinha, R.; van den Heuvel, W. J.; Arokiasamy, P.	2011	Prosthet Orthot Int	cross-sectional; concurrent measurements; no trauma sub-analysis
The Persian version of Trinity Amputation and Prosthetics Experience Scale: translation, factor structure, reliability and validity	Mazaheri, M.; Fardipour, S.; Salavati, M.; Hadadi, M.; Negahban, H.; Bahramizadeh, M.; Khosrozadeh, F.	2011	Disabil Rehabil	no usable data
Measurement of community reintegration in sample of severely wounded servicemembers	Resnik, L.; Gray, M.; Borgia, M.	2011	J Rehabil Res Dev	no ortho subset analysis; <6mo FU

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Translation and validation of Chinese version of International Knee Documentation Committee Subjective Knee Form	Fu, S. N.; Chan, Y. H.	2011	Disabil Rehabil	not target population; no subanalysis of ortho pts
Illness representations predict health-related quality of life 6 months after hospital discharge in individuals with injury: a predictive survey	Chaboyer, W.; Lee, B. O.; Wallis, M.; Gillespie, B.; Jones, C.	2010	J Adv Nurs	not best available evidence; very low quality
Anxiety, depression and health-related quality of life in those injured by landmines, Ilam, Islamic Republic of Iran	Asadollahi, R.; Saghafinia, M.; Nafissi, N.; Montazeri, A.; Asadollahi, M.; Khatami, M.	2010	East Mediterr Health J	not best available evidence; very low quality
Comparing the validity of five participation instruments in persons with spinal conditions	Noonan, V. K.; Kopec, J. A.; Noreau, L.; Singer, J.; Masse, L. C.; Zhang, H.; Dvorak, M. F.	2010	J Rehabil Med	Not population of interest; SCI, spinal degenerative disease
Osteomyoplastic and traditional transtibial amputations in the trauma patient: perioperative comparisons and outcomes	Taylor, B. C.; French, B.; Poka, A.; Blint, A.; Mehta, S.	2010	Orthopedics	<30 per group
Proximal tibial metaphyseal fractures with severe soft tissue injury: clinical and functional results at 2 years	Starman, J. S.; Castillo, R. C.; Bosse, M. J.; MacKenzie, E. J.	2010	Clin Orthop Relat Res	<30 pts per group
Trinity amputation and prosthesis experience scales: a psychometric assessment using classical test theory and rasch analysis	Gallagher, P.; Franchignoni, F.; Giordano, A.; MacLachlan, M.	2010	Am J Phys Med Rehabil	mixed population; majority non-trauma
Quality of life among veterans with war-related unilateral lower extremity amputation: a long-term survey in a prosthesis center in Iran	Taghipour, H.; Moharamzad, Y.; Mafi, A. R.; Amini, A.; Naghizadeh, M. M.; Soroush, M. R.; Namavari, A.	2009	J Orthop Trauma	not best available evidence; very low quality
Job adjustments, job satisfaction and health experience in upper and lower limb amputees	van der Sluis, C. K.; Hartman, P. P.; Schoppen, T.; Dijkstra, P. U.	2009	Prosthet Orthot Int	mixed population; 68% trauma amputation; very low qual
Ability of lower-extremity injury severity scores to predict functional outcome after limb salvage	Ly, T. V.; Travison, T. G.; Castillo, R. C.; Bosse, M. J.; MacKenzie, E. J.	2008	J Bone Joint Surg Am	insufficient data for target factors
Development and validation of IMPACT-S, an ICF-based questionnaire to measure activities and participation	Post, M. W.; de Witte, L. P.; Reichrath, E.; Verdonschot, M. M.; Wijlhuizen, G. J.; Perenboom, R. J.	2008	J Rehabil Med	not target population; no ortho sub- analysis
Pain and psychosocial adjustment to lower limb amputation amongst prosthesis users	Desmond, D.; Gallagher, P.; Henderson-Slater, D.; Chatfield, R.	2008	Prosthet Orthot Int	<60 target population; no ortho trauma subanalysis
Physical activity and quality of life: A study of a lower-limb amputee population	Deans, S. A.; McFadyen, A. K.; Rowe, P. J.	2008	Prosthet Orthot Int	wrong population; no trauma; PVD amputation

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Predictors of quality of life among individuals who have a lower limb amputation	Asano, M.; Rushton, P.; Miller, W. C.; Deathe, B. A.	2008	Prosthet Orthot Int	not target population; no ortho sub- analysis
The impact of trauma-center care on functional outcomes following major lower-limb trauma	Mackenzie, E. J.; Rivara, F. P.; Jurkovich, G. J.; Nathens, A. B.; Egleston, B. L.; Salkever, D. S.; Frey, K. P.; Scharfstein, D. O.	2008	J Bone Joint Surg Am	insufficient data for target factors
General health status and functional disability following injury in traffic crashes	Fitzharris, M.; Fildes, B.; Charlton, J.; Kossmann, T.	2007	Traffic Inj Prev	insufficient data for target comparison
Analysis of surgeon-controlled variables in the treatment of limb- threatening type-III open tibial diaphyseal fractures	Webb, L. X.; Bosse, M. J.; Castillo, R. C.; MacKenzie, E. J.	2007	J Bone Joint Surg Am	no target comparison; tx study
Body image in people with lower-limb amputation: a Rasch analysis of the Amputee Body Image Scale	Gallagher, P.; Horgan, O.; Franchignoni, F.; Giordano, A.; MacLachlan, M.	2007	Am J Phys Med Rehabil	not target population; no subanalysis of trauma pts
Health outcomes of adults 3 months after injury	Aitken, L. M.; Davey, T. M.; Ambrose, J.; Connelly, L. B.; Swanson, C.; Bellamy, N.	2007	Injury	insufficient data for 6mo FU
The mind does matter: Psychological and physical recovery after musculoskeletal trauma	Sutherland, A. G.; Alexander, D. A.; Hutchison, J. D.	2006	J Trauma	insufficient data for target comparison
Physical disability after severe lower-extremity injury	Archer, K. R.; Castillo, R. C.; Mackenzie, E. J.; Bosse, M. J.	2006	Arch Phys Med Rehabil	No RF of interest
Outcome and quality of life 5 years after major trauma	Sluys, K.; Haggmark, T.; Iselius, L.	2005	J Trauma	not best available evidence; very low quality
Questionnaire for Persons with a Transfemoral Amputation (Q-TFA): initial validity and reliability of a new outcome measure	Hagberg, K.; Branemark, R.; Hagg, O.	2004	J Rehabil Res Dev	mixed population; <65% trauma
Functional limitations and well-being in injured municipal workers: a longitudinal study	Gillen, M.; Jewell, S. A.; Faucett, J. A.; Yelin, E.	2004	J Occup Rehabil	<6 months follow up
The Trinity Amputation and Prosthesis Experience Scales and quality of life in people with lower-limb amputation	Gallagher, P.; Maclachlan, M.	2004	Arch Phys Med Rehabil	mixed population; majority non-trauma
Health related quality of life and related factors in 539 persons with amputation of upper and lower limb	Demet, K.; Martinet, N.; Guillemin, F.; Paysant, J.; Andre, J. M.	2003	Disabil Rehabil	mixed population; 69% trauma
Return to work after lower limb amputation	Fisher, K.; Hanspal, R. S.; Marks, L.	2003	Int J Rehabil Res	mixed population; 64% trauma amputation;
Quality of life experienced by severely injured trauma survivors	DePalma, J. A.; Fedorka, P.; Simko, L. C.	2003	AACN Clin Issues	not best available evidence; very low quality

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Phantom pain and health-related quality of life in lower limb amputees	van der Schans, C. P.; Geertzen, J. H.; Schoppen, T.; Dijkstra, P. U.	2002	J Pain Symptom Manage	mixed population; majority non-trauma
Nottingham Health Profile: reliability in a sample of 542 subjects with major amputation of one or several limbs	Demet, K.; Guillemin, F.; Martinet, N.; Andre, J. M.	2002	Prosthet Orthot Int	mixed population; <80 trauma
Job satisfaction and health experience of people with a lower-limb amputation in comparison with healthy colleagues	Schoppen, T.; Boonstra, A.; Groothoff, J. W.; De Vries, J.; Goeken, L. N.; Eisma, W. H.	2002	Arch Phys Med Rehabil	mixed population; No ortho trauma subanalysis
Two-year health and employment outcomes among injured workers enrolled in the Washington State Managed Care Pilot Project	Keyes, K. B.; Wickizer, T. M.; Franklin, G.	2001	Am J Ind Med	insufficient data for target factors/outcomes
The prevalence and risk factors of falling and fear of falling among lower extremity amputees	Miller, W. C.; Speechley, M.; Deathe, B.	2001	Arch Phys Med Rehabil	not target population; no subanalysis of trauma pts
The use of proxies in community integration research	Cusick, C. P.; Brooks, C. A.; Whiteneck, G. G.	2001	Arch Phys Med Rehabil	not target population; no subanalysis of ortho pts
Transtibial amputees from the Vietnam War. Twenty-eight-year follow-up	Dougherty, P. J.	2001	J Bone Joint Surg Am	insufficient data for target factors
Employment status, job characteristics, and work- related health experience of people with a lower limb amputation in The Netherlands	Schoppen, T.; Boonstra, A.; Groothoff, J. W.; de Vries, J.; Goeken, L. N.; Eisma, W. H.	2001	Arch Phys Med Rehabil	mixed population; 58% trauma amputation;
Positive meaning in amputation and thoughts about the amputated limb	Gallagher, P.; MacLachlan, M.	2000	Prosthet Orthot Int	mixed population; majority non-trauma
Prosthesis evaluation questionnaire for persons with lower limb amputations: assessing prosthesis-related quality of life	Legro, M. W.; Reiber, G. D.; Smith, D. G.; del Aguila, M.; Larsen, J.; Boone, D.	1998	Arch Phys Med Rehabil	mixed population; <80% trauma
Residual impairment after lower extremity fracture	Faergemann, C.; Frandsen, P. A.; Rock, N. D.	1998	J Trauma	no comparisons of interest
Patient satisfaction after limb-sparing surgery and amputation for pediatric malignant bone tumors	Hudson, M. M.; Tyc, V. L.; Cremer, L. K.; Luo, X.; Li, H.; Rao, B. N.; Meyer, W. H.; Crom, D. B.; Pratt, C. B.	1998	J Pediatr Oncol Nurs	not target population; malignant tumor
The SF-36 health survey: a valid measure of changes in health status after injury	Kopjar, B.	1996	Inj Prev	<60 total pts
Psychological status of diabetic people with or without lower limb disability	Carrington, A. L.; Mawdsley, S. K.; Morley, M.; Kincey, J.; Boulton, A. J.	1996	Diabetes Res Clin Pract	<30 per group

Article Title	Authors	Year	Expanded Periodical Title	Reason for Exclusion
Physical impairment and functional outcomes six months after severe lower extremity fractures	MacKenzie, E. J.; Cushing, B. M.; Jurkovich, G. J.; Morris, J. A., Jr.; Burgess, A. R.; deLateur, B. J.; McAndrew, M. P.; Swiontkowski, M. F.	1993	J Trauma	unclear data for target comparison
Costs and consequences of a prosthesis with an electronically stance and swing phase controlled knee joint	Seelen, H. A. M.; Hemmen, B.; Schmeets, A. J.; Ament, A. J. H. A.; Evers, S. M. A. A.	2009	Technology and Disability	not target comparison; cost of prosthesis
Orthotics and Prosthetics National Office Outcomes Tool (OPOT): Initial Reliability and Validity Assessment for Lower Extremity Prosthetics	Hart, Dennis L.	1999	JPO: Journal of Prosthetics and Orthotics	insufficient data for target reference comparison

AAOS CPG Approval Bodies

Committee on Evidence Based Quality and Value

The committee on Evidence Based Quality and Value (EBQV) consists of twenty-three AAOS members who implement evidence-based quality initiatives such as clinical practice guidelines (CPGs), systematic literature reviews (SRs) and appropriate use criteria (AUCs). They also oversee the dissemination of related educational materials and promote the utilization of orthopaedic value products by the Academy's leadership and its members.

Council on Research and Quality

The Council on Research and Quality promotes ethically and scientifically sound clinical and translational research to sustain patient care in musculoskeletal disorders. The Council also serves as the primary resource for educating its members, the public, and public policy makers regarding evidenced-based medical practice, orthopaedic devices and biologics, regulatory pathways and standards development, patient safety, and other related important research and quality areas. The Council is comprised of the chairs of the committees on Devices, Biologics, and Technology, Patient Safety, Research Development, U.S. and chair and section leaders of the Evidence Based Quality and Value committee. Also on the Council are the second vice-president, three members at large, and representatives of the Diversity Advisory Board, Women's Health Issues Advisory Board, Board of Specialty Societies (BOS), Board of Councilors (BOC), Communications Cabinet, Orthopaedic Research Society (ORS), Orthopedic Research and Education Foundation (OREF).

Board of Directors

The 17-member Board of Directors manage the affairs of the AAOS, set policy, and oversee the Strategic Plan.

External Endorsements

American Academy of Physical Medicine and Rehabilitation

9700 W. Bryn Mawr Ave., Suite 200 phone 847/737.6000 Rosemont, Illinois 60018 www.aapmr.org

fax 847/754.4368 info@aapmr.org

February 14, 2020

Michelle S. Gittler, MD, FAAPMR President-Elect Stuart M. Weinstein, MD, FAAPMR

Vice President Deborah A. Venesy, MD, FAAPMR

Treasurer Scott R. Laker, MD. FAAPMR

Past President Peter C. Esselman, MD. FAAPMR

Members-at-Large Amy J. Houtrow, MD, PhD, MPH, FAAPMR Atul T. Patel, MD, MHSA, FAAPMR

Kerrie M. Reed, MD, FAAPMR Charlotte H. Smith, MD, FAAPMR Strategic Coordinating

Committee Chairs D.J. Kennedy, MD, FAAPMR

Medical Education John C. Cianca, MD, FAAPMR Quality, Practice, Policy & Research Thiru M. Annaswamy, MD, MA, FAAPMR Specialty Brand Expansion Andre Panagos, MD, FAAPMR

Ex-Officio Liaisons to Board of Governors

Janna L. Friedly, MD, FAAPMR President, Physiatrist in Training Council

Thomas E. Stautzenbach, MA, MBA, CAE

Kaitlyn S. Sevarino, MBA, CAE Senior Manager Department of Clinical Quality and Value

RE: AAOS Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from Orthopaedic Trauma

Dear Ms. Sevarino,

Thank you for allowing the American Academy of Physical Medicine and Rehabilitation (AAPM&R) the opportunity to review the American Academy of Orthopaedic Surgeons (AAOS) Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from Orthopaedic Trauma. AAPM&R is the national medical specialty organization representing more than 9,000 physicians who are specialists in physical medicine and rehabilitation (PM&R). PM&R physicians, also known as physiatrists, treat a wide variety of medical conditions affecting the brain, spinal cord, nerves, bones, joints, ligaments, muscles, and tendons. PM&R physicians evaluate and treat injuries, illnesses, and disability, and are experts in designing comprehensive, patient-centered treatment plans. Physiatrists utilize cutting-edge as well as time-tested treatments to maximize function and quality of life.

We are pleased to inform you that the AAPM&R Clinical Practice Guideline (CPG) Committee has voted to endorse the AAOS Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from Orthopaedic Trauma. This endorsement implies permission for the AAOS to officially list our organization as an endorser of this clinical practice guideline and reprint our logo in the introductory section of the clinical practice guideline review document. AAPM&R would also like your permission to post the most updated version of the guideline on our website or, if you prefer, to provide a link to the guideline on your website.

Thank you, again, for the opportunity to review and endorse the AAOS Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from Orthopaedic Trauma. If you have any additional questions or concerns, please contact Brit Galvin, Health Policy and State Legislative Affairs Manager, Department of Health Policy and Practice Services, at bgalvin@aapmr.org or (847) 737-6004.

Sincerely.

Armando Miciano MD, FAAPMR Clinical Practice Guidelines Committee, Chair

Physicians Adding Quality to Life®

Orthopaedic Trauma Association

Education • Research • Service

9400 W. Higgins Rd, Suite 305, Rosemont, Illinois 60018-4975 (847) 698-1631• www.ota.org • ota@ota.org

BOARD OF DIRECTORS

Michael D. McKee, MD

Heather A. Vallier, MD President-Elect

Michael T. Archdeacon, MD 2nd President-Elect

Thomas F. Higgins, MD

Douglas W. Lundy, MD Chief Financial Officer Finance and Audit Committee

David C. Teague, MD Immediate Past-President

William M. Ricci, MD 2nd Past President

Chad P. Coles, MD Philip R. Wolinsky, MD Joseph R Hsu, MD Members-At-Large

Stephen A Kottmeier, MD Annual Program Chair

COMMITTEE CHAIRS

Aaron Nauth, MD Program Basic Science

Thomas A. DeCoster, MD Bylavis and Hearings

Matthew D. Karam, MD Classification

Roman A. Hayda, MD Disaster Management & Preparedness

Samir Mehta, MD Education

Jaimo Ahn, MD, PhD Evidence Based Quality Value & Safety

Madhav A. Karunakar, MD Fellowship & Career Choices

Daniel S. Horwitz, MD Fund Development Todd A. Swenning, MD

Todd A. Swenning, ME Health Policy & Planning

Hans-Christoph Pape, MD International Relations

Theodore Miclau III, MD IOTA Steering Committee Chair

R. Richard Coughlin, MD

Milan K. Sen, MD

Christopher T LeBrun, MD, LTC

Frank A. Liporace, MD Practice Management

Mark Lee, MD

Michael Gardner, MD Publications

J. Andrew Trenholm, MD Research

Saam Morshed, MD Strategic Research Initiative

Roy Sanders, MD

Kathleen Caswell, CAE Executive Director February 13, 2020

Kaitlyn S. Sevarino, MBA, CAE

Senior Manager,

Department of Clinical Quality and Value

Dear Ms. Sevarino.

The OTA has voted to endorse the AAOS Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from Orthopaedic Trauma. This endorsement implies permission for the AAOS to officially list our organization as an endorser of this clinical practice guideline and reprint our logo in the introductory section of the clinical practice guideline review document.

Sincerely,

Kathleen Caswell

Karleen Caswell

OTA Executive Director

From: Julie L. Higham <jhigham@sccm.org>
Sent: Friday, February 14, 2020 5:19 PM

To: Krause, Barbara

Subject: AAOS Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from

Orthopaedic Trauma

Importance: High

Follow Up Flag: Follow up Flag Status: Flagged

Kaitlyn S. Sevarino, MBA, CAE Senior Manager, Department of Clinical Quality and Value

Dear Ms. Sevarino,

The Society of Critical Care Medicine has voted to endorse the AAOS Clinical Practice Guideline for Evaluation of Psychosocial Factors Influencing Recovery from Orthopaedic Trauma. This endorsement implies permission for the AAOS to officially list our organization as an endorser of this clinical practice guideline and reprint our logo in the introductory section of the clinical practice guideline review document.

Sincerely,

Julie L. Higham, BA | Guidelines Manager | Society of Critical Care Medicine
Ph: +1-847-827-7937 | Fax: +1-847-439-7226 | 500 Midway Drive, Mount Prospect, IL 60056-5811 USA
www.sccm.org | www.facebook.com/SCCM1 | www.twitter.com/SCCM | www.youtube.com/SCCM500