

Preventing Venous Thromboembolic Disease in Patients Undergoing Elective Hip and Knee Arthroplasty

Evidence-Based Clinical Practice Guideline

Adopted by: The American Academy of Orthopaedic Surgeons Board of Directors September 23, 2011

Disclaimer

This clinical guideline was developed by an AAOS physician volunteer Work Group and experts in systematic reviews. It is provided as an educational tool based on an assessment of the current scientific and clinical information and accepted approaches to treatment. The recommendations in this guideline are not intended to be a fixed protocol as some patients may require more or less treatment or different means of diagnosis. Patients seen in clinical practice may not be the same as those found in a clinical trial. Patient care and treatment should always be based on a clinician's independent medical judgment given the individual clinical circumstances.

Disclosure Requirement

In accordance with AAOS policy, all individuals whose names appear as authors or contributors to this clinical practice guideline filed a disclosure statement as part of the submission process. All panel members provided full disclosure of potential conflicts of interest prior to beginning work on the recommendations contained within this clinical practice guideline.

Funding Source

The American Academy of Orthopaedic Surgeons exclusively funded this clinical practice guideline. The Academy received no funding from outside commercial sources to support the development of this document.

FDA Clearance

Some drugs or medical devices referenced or described in this clinical practice guideline may not have been cleared by the Food and Drug Administration (FDA) or may have been cleared for a specific use only. The FDA has stated that it is the responsibility of the physician to determine the FDA clearance status of each drug or device he or she wishes to use in clinical practice.

Copyright

All rights reserved. No part of this clinical practice guideline may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the AAOS.

Published 2011 by the American Academy of Orthopaedic Surgeons 6300 North River Road Rosemont, IL 60018 Second Edition Copyright 2011 by the American Academy of Orthopaedic Surgeons

Summary of Recommendations

The following is a summary of the recommendations of the AAOS' clinical practice guideline, Preventing Venous Thromboembolic Disease in Patients Undergoing Elective Hip and Knee Arthroplasty. This summary does not contain rationales that explain how and why these recommendations were developed, nor does it contain the evidence supporting these recommendations. All readers of this summary are strongly urged to consult the full guideline and evidence report for this information. We are confident that those who read the full guideline and evidence report will see that the recommendations were developed using systematic evidence-based processes designed to combat bias, enhance transparency, and promote reproducibility.

This summary of recommendations is not intended to stand alone. Treatment decisions should be made in light of all circumstances presented by the patient. Treatments and procedures applicable to the individual patient rely on mutual communication between patient, physician, and other healthcare practitioners.

1. We recommend against routine post-operative duplex ultrasonography screening of patients who undergo elective hip or knee arthroplasty.

Grade of Recommendation: Strong

Description: Evidence is based on two or more "High" strength studies with consistent findings for recommending for or against the intervention. A **Strong** recommendation means that the benefits of the recommended approach clearly exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a strong negative recommendation), and that the strength of the supporting evidence is high.

Implications: Practitioners should follow a **Strong** recommendation unless a clear and compelling rationale for an alternative approach is present.

2. Patients undergoing elective hip or knee arthroplasty are already at high risk for venous thromboembolism. The practitioner might further assess the risk of venous thromboembolism by determining whether these patients had a previous venous thromboembolism.

Grade of Recommendation: Limited

Description: Evidence from two or more "Low" strength studies with consistent findings, or evidence from a single "Moderate" quality study recommending for or against the intervention or diagnostic. A **Limited** recommendation means the quality of the supporting evidence that exists is unconvincing, or that well-conducted studies show little clear advantage to one approach versus another.

Implications: Practitioners should exercise clinical judgment when following a recommendation classified as **Limited**, and should be alert to emerging evidence that might negate the current findings. Patient preference should have a substantial influencing role.

Current evidence is not clear about whether factors other than a history of previous venous thromboembolism increase the risk of venous thromboembolism in patients undergoing elective hip or knee arthroplasty and, therefore, we cannot recommend for or against routinely assessing these patients for these factors.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

3. Patients undergoing elective hip or knee arthroplasty are at risk for bleeding and bleeding-associated complications. In the absence of reliable evidence, it is the opinion of this work group that patients be assessed for known bleeding disorders like hemophilia and for the presence of active liver disease which further increase the risk for bleeding and bleeding-associated complications.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

Current evidence is not clear about whether factors other than the presence of a known bleeding disorder or active liver disease increase the chance of bleeding in these patients and, therefore, we are unable to recommend for or against using them to assess a patient's risk of bleeding.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

4. We suggest that patients discontinue antiplatelet agents (e.g., aspirin, clopidogrel) before undergoing elective hip or knee arthroplasty.

Grade of Recommendation: Moderate

Description: Evidence from two or more "Moderate" strength studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. A **Moderate** recommendation means that the benefits exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a negative recommendation), but the strength of the supporting evidence is not as strong.

Implications: Practitioners should generally follow a **Moderate** recommendation but remain alert to new information and be sensitive to patient preferences.

5. We suggest the use of pharmacologic agents and/or mechanical compressive devices for the prevention of venous thromboembolism in patients undergoing elective hip or knee arthroplasty, and who are not at elevated risk beyond that of the surgery itself for venous thromboembolism or bleeding.

Grade of Recommendation: Moderate

Description: Evidence from two or more "Moderate" strength studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. A **Moderate** recommendation means that the benefits exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a negative recommendation), but the strength of the supporting evidence is not as strong.

Implications: Practitioners should generally follow a **Moderate** recommendation but remain alert to new information and be sensitive to patient preferences.

Current evidence is unclear about which prophylactic strategy (or strategies) is/are optimal or suboptimal. Therefore, we are unable to recommend for or against specific prophylactics in these patients.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

In the absence of reliable evidence about how long to employ these prophylactic strategies, it is the opinion of this work group that patients and physicians discuss the duration of prophylaxis.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

6. In the absence of reliable evidence, it is the opinion of this work group that patients undergoing elective hip or knee arthroplasty, and who have also had a previous venous thromboembolism, receive pharmacologic prophylaxis and mechanical compressive devices.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

7. In the absence of reliable evidence, it is the opinion of this work group that patients undergoing elective hip or knee arthroplasty, and who also have a known bleeding disorder (e.g., hemophilia) and/or active liver disease, use mechanical compressive devices for preventing venous thromboembolism.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

8. In the absence of reliable evidence, it is the opinion of this work group that patients undergo early mobilization following elective hip and knee arthroplasty. Early mobilization is of low cost, minimal risk to the patient, and consistent with current practice.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

9. We suggest the use of neuraxial (such as intrathecal, epidural, and spinal) anesthesia for patients undergoing elective hip or knee arthroplasty to help limit blood loss, even though evidence suggests that neuraxial anesthesia does not affect the occurrence of venous thromboembolic disease.

Grade of Recommendation: Moderate

Description: Evidence from two or more "Moderate" strength studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. A **Moderate** recommendation means that the benefits exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a negative recommendation), but the strength of the supporting evidence is not as strong.

Implications: Practitioners should generally follow a **Moderate** recommendation but remain alert to new information and be sensitive to patient preferences.

10. Current evidence does not provide clear guidance about whether inferior vena cava (IVC) filters prevent pulmonary embolism in patients undergoing elective hip and knee arthroplasty who also have a contraindication to chemoprophylaxis and/or known residual venous thromboembolic disease. Therefore, we are unable to recommend for or against the use of such filters.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

Work Group

Joshua J. Jacobs M.D., Chair

1725 W Harrison St Ste 1063 Chicago, IL 60612-3828

Michael A Mont M.D., Vice Chair

Sinai Hospital of Baltimore Rubin Institute for Advanced Orthopedics 2401 West Belvedere Ave 5th FL Baltimore, MD 21215

Kevin John Bozic M.D., MBA

University of California, San Francisco Department of Orthopaedic Surgery 500 Parnassus Ave. MU-320W San Francisco, CA 94143

Craig J Della Valle, M.D.

Rush University Med Ctr 1725 W Harrison St Ste 1063 Chicago, IL 60612

Stuart Barry Goodman, M.D.

Stanford Univ Med Ctr/Ortho Surg 450 Broadway St Redwood City, CA 94063

Courtland G Lewis, M.D.

Connecticut Joint Replacement Institution 114 Woodland Street Hartford, CT 06105

Adolph "Chick" J Yates Jr, M.D.

Univ of Pittsburgh Med Ctr Shadyside Medical Bldg Ste 415 5200 Centre Ave Pittsburgh, PA 15232-1300

Lisa N. Boggio M.D. M.S.

Assistant Professor of Medicine Rush University Medical Center 1725 W Harrison Street Suite 809 Chicago, IL 60612

Guidelines Oversight Chair

William C Watters III M.D.

6624 Fannin #2600 Houston, TX 77030

AAOS Staff:

Charles M Turkelson Ph.D

Director of Research & Scientific Affairs 6300 N River Road Rosemont, IL 60018

Janet L Wies MPH

Manager, Clinical Practice Guidelines wies@aaos.org

Patrick Sluka MPH

Lead Research Analyst <u>Sluka@aaos.org</u>

Kristin Hitchcock MIS AAOS Medical Librarian

Peer Review Organizations

Participation in the AAOS peer review process does not constitute an endorsement of this guideline by the participating organization.

The following organizations participated in peer review of this clinical practice guideline and gave explicit consent to be listed as peer reviewers:

American Academy of Family Physicians American Association of Hip and Knee Surgeons American College of Chest Physicians American Society of Regional Anesthesia and Pain Medicine American Surgical Association/Society of Surgical Chairs International Society on Thrombosis and Haemostasis The Joint Commission on Accreditation of Healthcare Organizations

Participation in the AAOS peer review process does not constitute an endorsement of this guideline by the participating organization.

AAOS Clinical Guideline on Preventing Venous Thromboembolic Disease in Patients Undergoing Elective Hip and Knee Arthroplasty

Introduction and Methods

Table of Contents

Summary of Recommendations	iii
Work Group	viii
Peer Review Organizations	ix
AAOS Clinical Guideline on Preventing Venous Thromboembolic Disease in Patients	
Undergoing Elective Hip and Knee Arthroplasty	1
Introduction and Methods	
Table of Contents	1
List of Tables	3
I. Introduction	9
Overview	9
Goals and Rationale	9
Intended Users	9
Patient Population	
Burden of Disease and Etiology	
Potential Harms, Benefits, and Contraindications	
Differences Between The Present and The Previous AAOS guideline	
II. Preventing Bias in an AAOS Clinical Practice Guideline	
III. Methods	
Formulating Preliminary Recommendations	
Full Disclosure Information	
Study Selection Criteria	
Literature Searches	
Best Evidence Synthesis	
Appraising Evidence Quality and Applicability	
Studies of Interventions	
Studies of Screening and Diagnostic Tests	
Studies of Prognostics	
Other Biases In the Published Literature	
Grades of Recommendation	
Wording of the Final Recommendations	
Consensus Recommendations	
Voting on the Recommendations	
Outcomes Considered	
Statistical Methods	
Peer Review	
Public Commentary	
The AAOS Guideline Approval Process	
Revision Plans	
Guideline Dissemination Plans	

Recommendations	42
Recommendation 1	42
Rationale	42
Findings	43
Recommendation 2	49
Rationale	49
Findings	51
Recommendation 3	61
Rationale	61
Findings	64
Recommendation 4	75
Rationale	75
Findings	75
Recommendation 5	79
Rationale	80
Findings	83
Network Meta-Analyses	
Individual Study Results	
Recommendation 6	133
Rationale	133
Recommendation 7	134
Rationale	134
Recommendation 8	135
Rationale	135
Findings	136
Recommendation 9	139
Rationale	139
Findings	140
Recommendation 10	
Rationale	152
Findings	153
Future Research	154
Appendices	.155
Appendix I	
Work Group Roster	
Appendix II	156
AAOS Bodies That Approved this Clinical Practice Guideline	
Documentation of Approval	
Appendix III	158
Determining Critical Outcomes	
Work Group Participation	
Critical Outcomes Form	
Appendix IV	
Included and Excluded Articles Flowchart	
Appendix V	
Literature Searches	

Search Strategy Tier 1 (Hip and Knee Arthroplasty)	164
Search Strategy Tier 2 (Expand to all Surgical patients)	
Appendix VI	
Quality and Applicability Questions	173
Studies of Interventions	
Screening and Diagnostic Tests	176
Studies of Prognostics	179
Appendix VII	
Form for Assigning Grade of Recommendation	180
Appendix VIII	182
Rules for Making Opinion Based Recommendations	182
Voting by the Nominal Group Technique	
Appendix IX	
Structured Peer Review Form	185
Appendix X	189
Participating Peer Review Organizations	189
Public Commentators	190
Appendix XI	191
Interpreting Forest Plots	191
Abbreviations used in this report	191
Appendix XII	193
Conflict of Interest	193
Appendix XIII	194
Quality and Applicability of Included Studies	194
Appendix XIV	
Excluded Studies	
Systematic Reviews screened for additional articles	365
Appendix XV	370
Prophylaxis Recommendation Analysis	370
Appendix XVI	721
Conclusions of Other Systematic Reviews	721
Appendix XVII	735
Bibliographies	
Included Studies	
Excluded Studies	
References	847

List of Tables

IOM Clinical Practice Guidelines Standards	15
IOM Systematic Review Standards	
Relationship between Quality and Domain Scores for Interventions	
Relationship between Applicability and Domain Scores for Interventions	
Relationship between Domain Scores and Quality of Screening/Diagnostic Tests	
Relationship between Domain Scores and Applicability for Studies of Prognostics	
Relationship between Quality and Domain Scores for Studies of Prognostics	
Relationship between Domain Scores and Applicability for Studies of Prognostics	

AAOS guideline language	26
Quality and Applicability of Studies on the Relationship between DVT and PE	
Positive and Negative Likelihood Ratios for DVT as a Predictor of PE	
3. Event Rates in Placebo/Untreated Control Groups	
Network Meta-Analysis Models and Consistency Checks	
DVT Screening Summary Table	
Ultrasound Screening vs. No Screening - Results	
Venography Screening vs. No Screening - Results	
D-dimer - Diagnostic Performance	
MR Venography - Diagnostic Performance	
VTED Risk Factors Summary Table	
History of VTE as a Risk Factor for VTE	
Risk Factors for VTE among Hip and Knee Arthroplasty Patients	
Risk Factors for VTE among Hip and Knee Arthroplasty Patients - Results	
Risk Factors for VTE - Data from NonArthroplasty Patients	
Risk Factors for Bleeding Summary Table	
Risk Factors for Bleeding - Data among Arthroplasty Patients	
Risk Factors for Bleeding - Data among Non-Arthroplasty Patients	
Coagulation Screening among Non-Arthroplasty Patients - Results	
Summary Table for Hemorrhage-Associated Complications Risk Factors	
Risk Factors for Hemorrhage-Associated Complications - Multivariate Results	
Risk Factors for Hemorrhage-Associated Complications – Results Details	
Preoperative Antiplatelet Use - Data among Non-Arthroplasty Patients	
Major Bleeding Significant Pairwise Comparisons - Final Model	
DVT Significant Pairwise Comparisons - Final Model	
Proximal DVT Significant Pairwise Comparisons - Final Model	
Early Mobilization Summary Table	
Early Mobilization Results	
Neuraxial Anesthesia Summary Table	
Regional vs. General Anesthesia - VTED-related Outcomes	
Epidural vs. General Anesthesia - Intraoperative Blood Loss	
Epidural vs. General Anesthesia - Postoperative Blood Loss	
Epidural vs. General Anesthesia - Other Outcomes	
General + Epidural vs. General Anesthesia - Results	
General + Lumbar Plexus Block vs. General Anesthesia - Results	
Epidural vs. Spinal Anesthesia - Blood Loss	
IVC Filter Summary Table	
IVC Filter Results	
Quality and Applicability of Treatment Studies for Routine Screening	
Quality and Applicability of Diagnostic Studies for Routine Screening	
Quality and Applicability of Prognostic Studies for Risk Factors for VTED	
Quality and Applicability of Prognostic Studies for Risk Factors for Bleeding	
Quality and Applicability of Prognostic Studies for Risk Factors for Hemorrhage-Associated	
Complications	
Quality and Applicability of Treatment Studies for Preoperative Antiplatelet Use	
Quality and Applicability of Treatment Studies for Prophylaxis	

Quality and Applicability of Treatment Studies for Early Mobilization	280
Quality and Applicability of Treatment Studies for Anesthesia	
Quality and Applicability of Treatment Studies for IVC Filters	
Excluded Studies Considered for Routine Screening	
Excluded Studies Considered for Risk Factors for VTED	
Excluded Studies Considered for Risk Factors for Bleeding	
Excluded Studies Considered for Risk Factors for Hemorrhage-Associated Complications	
Excluded Studies Considered for Preoperative Antiplatelet Use	
Excluded Studies Considered for Prophylaxis	
Excluded Studies Considered for Early Mobilization	
Excluded Studies Considered for Anesthesia	
Excluded Studies Considered for IVC Filters	
Other Studies Excluded at Full-Text Review (not reported elsewhere)	356
Pulmonary Embolism Direct Comparisons among Hip and Knee Patients	
Pulmonary Embolism Direct Comparisons among Hip Patients	
Pulmonary Embolism Direct Comparisons among Knee Patients	
Major Bleeding Direct Comparisons among Hip and Knee Patients	
Major Bleeding Direct Comparisons among Hip Patients	
Major Bleeding Direct Comparisons among Knee Patients	373
All Cause Mortality Direct Comparisons among Hip and Knee Patients	374
All Cause Mortality Direct Comparisons among Hip Patients	
All Cause Mortality Direct Comparisons among Knee Patients	. 375
Symptomatic Deep Vein Thrombosis Direct Comparisons among Hip and Knee Patients	. 376
Symptomatic DVT Direct Comparisons among Hip Patients	. 377
Symptomatic DVT Direct Comparisons among Knee Patients	. 377
Deep Vein Thrombosis Direct Comparisons among Hip and Knee Patients	
Deep Vein Thrombosis Direct Comparisons among Hip Patients	. 379
Deep Vein Thrombosis Direct Comparisons among Knee Patients	
Proximal DVT Direct Comparisons among Hip and Knee Patients	
Proximal DVT Direct Comparisons among Hip Patients	. 382
Proximal DVT Direct Comparisons among Knee Patients	
Final Network Meta-Analysis Ranking of Agents - Pulmonary Embolism	
Final Network Meta-Analysis Ranking of Agents - Major Bleeding	
Final Network Meta-Analysis Ranking of Agents – All Cause Mortality	
Final Network Meta-Analysis Ranking of Agents – Symptomatic DVT	
Final Network Meta-Analysis Ranking of Agents - DVT	
Final Network Meta-Analysis Ranking of Agents – Proximal DVT	
Final Network Meta-Analysis Complete Ranking of Agents - Pulmonary Embolism	
Final Network Meta-Analysis Complete Ranking of Agents – Major Bleeding	
Final Network Meta-Analysis Complete Ranking of Agents – All Cause Mortality	
Final Network Meta-Analysis Complete Ranking of Agents – Symptomatic DVT	
Final Network Meta-Analysis Complete Ranking of Agents – DVT	
Final Network Meta-Analysis Complete Ranking of Agents – Proximal DVT	
Summary of Network Meta-Analysis Results - DVT	. 487
Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients - Pulmonary	
Embolism	. 507

Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients - Major Bleeding Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients - All Cause Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients - Symptomatic Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients - Deep Vein Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients - Proximal DVT Network Meta-Analysis - Pairwise Comparisons among Hip Patients - Pulmonary Embolism549 Network Meta-Analysis - Pairwise Comparisons among Knee Patients - Pulmonary Embolism Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Major Bleeding 556 Network Meta-Analysis - Pairwise Comparisons among Knee Patients - Major Bleeding 563 Network Meta-Analysis - Pairwise Comparisons among Hip Patients - All Cause Mortality.. 566 Network Meta-Analysis - Pairwise Comparisons among Knee Patients - All Cause Mortality 569 Network Meta-Analysis - Pairwise Comparisons among Hip Patients - Symptomatic DVT ... 570 Network Meta-Analysis - Pairwise Comparisons among Knee Patients - Symptomatic DVT. 571 Network Meta-Analysis - Pairwise Comparisons among Hip Patients - Deep Vein Thrombosis Network Meta-Analysis – Pairwise Comparisons among Knee Patients – Deep Vein Thrombosis 577 Network Meta-Analysis - Pairwise Comparisons among Hip Patients - Proximal DVT...... 580 Network Meta-Analysis - Pairwise Comparisons among Patients - Proximal DVT..... 587 Model 1 (all trials) All Cause Mortality Consistency Check on Ln Odds Ratio 592 Model 1 (all trials) Symptomatic DVT Consistency Check on Ln Odds Ratio...... 592 Model 1 (all trials) Proximal DVT Consistency Check on Ln Odds Ratio 594 Model 2 (all trials from treatments with ≥ one event) PE Consistency Check on Ln Odds Ratio Model 2 (all trials from treatments with > one event) Major Bleeding Consistency Check on Ln Model 2 (all trials from treatments with > one event) All Cause Mortality Consistency Check on Model 2 (all trials from treatments with > one event) Symptomatic DVT Consistency Check on Model 2 (all trials from treatments with \geq one event) DVT Consistency Check on Ln Odds Ratio 598 Model 3 (without heparin trials) Major Bleeding Consistency Check on Ln Odds Ratio...... 599 Model 3 (without heparin trials) Symptomatic DVT Consistency Check on Ln Odds Ratio 600 Model 4 (without heparin or trials with >2 arms) PE Consistency Check on Ln Odds Ratio.... 601

Model 4 (without heparin or trials with >2 arms) Major Bleeding Consistency Check on Ln C	Odds
Ratio	
Model 4 (without heparin or trials with >2 arms) DVT Consistency Check on Ln Odds Ratio	602
Model 4 (without heparin or trials with >2 arms) Proximal DVT Consistency Check on Ln C	
Ratio	
Model 5 (without heparin or trials with >2 arms, with continuity correction) PE Consistency	
Check on Ln Odds Ratio	
Model 5 (without heparin or trials with >2 arms, with continuity correction) Major Bleeding	
Consistency Check on Ln Odds Ratio	. 603
Model 5 (without heparin or trials with >2 arms, with continuity correction) Proximal DVT	
Consistency Check on Ln Odds Ratio	. 604
Network Meta-Analysis Model Fit	. 605
Individual Study Results - Fatal PE	. 609
Individual Study Results - Fatal Bleeding	. 613
Individual Study Results - Symptomatic PE	
Individual Study Results - Major Bleeding	
Individual Study Results - All Cause Mortality	
Individual Study Results - Reoperation due to Bleeding	
Individual Study Results - Clinically Important Bleeding	
Individual Study Results - Minor Bleeding	
Individual Study Results - Any Bleeding	
Individual Study Results - Transfusion	
Individual Study Results - Wound Hematoma – Severe/Complicated/Requiring Intervention	
Individual Study Results - Wound Hematoma	
Individual Study Results - Deep Wound Infection	
Individual Study Results - Wound Infection	
Individual Study Results - GI Bleeding	
Individual Study Results - Injection-Site Hematoma	
Individual Study Results - Other Wound or Bleeding Complications	
Individual Study Results - Symptomatic DVT	. 654
Individual Study Results - DVT	
Individual Study Results - Proximal DVT	
Individual Study Results - Distal DVT	
Individual Study Results - Thrombocytopenia	
Duration of Prophylaxis Studies - Fatal Bleeding	
Duration of Prophylaxis Studies - Symptomatic PE	
Duration of Prophylaxis Studies - Major Bleeding	
Duration of Prophylaxis Studies - All Cause Mortality	
Duration of Prophylaxis Studies - Symptomatic DVT	
Duration of Prophylaxis Studies - Rehospitalization due to DVT	. 674
Duration of Prophylaxis Studies - Deep Vein Thrombosis	
Duration of Prophylaxis Studies - Proximal DVT	. 676
Duration of Prophylaxis Studies - Distal DVT	. 677
Duration of Prophylaxis Studies - Wound Hematoma	
Duration of Prophylaxis Studies - Injection-Site Hematoma	. 679
Duration of Prophylaxis Studies - Other Bleeding Outcomes	. 680

Duration of Prophylaxis Studies - Thrombocytopenia	682
Prophylaxis Starting Time Studies - All Outcomes	683
Prophylaxis Dosage and Route of Administration Studies - All Outcomes	688
Individual Study Data - Treatment Details	691
Study Data - Patient and Funding Details	714
Systematic Review Conclusions - Prophylaxis	
Systematic Review Conclusions – Neuraxial Anesthesia	733
Systematic Review Conclusions – Ultrasound Screening	

I. INTRODUCTION

OVERVIEW

This clinical practice guideline is based on a systematic review of published studies on preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. In addition to providing practice recommendations, this guideline also highlights gaps in the literature and areas that require future research.

This guideline is intended to be used by all appropriately trained surgeons and all qualified physicians managing the prevention of venous thromboembolic (VTE) disease in patients undergoing elective hip and knee arthroplasty.

GOALS AND RATIONALE

The purpose of this clinical practice guideline is to help improve screening, prevention, and treatment based on the current best evidence. Current evidence-based medicine (EBM) standards demand that physicians use the best available evidence in their clinical decision making. To assist them, this clinical practice guideline consists of a systematic review of the available literature on the prevention of venous thromboembolic disease. The systematic review detailed herein was conducted between March 2010 and April 2011 and demonstrates where there is good evidence, where evidence is lacking, and what topics future research could target to improve the prevention of venous thromboembolic disease among patients undergoing elective hip and knee arthroplasty. AAOS staff methodologists and the physician work group systematically reviewed the available literature and subsequently wrote the following recommendations based on a rigorous, standardized process.

Musculoskeletal care is provided in many different settings by many different providers. We created this guideline as an educational tool to guide qualified physicians through a series of treatment decisions in an effort to improve the quality and efficiency of care. This guideline should not be construed as including all proper methods of care or excluding methods of care reasonably directed to obtaining the same results. The ultimate judgment regarding any specific procedure or treatment must be made in light of all circumstances presented by the patient and the needs and resources particular to the locality or institution.

INTENDED USERS

This guideline is intended to be used by orthopaedic surgeons and all qualified clinicians managing the prevention of venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. Typically, orthopaedic surgeons will have completed medical training, a qualified residency in orthopaedic surgery, and some may have completed additional subspecialty training.

The guideline is intended to both guide clinical practice and to serve as an information resource for medical practitioners. An extensive literature base was considered during the development of this guideline. In general, practicing clinicians do not have the resources necessary for such a large project. The AAOS hopes that this guideline will assist practitioners not only in making clinical decisions about their patients, but also in describing, to patients and others, why the chosen treatment represents the best available course of action. This guideline is not intended for use as a benefits determination document. Making these determinations involves many factors not considered in the present document, including available resources, business and ethical considerations, and needs.

Evidence for the effectiveness of medical services is not always present. This is true throughout all areas of medicine. Accordingly, all users of this clinical practice guideline are cautioned that an absence of evidence is not evidence of ineffectiveness. An absence means just that; there are no data. It is the AAOS position that rigorously developed clinical practice guidelines should not seek to guide clinical practice when data are absent unless the disease, disorder, or condition in question can result in loss of life or limb. The AAOS incorporates expert opinion into a guideline under these circumstances, and only under these circumstances. Accordingly, when the AAOS states that it cannot recommend for or against a given intervention or service, it is stating that currently available data do not provide clear guidance on which course of action is best, and that it is therefore reluctant to make a recommendation that has potentially national ramifications. Although true in all circumstances, the AAOS believes that when evidence is absent, it is particularly important for the prevention of venous thromboembolic disease to be based on mutual patient and physician communication, with discussion of available treatments and procedures applicable to that patient, and with consideration of the natural history of the disease and the current practice patterns. Once the patient has been informed of available therapies and has discussed these options with his/her physician, an informed decision can be made. Clinician input based on experience with both non-operative management and surgical skills increases the probability of identifying patients who will benefit from specific treatment options.

PATIENT POPULATION

This document addresses the prevention of venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. It is not intended for treatment of patients who present with venous thromboembolic disease.

BURDEN OF DISEASE AND ETIOLOGY

Approximately 200,000 primary total hip arthroplasties and 400,000 primary total knee arthroplasties were performed in the United States in 2003, with a projected increase to 250,000 hip procedures and over 600,000 knee procedures in 2010.¹ During the ninety days following primary arthroplasty surgery, hospitalization due to symptomatic deep vein thrombosis occurs in 0.7% of hip patients and 0.9% of knee patients, while hospitalization due to pulmonary embolism occurs in 0.3% of both hip and knee patients.^{2, 3}

POTENTIAL HARMS, BENEFITS, AND CONTRAINDICATIONS

The goal of prophylaxis is prevention of mortality and other serious complications resulting from venous thromboembolic (VTE) disease. Most treatments are associated with some known risks, especially invasive and operative treatments. In addition, contraindications vary widely based on the treatment administered. Therefore, discussion of available treatments and procedures applicable to the individual patient rely on mutual communication between the patient and physician, weighing the potential risks and benefits for that patient.

DIFFERENCES BETWEEN THE PRESENT AND THE PREVIOUS AAOS GUIDELINE

The present clinical practice guideline is an update of the AAOS 2007 guideline, "Prevention of Symptomatic Pulmonary Embolism in Patients Undergoing Total Hip or Knee Arthroplasty." As an update, the present guideline supersedes the previous AAOS guideline.

There are numerous and substantial differences between our present and previous guideline. Among them are new processes for preventing bias. These new processes are outlined in the section, "Preventing Bias in an AAOS Clinical Practice Guideline." We also employ a relatively new statistical technique, network meta-analysis, to analyze the data. This technique allows one to gauge how the pharmaceuticals of interest compare to each other, even when published studies do not explicitly make all comparisons. Also, we employ more rigorous methods for evaluating the quality of the published studies, and we employ similarly rigorous methods to evaluate the generalizability of their results.

This update contains information published since we issued our previous guideline in addition to the studies we previously evaluated. There are some differences between the guidelines in the article inclusion criteria. (Please see the "Study Selection Criteria", page 18)

II. PREVENTING BIAS IN AN AAOS CLINICAL PRACTICE GUIDELINE

Clinical practice guidelines (CPGs) have come under scrutiny because many of them are not objective. Shaneyfelt and Centor have noted that most current guidelines are not at all like those the Institute of Medicine (IOM) had originally intended, and that they have strayed so far from this original concept that they are mere consensus reports.⁴ More recently, the IOM has stated that "the quality of CPG development processes and guideline developer adherence to quality standards have remained unsatisfactory and unreliable for decades."⁵ The AAOS understands that only high quality guidelines are credible, and we go to great lengths to ensure the integrity of our guidelines. The purpose of this section is to highlight the processes whereby the AAOS accomplishes this. Additional details about how we combat bias also appear in the Methods section of this guideline.

The AAOS combats bias beginning with the selection of work group members. Applicants for AAOS development work groups who have financial conflicts of interest (COI) related to the guideline topic cannot participate on an AAOS work group if they currently have, or have had a relevant conflict within a year of the start date of guideline development. Applicants also cannot participate if one of their immediate family members has, or has had a relevant conflict of interest.

Financial COI are not the only COI that can influence a guideline. The IOM has noted that income source, long service on government committees or with private insurers, authorship of articles on guideline-related subjects, and biases from personal experience can also cause bias. ⁶ This suggests that those with the greatest expertise in any given topic area are also those most likely to introduce bias into guideline development. It also suggests that bias can only be counteracted by processes that are in place throughout the entirety of the development, and not just at the beginning.

One manner whereby the AAOS combats bias throughout guideline development is by having a team that is free of all of the above-mentioned COI conduct the literature searches, evaluate the quality of the literature, and sythesize the data (see Appendix I for a list of the work group members and methodologists who participated in the development of this guideline). Hirsh and Guyatt⁷ have suggested that using such conflict-free methodologists is critical to developing an unbiased guideline.

Our use of methodologists changes the traditional role of clinicians in guideline development. The clinicians on an AAOS guideline work group serve as content experts. One of the clinicians' tasks is to frame the scope of the guideline by developing preliminary recommendations (these are the questions that will be addressed by the guideline; see below for further information). Another is to develop the article inclusion criteria. After they have done so, the AAOS medical librarian obtains key words from work group members and uses words, the preliminary recommendations, and inclusion criteria to construct literature search strategies. Clinicians are not permitted to suggest specific articles for inclusion at this time inasmuch as those suggestions are often about articles they have authored or that support a particular point of view. Methodologists then determine which articles should be recalled and whether a recalled article meets the inclusion criteria. After completing this task, the clinician work group is given a list of the recalled articles that are proposed for inclusion and a list of the recalled studies proposed for exclusion. The work group then reviews these lists and suggests modifications. The purpose of this step is to assure the integrity of the guideline's data set. The methodologists are not obligated to take the work group's suggestions, but they are obligated to explain why they did not. Articles included or excluded as a result of this clinician review are handled as all other included articles or excluded studies. The methodologists also appraise the quality and applicability of each included study (we use "quality" as synonymous with "risk of bias." The latter term is preferred by others but, since quality and risk of bias are measured exactly the same way, the difference between the two seems largely semantic. Similarly, we use the terms "applicability" and "generalizability" as synonyms.)

Quality appraisal is a subject worth special mention because it is a necessary step in performing a systematic review and in developing a clinical practice guideline. One evaluates the quality (or risk of bias) of a study to determine how "believable" its results are, the results of high quality studies are more believable than those of low quality studies. This is why, all other things being equal, a recommendation based on high quality evidence will receive a higher grade than recommendations based on lower quality evidence (see Grades of Recommendation for more information). Biases in quality evaluation can cause overestimates of the confidence one should have in available data, and in a guideline recommendation.

Bias in quality evaluation arises when members of a work group view the papers they authored as being more believable than similar research performed by others, view certain studies as more believable simply because they were conducted by thought leaders in a given medical speciality area, and/or view research results that they are "comfortable" with as more believable than results they are not comfortable with.

The problem of biased quality evaluations is aggravated by the fact that no method for qualiy/risk of bias assessment has been empirically validated. Ultimately, therefore, all methods of quality/risk of bias assessment, are based on expert opinion (including those based on expert consensus obtained through formal methods like the Delphi method), and they all require judgements that are arbitrary. The method we use is no exception.

Given that all currently available quality evaluation systems are imperfect, their susceptibility to bias must be a deciding factor about whether to use them in clinical practice guideline development. The AAOS methodology is guided by the thinking that, if guideline developers have the choice between several methodologically imperfect systems, the least biased system is the best.

The burden that falls to readers of clinical practice guidelines is to determine which ones are not. Making this determination requires readers to examine two aspects of quality evaluation; the individual criteria used to evaluate a study, and how those criteria are translated into a final determination of a study's believability.

The criteria used to evaluate a study are often framed as one or more questions about a study's design and/or conduct. At the AAOS, these questions are answered by independent

methodologists. This combats bias by virtually eliminating the intellectual conflicts of interest that can arise when others are providing the answers.

Also preventing bias is the way the quality questions are phrased, and the fact that there are specific criteria (described in almost 300 pages of documentation) for answering each question. The simplest example, the AAOS question "Was there >80% follow-up" illustrates the point. The question is answered "Yes,", "No", or "Unclear." To determine whether a "Yes" or "No" answer is unclear, the methodologist merely looks at the number of patients present at the follow-up time of interest, the number of patients present at the start of the study, and expresses the former as a percentage of the latter. If the article does not report the information required to compute this percentage (or does not directly report the percentage), an "Unclear" answer is supplied. In answering this or any other question in the AAOS quality assessment scheme, the analyst is merely checking to see if the article provides specific data or makes specific statements. If it does, a "Yes" or "No" answer is supplied. If it does not, an "Unclear" answer is given. This lack of ambiguity in the criteria required to answer each question makes answering each question an almost completely objective exercise.

This stands in sharp contrast to the use of Levels of Evidence systems (also called evidence hierarchies), which are probably the most commonly used way of evaluating study quality in clinical practice guideline development. The vagueness of these systems opens the opportunity for bias. For example, these systems often hold that Level I evidence (i.e., the highest quality evidence) is from a well-designed randomized controlled trial, without ever specifying what "well-designed" means. This lack of specific instructions creates the possibility for bias in grading articles because it allows for an *ad hoc* appraisal of study quality. Furthermore, there are over 50 such systems, individuals do not consistently apply any given system in the same way, many are not sensible to methodologists,⁸ and Level I studies, those of the highest level of evidence, do not necessarily report that they used adequate safeguards to prevent bias.⁹

Obviously, simply answering a series of questions about a study does not complete the quality evaluation. All clinical practice guideline developers then use that information to arrive at a final characterization of a study's quality. This can be accomplished in two (and only two) ways, by allowing those who are performing this final characterization to use their judgement, or by not letting them do so. Bias is possible when judgement is allowed. Bias is not possible in the AAOS system because the final rating is accomplished entirely by a computer that uses a predetermined algorithm.

This aspect of the AAOS system contrasts with the GRADE system,¹⁰ which places the final determination about whether a study has "no", "serious" or "very serious" limitations in the hands of the reviewer. Furthermore, the GRADE system allows the investigator to specify "other sources of bias" (i.e. sources of bias that were not specified *a priori*) and, although this is a theoretically sound way to approach quality evaluation, in practice it too, could allow for *ad hoc* criticisms of a study, and to criticisms that are not evenly applied across all studies. We recognize that we may miss some uncommon study flaws in our evaluation. While this means that our quality evaluation system is not perfectly comprenensive, it does not mean that it is biased. This is yet another example of how the AAOS, faced with a choice among imperfect quality/risk of bias systems, chooses the least biased approach. Given the above-mentioned history of guideline development, the AAOS emphasis on elimination of bias seems prudent.

The AAOS system, unlike the GRADE system, also specifically addresses the issue of statistical power (i.e., number of patients enrolled) of a trial. Low statistical power is a common problem in the medical literature,¹¹ and low power studies can lead reviewers to incorrectly conclude that a statistically non-significant result means that a given treatment does not work or, perhaps more serious, to reach positive conclusions about an intervention based on the putative "trends" reported in such studies. We regard low power studies as uninformative, and do not consider them when formulating a final recommendation. (We do, however, include low power studies in meta-analyses, inasmuch as one purpose of a meta-analysis is to overcome the low power of individual studies.)

Like the GRADE system, the AAOS guidelines will include observational studies. However, we do not always do so. Rather, we perform "best evidence" syntheses in AAOS guidelines in which we examine the best available (as opposed to the best possible) evidence. We use the best evidence because it is more believable than other evidence. The results of studies that are more believable should not be modified by results that are less believable.

When an AAOS guideline includes uncontrolled studies (e.g., case series) it only includes prospective case series that meet a number of other quality-related criteria. We do not include retrospective case series under any circumstances. Such studies lack virtually every component of a scientific study. There is no specific prohibition against using such studies in the GRADE system. We suggest that all guideline developers who are attempting to produce unbiased guidelines employ similar *a priori* criteria to specify the point at which they consider evidence to be too unreliable to consider.

Also unlike the GRADE system, the AAOS guidelines make provisions for making recommendations based on expert opinion. This recognizes the reality of medicine, wherein certain necessary and routine services (e.g., a history and physical) should be provided even though they are backed by little or no experimental evidence, and wherein certain diseases, disorders, or conditions are so grave that issuing a recommendation in the absence of evidence is more beneficial to patients than not issuing one. To prevent the bias that can result when recommendations based on expert opinion proliferate, we have (as further discussed below) specific rules for when opinion-based recommendations can be issued and, perhaps more importantly, for when they cannot be issued. The AAOS will only issue an opinion-based recommendation when the service in question has virtually no associated harms and is of low cost (e.g., a history and physical) or when the consequences of doing (or not doing) something are so catastrophic that they will result in loss of life or limb

Clinical practice guidelines have not met quality standards for a long time. In recognition of this, the IOM has developed two checklists, one for systematic reviews¹² and another for clinical practice guidelines.⁵ Meeting the items on these checklists should assure readers of a guideline that it is unbiased. Table 1 and Table 2 show the performance of the present AAOS guideline on these standards.

Table 1. IOM Clinical Practice Guidelines Standards

IOM Standard	AAOS Guideline Meets Standard
1. Establishing transparency	Yes

2. Management of Conflict of Interest	Yes No – do not involve
3. Guideline development group composition	patient representative
4. Clinical practice guideline – systematic review intersection	Yes
5. Establishing evidence foundations for and rating strength of recommendations	Yes
6. Articulation of recommendations	Yes
7. External review	Yes
8. Updating	Yes

Table 2. IOM Systematic Review Standards

IOM Systematic Review Standard	AAOS Systematic Reviews Meet Standard
2.1. Establish a team with appropriate expertise and experience to conduct the systematic review	Yes
2.2. Manage bias and conflict of interest (COI) of the team conducting the systematic review	Yes
2.3. Ensure user and stakeholder input as the review is designed and conducted	Yes
2.4. Manage bias and COI for individuals providing input into the systematic review	Yes
2.5. Formulate the topic for the systematic review	Yes
2.6. Develop a systematic review protocol	Yes No – do not have peer review of
2.7. Submit the protocol for peer review2.8. Make the final protocol publicly available, and add any amendments to the protocol in a timely fashion	protocol Yes
3.1. Conduct a comprehensive systematic search for evidence	Yes
3.2. Take action to address potentially biased reporting of research results3.3. Screen and select studies	No – do not search for unpublished information Partially – do not use two independent researchers to screen studies (one screener and all work group members audit results)
3.4. Document the search	Yes
3.5. Manage data collection	Partially - do not use two independent researchers to extract data
3.6. Critically appraise each study	Yes
4.1. Use a prespecified method to evaluate the body of evidence	Yes
4.2. Conduct a qualitative synthesis	Yes
4.3. Decide if, in addition to a qualitative analysis, the systematic review will include a quantitative analysis (meta-analysis)	Yes
4.4. If conducting a meta-analysis, then do the following:	Yes
5.1. Prepare final report using a structured format	Partially - no lay public summary Partially - do not use independent third party to
5.2. Peer review the draft report	manage peer review process
5.3. Publish the final report in a manner that ensures free public access	Yes

III.METHODS

To develop this guideline, the work group held an introductory meeting on March 27, 2010 to establish the scope of the guideline and the systematic reviews. Upon completing the systematic reviews, the work group participated in a two-day recommendation meeting on April 2 and 3, 2011 at which time the final recommendations and rationales were edited, written, and voted on.

FORMULATING PRELIMINARY RECOMMENDATIONS

The work group determined the scope of the guideline by constructing a set of preliminary recommendations. These recommendations specify [what] should be done in [whom], [when], [where], and [how often or how long]. This is similar to the PICO (patients, interventions, comparisons, and outcomes) format used when the scope of a guideline is framed using key questions instead of preliminary recommendations. The preliminary recommendations function as questions for the systematic reviews that underpin each preliminary recommendation, not as final recommendations or conclusions. To avoid "wordsmithing" discussions at the initial work group meeting, the preliminary recommendations are always worded as recommending for something.

Once established, these preliminary recommendations cannot be modified until the final work group meeting. At this time, they can only be modified in accordance with the available evidence and only in accordance with the AAOS rules for how the wording of a recommendation depends on the grade of recommendation (see below for information about this wording). No modifications of the preliminary recommendations can require new literature searches and, at the final work group meeting, no recommendations can be added that require the use of expert opinion.

FULL DISCLOSURE INFORMATION

All of the work group's preliminary recommendations are represented in this guideline. This ensures full disclosure of the information that the AAOS work group examined, and assures readers that they are seeing *all* the information, and not just a selected portion of it.

STUDY SELECTION CRITERIA

We developed *a priori* article inclusion criteria for the systematic reviews for each preliminary recommendation. These criteria are our "rules of evidence." Articles that did not meet them are, for the purposes of this guideline, not evidence.

To be included in our systematic reviews (and hence, in this guideline) an article had to be a report of a study that:

- Investigated elective hip and knee arthroplasty patients
- Was a full article report of a clinical study
- Was not a retrospective case series
- Was not a medical records review, meeting abstract, historical article, editorial, letter, or a commentary
- If a prospective case series, reported baseline values
- Case series studies that have non-consecutive enrollment of patients are excluded
- Appeared in a peer-reviewed publication or a registry report

- Enrolled 100 or more patients per arm for studying deep vein thrombosis or pulmonary embolism, and more than 10 patients per arm per intervention (20 total) for all other outcomes
- Was of humans
- Was published in or after 1966
- Quantitatively presented results
- Was not be an *in vitro* study
- Was not be a biomechanical study
- Was not performed on cadavers
- Was published in English

The restriction on English language papers is unlikely to influence the recommendations in the present clinical practice guideline. An umbrella review of systematic reviews on language restriction found that none of the systematic reviews provided empirical evidence that excluding non-English language studies resulted in biased estimates of an intervention's effectiveness.¹³

We did not include systematic reviews or meta-analyses conducted by others, or guidelines developed by others. These documents are developed using different inclusion criteria than those specified by the AAOS work group. Therefore, they may include studies that do not meet our inclusion criteria. We recalled these documents if their abstract suggested that they might address one of our recommendations, and we searched their bibliographies for additional studies.

LITERATURE SEARCHES

We searched for articles published from January 1966 to February 24, 2011. We searched four electronic databases; PubMed, EMBASE, CINAHL, and The Cochrane Central Register of Controlled Trials. Strategies for searching electronic databases were constructed by the AAOS Medical Librarian using previously published search strategies to identify relevant studies.¹⁴⁻¹⁹

We supplemented searches of electronic databases with manual screening of the bibliographies of all retrieved publications. We also searched the bibliographies of recent systematic reviews and other review articles for potentially relevant citations. All articles identified were subject to the study selection criteria listed above. As noted above, the guideline work group also examined lists of included and excluded studies for errors and omissions.

We went to these lengths to obtain a complete set of relevant articles. Having a complete set ensures that our guideline is not based on a biased subset of articles.

The study attrition diagram in Appendix IV provides details about the inclusion and exclusion of the studies considered for this guideline. The search strategies used to identify these studies are provided in Appendix V.

BEST EVIDENCE SYNTHESIS

We included only the best available evidence for any given outcome addressing a recommendation. Accordingly, we first included the highest quality evidence for any given outcome if it was available. In the absence of two or more studies that reported an outcome at this quality, we considered studies of the next lowest quality until at least two or more

occurrences of an outcome had been acquired. For example, if there were two "Moderate" quality studies that reported an outcome, we did not include "Low" quality studies that also reported this outcome, but if there was only one "Moderate" quality study that reported an outcome, we also included "Low" quality studies.

APPRAISING EVIDENCE QUALITY AND APPLICABILITY STUDIES OF INTERVENTIONS

QUALITY

As noted earlier, we judged quality using questions specified before this guideline topic was selected, and a computer program determined the final quality rating. Accordingly, it is highly unlikely that bias affected our determinations of quality.

We separately evaluated the quality of evidence for each outcome reported by each study. This follows the suggestion of the GRADE working group and others.^{10, 20} We evaluated quality using a domain-based approach. Such an approach is used by the Cochrane Collaboration.²¹ Unlike the Cochrane Collaboration's scheme (which is for studies with parallel control groups), our scheme allows for evaluation of studies of all designs. The domains we used are whether:

- The study was prospective (with prospective studies, it is possible to have an *a priori* hypothesis to test; this is not possible with retrospective studies.)
- The study was of low statistical power
- The assignment of patients to groups was unbiased
- There was blinding to mitigate against a placebo effect
- The patient groups were comparable at the beginning of the study
- The intervention was delivered in such a way that any observed effects could reasonably be attributed to that intervention
- Whether the instruments used to measure outcomes were valid
- Whether there was evidence of investigator bias

Each quality domain is addressed by one or more questions that are answered "Yes," "No," or "Unclear." These questions and the domains that each addresses are shown in Appendix VI.

To arrive at the quality of the evidence for a given outcome, all domains except the "Statistical Power" domain are termed as "flawed" if one or more questions addressing any given domain are answered "No" for a given outcome, or if there are two or more "Unclear" answers to the questions addressing that domain. The "Statistical Power" domain is considered flawed if a given study did not enroll enough patients to detect a standardized difference between means of 0.2.

Domain flaws lead to corresponding reductions in the quality of the evidence. The manner in which we conducted these reductions is shown in the table below (Table 1). For example, the evidence reported in a randomized controlled trial (RCT) for any given outcome is rated as "High" quality if zero or one domain is flawed. If two or three domains are flawed for the evidence addressing this outcome, the quality of evidence is reduced to "Moderate," and if four or five domains are flawed, the quality of evidence is reduced to "Low." The quality of evidence is reduced to "Very Low" if six or more domains are flawed.

Some flaws are so serious that we automatically term the evidence as being of "Very Low" quality, regardless of a study's domain scores. These serious design flaws are:

- Non-consecutive enrollment of patients in a case series
- o Case series that gave patients the treatment of interest AND another treatment
- $\circ\,$ Measuring the outcome of interest one way in some patients and measuring it in another way in other patients
- o Low statistical power

Number of Flawed Domains	Strength of Evidence
0-1	High
2-3	Moderate
4-5	Low
>5	Very Low

Table 3 Relationship between Quality and Domain Scores for Interventions

Although we mention levels of evidence in this guideline, we do so only to provide some very general information about study quality to those readers familiar with the levels of evidence system of *The Journal of Bone and Joint Surgery - American*. However, for the reasons noted above, we do not use levels of evidence as when we speak of "quality" in this document, and levels of evidence play no role in our determination of the grade of the final recommendations.

APPLICABILITY

We rated the applicability (also called "generalizability" or "external validity") of the evidence for each outcome reported by each study. As with quality, applicability ratings were determined by a computer program that used predetermined questions about specific applicability domains. We rated applicability as either "High", "Moderate", or "Low" depending on how many domains are flawed. As with quality, a domain is "flawed" if one or more questions addressing that domain is answered "No: or if two or more are answered "Unclear." We characterized a domain as "flawed" if one or more questions addressing any given domain are answered "No" for a given outcome, or if there are two or more "Unclear" answers to the questions addressing that domain (see Appendix VI for the specific applicability questions we employed and the domains that each question addresses).

Our questions and domains about applicability are those of the PRECIS instrument.²² The instrument was originally designed to evaluate the applicability of randomized controlled trials, but it can also be used for studies of other design. The questions in this instrument fall into four domains. These domains and their corresponding questions are shown in Appendix VI. As shown in Table 4, the applicability of a study is rated as "High" if it has no flawed domains, as "Low" if all domains are flawed, and as "Moderate" in all other cases.

Table 4 Relationship between Applicability and Domain Scores for Interventions

Number of Flawed Domains	Applicability
0	High
1, 2, 3	Moderate
4	Low

STUDIES OF SCREENING AND DIAGNOSTIC TESTS

QUALITY

As with our appraisal of the quality of studies of intervention, our appraisal of studies of screening and diagnostic tests is a domain-based approach conducted using *a priori* questions (please see Appendix VI for the questions we used and the domains to which they apply), and scored by a computer program. The questions we used are those of the QUADAS instrument,^{23, 24} and the six domains we employed are listed below:

- 1. Participants (whether the spectrum of disease among the participants enrolled in the study is the same as the spectrum of disease seen in actual clinical practice)
- 2. Reference Test (whether the reference test, often a "gold standard," and the way it was employed in the study ensures correct and unbiased categorization of patients as having or not having disease)
- 3. Index Test (whether interpretation of the results of the test under study, often called the "index test", was unbiased)
- 4. Study Design (whether the design of the study allowed for unbiased interpretation of test results)
- 5. Information (whether the same clinical data were available when test results were interpreted as would be available when the test is used in practice)
- 6. Reporting (whether the patients, tests, and study protocol were described well enough to permit its replication)

We characterized a study that has no flaws in any of its domains as being of "High" quality, a study that has one flawed domain as being of "Moderate" quality, a study with two flawed domains as being of "Low" quality, and a study with three or more flawed domains as being of "Very Low" quality (Table 5).We characterized a domain as "flawed" if one or more questions addressing any given domain are answered "No" for a given screening/diagnostic/test, or if there are two or more "Unclear" answers to the questions addressing that domain.

We considered some design flaws as so serious that their presence automatically guarantees that a study is characterized as being of "Very Low" quality regardless of its domain scores. These flaws are:

- The presence of spectrum bias (occurs when a study does not enroll the full spectrum of patients who are seen in clinical practice. For example, a diagnostic case control study enrolls only those known to be sick and those known to be well, a patient population quite different from that seen in practice. Because diagnostic case control studies enroll only the easy to diagnose patients, these kinds of studies typically overestimate the abilities of a diagnostic test.)
- Failure to give all patients the reference standard regardless of the index test results
- Non-independence of the reference test and the index text

Table 5. Relationship between Domain Scores and Quality of Screening/Diagnostic Tests

Number of Flawed Domains	Quality
0	High
1	Moderate
2	Low
≥3	Very Low

APPLICABILITY

We judged the applicability of evidence pertinent to screening and diagnostic tests using a modified version of the PRECIS instrument, implying that the questions are determined *a priori*. As before, scoring was accomplished by a computer. The applicability domains we employed for screening and diagnostic tests were:

- 1. Patients (i.e., whether the patients in the study are like those seen in actual clinical practice)
- 2. Index Test (i.e., whether the test under study could be used in actual clinical practice and whether it was administered in a way that reflects its use in actual practice)
- 3. Directness (i.e., whether the study demonstrated that patient health is affected by use of the diagnostic test under study)
- 4. Analysis (i.e., whether the data analysis reported in the study was based on a large enough percentage of enrolled patients to ensure that the analysis was not conducted on "unique" or "unusual" patients)

The specific questions we used, and the domains to which they pertain are provided in Appendix VI.

We characterized a domain as "flawed" if one or more questions addressing any given domain are answered "No" for a given screening/diagnostic/test, or if there are two or more "Unclear" answers to the questions addressing that domain. We characterized the applicability of a screening/diagnostic test as "High" if none of its domains are flawed, "Low" if all of its domains are flawed, and "Moderate" in all other cases (Table 6).

Table 6. Relationship between	Domain Scores and	Applicability for S	studies of Prognostics

Number of Flawed Domains	Applicability
0	High
1,2, 3	Moderate
4	Low

STUDIES OF PROGNOSTICS

QUALITY

Our appraisal of studies of prognostics is a domain-based approach conducted using *a priori* questions, and scored by a computer program (please see Appendix VI for the questions we used and the domains to which they apply). The six domains we employed are:

- 1. Prospective (A variable is specified as a potential prognostic variable *a priori*. This is not possible with retrospective studies.)
- 2. Power (Whether the study had sufficient statistical power to detect a prognostic variable as statistically significant)
- 3. Analysis (Whether the statistical analyses used to determine that a variable was rigorous to provide sound results)
- 4. Model (Whether the final statistical model used to evaluate a prognostic variable accounted for enough variance to be statistically significant)
- 5. Whether there was evidence of investigator bias

We separately determined a quality score for each prognostic reported by a study. We characterized the evidence relevant to that prognostic variable as being of "High" quality if there are no flaws in any of the relevant domains, as being of "Moderate" quality if one of the relevant domains is flawed, as "Low" quality if there are two flawed domains, and as "Very Low" quality if three or more relevant domains are flawed (Table 7). We characterized a domain as "flawed" if one or more questions addressing any given domain are answered "No" for a given prognostic variable, or if there are two or more "Unclear" answers to the questions addressing that domain.

Number of Flawed Domains	Quality
0	High
1	Moderate
2	Low
<u>≥</u> 3	Very Low

Table 7. Relationship between Quality and Domain Scores for Studies of Prognostics

APPLICABILITY

We separately evaluated the applicability of each prognostic variable reported in a study, and did so using a domain-based approach (please see in Appendix VI for the relevant questions and the domains they address) that involves predetermined questions and computer scoring. The domains we used for the applicability of prognostics are:

- 1. Patients (i.e. whether the patients in the study and in the analysis were like those seen in actual clinical practice)
- 2. Analysis (i.e., whether the analysis was not conducted in a way that was likely to describe variation among patients that might be unique to the dataset the authors used)
- 3. Outcome (i.e., whether the prognostic was a predictor of a clinically meaningful outcome)

We characterized the evidence relevant to that prognostic as being of "High" applicability if there are no flaws in any of the relevant domains, as being of "Low" applicability if all three domains are flawed, and as of "Moderate" applicability in all other cases (Table 8). We characterized a domain as "flawed" if one or more questions addressing any given domain are answered "No" for a given prognostic variable, or if there are two or more "Unclear" answers to the questions addressing that domain.

Table 8. Relationship between Domain Scores and Applicability for Studies of Prognostics

Number of Flawed Domains	Applicability
0	High
1,2	Moderate
3	Low

OTHER BIASES IN THE PUBLISHED LITERATURE

Despite our efforts to rigorously evaluate the quality of the studies we included, there remains the possibility that some of the articles considered in this guideline are biased. A 2007 umbrella review found that 20 of 23 previous systematic reviews found a positive relationship between pharmaceutical industry support and pro-industry findings,²⁵ leading the author to conclude that

"it is unequivocally the case that sponsorship influences published results." The relationship also seems to exist in orthopaedics, where authors of industry-funded studies of hip and knee arthroplasty come to positive conclusions more often that authors of studies not funded by industry,²⁶ and where the association between trial outcome and funding source exists across subspecialty societies.²⁷

These apparent biases may not be related to the article's quality²⁵ and, therefore, may not be detected by our evaluations or the quality/risk of bias evaluations performed by others. Accordingly, we follow the suggestion of Montori et al.²⁸ and do not use the conclusions of the authors of any article. Rather, we use only the information provided in an article's Methods section and in its Results section. Furthermore, we perform our analysis using network meta-analysis, an analytical technique that considers the full range of alternatives rather than just those comparisons selected by industry.²⁹

GRADES OF RECOMMENDATION

A grade of recommendation expresses the degree of confidence one can have in each of the final recommendations. Grades express how likely it is that a recommendation will be overturned by future evidence, and are termed "Strong," "Moderate," or "Limited."

We used the above-discussed quality and applicability ratings in conjunction with consistency, whether the studies reported outcomes that the work group deemed "critical," and the potential for catastrophic harm to determine the final grade of recommendation. More specifically, we began by setting the grade as equal to the quality of the available evidence. In other words, high quality evidence is preliminarily taken as a "Strong" grade, moderate quality as a "Moderate" grade, and low quality as a "Limited" grade. (As noted above, very low quality evidence is not included in AAOS guidelines. Accordingly, the final versions of preliminary recommendations that are based on such evidence will either state that the AAOS cannot recommend for or against a given medical service or, assuming that the requirements for a recommendation based on expert opinion are met, it will be a consensus-based recommendation. We then adjusted the grade down one step if the evidence is of "Low" applicability, is inconsistent (defined as studies that report qualitatively different effects, a heterogeneous meta-analysis, or a network metaanalysis with statistically significant inconsistency), if there is only one study that addresses a given recommendation, or if a majority of the outcomes deemed "critical" are not reported in the literature. Preliminary grades were adjusted upwards if the evidence is of "High" applicability or if providing the intervention decreases the potential for catastrophic harm (loss of life or limb). Preliminary grades were adjusted downward if the evidence is of "Low" applicability or if the medical service in question is accompanied with catastrophic harm. In the present guideline, catastrophic harm did not occur frequently enough to allow for increasing or decreasing the preliminary grade.

For a recommendation of a "Strong" grade, a minimum of two high quality studes are needed. A minimum of two moderate quality studies are required for a "Moderate" grade, and a minimum of two low quality studies are needed for a "Limited" grade. Recommendations addressed by only very low quality studies are consensus-based.

WORDING OF THE FINAL RECOMMENDATIONS

To prevent biased nuances in the way recommendations are worded, the AAOS uses predetermined, specific language for its recommendations. The exact wording is governed by the final grade of the recommendation. This wording, and the corresponding grade, is shown in Table 9.

Table 9 AAOS guideline language

Guideline Language	Grade of Recommendation
We recommend	Strong
We suggest	Moderate
The Practitioner <i>might</i>	Limited
We are unable to recommend for or against	Inconclusive
In the absence of reliable evidence, the <i>opinion</i> of this work group is*	Consensus*

*Consensus based recommendations are made only if specific criteria are met (see below).

Recommendation Strengths, Descriptions and Clinical Implications

Evidence Rating	Description of Evidence Strength	Implication for Practice
Strong	Evidence is based on two or more "High" strength studies with consistent findings in support of recommending for or against the intervention. A Strong (positive) recommendation means	Practitioners should follow a Strong recommendation unless a clear and compelling rationale for an alternative approach is present.
	that the benefits of the recommended approach clearly exceed the potential harm, and/or that the strength of the supporting evidence is high. A Strong (negative) recommendation means that the quality of the supporting evidence is high. A harms analysis on this recommendation was not performed.	
Moderate	Evidence from two or more "Moderate" strength studies with consistent results, or evidence from a single "High" strength study recommending for or against the intervention.	Practitioners should generally follow a Moderate recommendation but remain alert to new information and be sensitive to patient preferences.
	A Moderate recommendation means that the benefits exceed the potential harm (or that the potential harm exceeds the benefits in the case of a negative recommendation), but the quality/applicability of the supporting evidence is not as strong.	
Limited	Evidence from two or more "Low" strength studies with consistent results, or evidence from a single Moderate strength study recommending for or against the intervention.	Practitioners should exercise clinical judgment when following a recommendation classified as Limited , and should be alert to emerging evidence that might negate the current findings. Patient preference should have a substantial influencing role.
	A Limited recommendation means that the strength of the supporting evidence is unconvincing, or that well-conducted studies show little clear advantage to one approach over another.	
Inconclusive	Evidence from a single low strength study or otherwise conflicting evidence that does not allow a recommendation to be made for or against the intervention.	Practitioners should feel little constraint in following a recommendation labeled as Inconclusive , exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient
	An Inconclusive recommendation means that there is a lack of compelling evidence that has resulted in an unclear balance between benefits and potential harm.	preference should have a substantial influencing role.
Consensus	The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment.	Practitioners should be flexible in deciding whether to follow a recommendation classified as Consensus , although they may give it preference over alternatives. Patient preference should have a substantial influencing role.
	A Consensus recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria in the systematic review.	

CONSENSUS RECOMMENDATIONS

Consensus recommendations are recommendations based on expert opinion. As noted above, there are times when it is prudent to make such recommendations. However, liberal use of them can allow for bias. Accordingly, we allow consensus-based recommendations using the procedures described by the United States Preventative Services Task Force (USPSTF).³⁰ In effect, this means that the AAOS will only issue a consensus-based recommendation under two circumstances. The first is for low cost procedures that have virtually no associated harms, are of relatively low cost, and that reflect current, routine clinical practice. The second is when providing (or not providing) a service could result in loss of life or limb. Because they are based on expert opinion, consensus recommendations are the weakest type of recommendation.

In making such recommendations, the AAOS instructs its clinician work group members to address:

- The potential preventable burden of disease (if the burden is low, a consensus-based recommendation cannot be issued)
- Potential harms (if there are serious harms that result from providing a medical service, a consensus-based recommendation cannot be issued)
- Current practice (a consensus-based recommendation cannot be issued if a service is not currently widely used)
- Why, if warranted, a more costly service is being recommended over a less costly one

The AAOS employs additional rules to combat the bias that may affect such recommendations. The rationale for the recommendation cannot contain references to studies that were not included in the systematic reviews that underpin a guideline. Excluded articles are, in effect, not evidence, and they may not be cited. Also, the final recommendation must use the language shown in Table 7. The rationale cannot contain the language "we recommend," "we suggest," or "the practitioner might" inasmuch as this wording could be confused with the evidence-based recommendations in a guideline. In addition, the rationale must address apparent discrepancies in logic with other recommendations in the guideline. For example, if a guideline does not come to a recommendation is some instances but, in the instance in question, the work group has issued a consensus-based recommendation, the rationale must explain the reason for this difference.

One consequence of these restrictions is that the AAOS does not typically recommend new medical devices, drugs, or procedures. These procedures are usually supported by little research, and the AAOS is reluctant to make recommendations that could have a national impact based on small amounts of data.

When it is not possible to issue a recommendation (i.e., when the recommendation reads that "we are unable to recommend for or against," the explanation for why a recommendation cannot be given cannot contain an implied recommendation. For example, in the case of a new device, drug, or procedure, the work group may not write a recommendation like "Although treatment X *appears to be promising*, there is currently insufficient evidence to recommend for or against its use." The italicized phrase implies that treatment X is effective, whereas not being able to recommend "for or against" something implies that effectiveness is currently indeterminate.

VOTING ON THE RECOMMENDATIONS

The recommendations and their strength were voted on using a structured voting technique known as the nominal group technique.³¹ We present details of this technique in Appendix VIII. Voting on guideline recommendations is conducted using a secret ballot and work group members are blinded to the responses of other members. If disagreement between work group members is significant, there is further discussion to see whether the disagreement(s) can be resolved. Up to three rounds of voting are held to attempt to resolve disagreements. If disagreements are not resolved following three voting rounds, no recommendation is adopted. Lack of agreement is a reason that the grade of some recommendations can be labeled "Inconclusive."

Formal votes on all recommendations that are evidence-based or that read "we are unable to recommend for or against" are only on the recommendations. The rationales require only approval of the work group chair and the methodologists unless the recommendation is consensus-based. Both the recommendation and the rationale of a consensus –based recommendation are the subject of formal votes.

OUTCOMES CONSIDERED

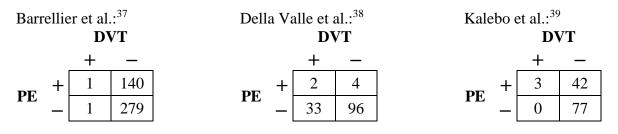
In considering the outcomes discussed in this guideline, it is important to distinguish between patient-oriented and surrogate outcomes. Patient-oriented outcomes measure how a patient feels, functions, or survives.³² A patient-oriented outcome "tells clinicians, directly and without the need for extrapolation, that a diagnostic, therapeutic or preventive procedure helps patients live longer or live better."³³ Patient-oriented outcomes include pain relief, death, and fractures. Surrogate outcomes are laboratory measurements or physical signs used as substitutes for patient-oriented outcomes include outcomes like blood cholesterol levels, laboratory and imaging results, and bone mineral densities.

Surrogate outcomes are problematic. An intervention that improves a surrogate outcome does not necessarily improve a patient-oriented outcome. The opposite can be true. Using a surrogate outcome as a study endpoint can make a harmful treatment look beneficial. For example, although the surrogate outcome cardiac sinus rhythm improves when quinidine is given after conversion, mortality is tripled. Similarly, sodium fluoride increases bone mineral density, but it also increases the rate of non-vertebral fractures.^{33, 34} This leads to an important (and often overlooked) aspect about surrogate outcomes. To be useful, a surrogate outcome must not only correlate with the patient-oriented outcome of interest, but also the surrogate must predict (capture) the effects of an intervention on that outcome.^{32, 34, 35} Many surrogates correlate with an outcome, but few predict the effects of an intervention. A systematic review on this issue has concluded that it is not currently possible to reach a conclusion about how well deep vein thrombosis (DVT) captures the effect of thromboprophylaxis from the available data.³⁶

For these reasons, the AAOS rarely uses surrogate outcomes as endpoints in its clinical practice guidelines. We make an exception in this guideline for DVT, because it is a surrogate outcome that has received considerable attention.

When thinking about DVT as an outcome, the clinical issue is that patients and physicians would ideally like to be reassured that if they do not have a DVT, they will not have a pulmonary embolism (PE) and, therefore, can avoid the risks that may be associated with thromboembolic

prophylaxis. They also want to know that patients who have a DVT are at a risk that is high enough to warrant thromboembolic prophylaxis. Balancing these two considerations is complicated because it is not only certain that some patients who develop a PE have also had a DVT, it is also certain that some patients who have had a PE have never had a detectable DVT. In other words, both true positives (a patient who had a DVT also had a PE) and false negatives (a patient who had a PE did not have a detectable DVT) occur.


One way to address the issue of how reliably a DVT predicts a future PE is by thinking of DVT as a diagnostic test for a PE. To accomplish this, we define true positives and false negatives as just stated, and also define true negatives as patients who had neither a DVT nor a PE, and false positives as patients who had a DVT but not a PE.

We can now consider the three studies that published relevant information in patients who received a total hip or total knee arthroplasty. (These studies were of patients not given DVT prophylaxis. We do not consider studies wherein DVT prophylaxis was given because prophylaxis could affect the relationship between DVT and PE.) These are the studies by Barrellier et al., Della Valle et al., and Kalebo et al.³⁷⁻³⁹ The former two studies diagnosed DVT using ultrasound, and the latter by venography. Barrellier et al. looked for asymptomatic distal DVT, and Della Valle et al. looked for proximal DVT. Della Valle et al. enrolled only patients suspected of having a PE. Barrellier et al. enrolled only patients who received a total knee arthroplasty, Kalebo et al. enrolled only those who received a total hip arthroplasty, and Della Valle et al. enrolled both types of patients. When evaluated as studies of diagnostics, two of the studies are Moderate", and one is "High" quality. All are of "Moderate" applicability (Table 10).

•: Domain free of flaws	lty)									Results		
 ○: Domain flaws present 	Reporting (Penalty)	Index Test	Reference Test	Participants	Information	Study Design		Participants	Index Test	Directness of Re	Analysis	
Study	Re	In	Re	Pa	In	St	Quality	\mathbf{Pa}	In	Di	Ar	Applicability
Kalebo 1990	0	•	•	•	•	•	High	•	0	•	•	Moderate
Barrellier 2010	0	•	•	•	•	0	Moderate	0	0	•	•	Moderate
Della Valle 2003	0	•	•	•	•	•	High	•	0	•	•	Moderate

Table 10. Quality and Applicability of Studies on the Relationship between DVT and PE

The 2 x 2 "truth tables" for each of these studies are shown below:

We can now translate these data into likelihood ratios. In the present case, a positive likelihood ratio expresses how good of a "rule in" predictor DVT is. A positive likelihood ratio greater than 10 means that a patient with a DVT is very likely to have a PE. A negative likelihood ratio expresses how good of a "rule out" test DVT is. A negative likelihood ratio of less than 0.1 means that a patient without a DVT is very unlikely to have a PE.^{40, 41} The positive and negative likelihood ratios for each of these studies are shown in Table 11. For a number of reasons related to the methodology of these three studies, we stress that our results are not definitive. Regardless, none of the positive likelihood ratios are more than 10 (in fact, their confidence intervals do not even contain 10), and none of the negative likelihood ratios are less than 0.1 (although one of the confidence intervals does contain this number). These results illustrate that the presence of a DVT may not reliably predict PE, and that the absence of a DVT does not seem to assure physicians and patients that the patient will not have a PE.

Table 11 Positive and Negative I	Likelihood Ratios for DV	F as a Predictor of PE
----------------------------------	--------------------------	---

Barrellier et al. 37 1.49 (0.48-4.7)**0.75 (0.24-2.34)Della Valle et al. 38 1.43 (0.27-7.46)0.98 (0.90-1.08)Kalebo et al. 39 2.47 (1.59-3.84)0.19 (0.01-2.60)	Study	LR^{+*}	LR^{-*}
al. ³⁸ $1.43 (0.27-7.46) 0.98 (0.90-1.08)$	Barrellier et al. ³⁷	1.49 (0.48-4.7)**	0.75 (0.24-2.34)
	Della Valle et		
Kalaba at al 3^{9} 2.47 (1.50, 2.84) 0.10 (0.01, 2.60)	al. ³⁸	1.43 (0.27-7.46)	0.98 (0.90-1.08)
$\begin{array}{c} \text{Kalebo et al.} \\ 2.47 (1.39 - 3.84) \\ 0.19 (0.01 - 2.00) \\ \end{array}$	Kalebo et al. ³⁹	2.47 (1.59- 3.84)	0.19 (0.01-2.60)

*LR⁺ refers to the positive likelihood ratio, and LR⁻ to the negative likelihood ratio. ** Figures in parentheses are the 95% confidence intervals.

DVT is not the only outcome we consider. We also consider PE. That PE is a patientoriented outcome does not imply it is a perfect outcome. Many of the trials we include in this guideline withdrew patients and gave them more aggressive treatment if they experienced a DVT. From the perspective of an explanatory trial (one that attempts to determine cause and effect relationships), this likely causes an underestimate of the effectiveness of treatment. However, this practice may mirror actual clinical practice so, from the point of view of a pragmatic trial (a trial that attempts to determine how well something works in routine clinical practice), this is likely a sound procedure. The requirements of an explanatory trial are captured in our ratings of quality, and those of a pragmatic trial are captured in our ratings of applicability (see above for how we arrive at these ratings). The trade-off that occurs between these two sets of requirements is captured in our grades of recommendation (see below).

We also consider major bleeding, all-cause mortality, symptomatic DVT, and proximal DVT. We consider these outcomes because they are the outcomes addressed in the literature, not because they are the most critical clinical outcomes. For the purposes of this guideline, we define a critical outcome as an outcome the work group deemed necessary to determine whether a medical device, drug, or procedure is effective.

We used a modified Delphi approach to determine the critical clinical outcomes. In this approach, work group members individually listed the outcomes they thought were critical. To combat bias, they did so before the literature searches were conducted. The group ranked the importance of these outcomes on a scale of 1-9, where rankings of 7-9 indicated that an outcome was "critical." We conducted three rounds of Delphi rankings,

and used the average of the final round (please see Appendix III for further description of our processes for determining critical outcomes).

The outcomes the work group deemed critical for evaluating the effectiveness of thromboprophylaxis were:

- All cause mortality
- Death from bleeding
- Death from PE
- Periprosthetic joint infection
- Reoperation due to bleeding
- Reoperation for any reason within 90 days of surgery
- Symptomatic PE

STATISTICAL METHODS

We performed network meta-analyses (also known as a mixed treatment comparisons analyses) to ascertain the comparative effectiveness of strategies for preventing venous thromboembolism. All of the trials entered into our analyses were randomized controlled trials (most, but not all, were of "High" quality; additional details on their quality are presented in the sections of this guideline that present our results of the appraisal of these studies). Some of the trials that met our original inclusion criteria did not observe any events in any of their groups. In accordance with suggestions of the Cochrane collaboration,⁴² we excluded them from our analyses.

We compare the treatments of interest to both placebo (or no treatment) and enoxaparin. Although the comparisons to placebo are easier to interpret, more of the published comparisons are to enoxaparin than any other treatment. This means that the comparisons to enoxaparin have greater precision than the comparisons to placebo. None of the studies that report all-cause mortality in our final model used a placebo comparator. Therefore, we only present the comparisons to enoxaparin.

Analyses were preformed as described by Lu and Ades⁴³ using Winbugs v 1.4.3. This method preserves the randomization of the original trials. The Markov chains in our model were said to have converged if plots of the Gelman-Rubin statistics indicated that widths of pooled runs and individual runs stabilized around the same value and their ratio was approximately one.⁴⁴ In general, we performed 100,000 iterations, the first 50,000 of which were discarded as "burn in" iterations for each of the network models we describe. The one exception was our initial analysis of major bleeding, in which we used a burn in of 150,000 iterations. We specified vague priors for the trial baselines and the basic parameters (normal distribution with mean 0 and variance 10,000) and for the random effects standard deviation (uniform distribution: U(0,2)). We use p <0.05 to define statistical significance.

To assess the adequacy of our models, we checked their overall fit by comparing the posterior mean deviance to the number of data points in any given model. These two figures are approximately equal for models that fit the data well. We also checked the statistical consistency of the models using a "back-calculation" method for networks with direct evidence from multi-arm trials.⁴⁵ This method requires point estimates and

dispersions of the trial data being entered into the network meta-analysis. When there were two or more trials comparing two of the same treatments, we obtained these latter two quantities from meta-analytic models computed using the Peto odds ratio as the test statistic. This statistic is the optimal way to compute the odds ratio when events are sparse.⁴⁶ All traditional meta-analyses were performed using STATA 10.0.

We adopted the following criteria to determine whether a model was satisfactory:

- 1. A satisfactory model must exhibit statistical consistency for all of the outcomes of interest. This reflects our view that if a set of studies causes inconsistency in even one of the five outcomes of interest, then this is *prima facie* evidence that there is something different about this set of studies that could influence the analyses all of the other outcomes. Accordingly, differences in the structure of our initial, revised, and final models are due solely to differences in the outcomes that were reported in different trials.
- 2. Use of a continuity correction should not alter the statistical consistency of a model. The events of interest are rare. This is illustrated by Table 12, which shows the rates of several of the outcomes we considered in the placebo/untreated control groups of the trials that we included in our analysis on the effectiveness of thromboembolic prophylaxis. These low event rates pose statistical challenges because no events were observed in many groups in the included studies.

Outcome	Number of Studies	Rate in Placebo/None Groups
PE	4	<0.88%
Major Bleeding	10	<1.96%
All-Cause Mortality	0	
Symptomatic DVT	2	<1.12%
DVT	3	37%

3. Table 12. Event Rates in Placebo/Untreated Control Groups

We included trials that observed no events in some groups, but this necessitated use of a continuity correction.⁴² Because such corrections can have undesirable influences on results, ⁴⁷ we performed additional analyses. We accomplished this by conducting network meta-analyses from which all studies that required a continuity correction were omitted, and we did so despite the fact that the initial, continuity-corrected models were statistically consistent for all outcomes. This latter analysis yielded statistically significant inconsistency on two outcomes (pulmonary embolism and major bleeding), and the results suggested that we exclude trials of heparin (which were also the oldest trials we examined). The results of a model excluding the trials of heparin were also inconsistent, this time due to the presence of studies that had more than two arms (the inconsistency again occurred for pulmonary embolism and major bleeding, and seemed to arise

in these multi-arm trials that observed no events in at least two groups. Accordingly, we omitted these trials (along with the trials of heparin) and arrived at a final model that did not incorporate studies requiring a continuity correction, and that was consistent for all outcomes.

- 4. The point estimates of the differences between models that incorporated continuity-corrected studies and those that did not should not be significantly different from each other.
- 5. None of the point estimates from models with data from both hip and knee patients should significantly differ from the point estimates derived from models containing only data from patients who received a hip arthroplasty or models that contained only data from patients who received a knee arthroplasty. This criterion tests whether it is appropriate to combine data from such patients.
- 6. The qualitative conclusions (derived from a deliberately strict interpretation of pvalues) of the models must remain logically consistent when the analysis comparator (i.e., the "anchor") is changed. For example, our initial models suggested that enoxaparin was more effective than heparin (there were significantly fewer pulmonary emboli with enoxaparin than with heparin), and that enoxaparin was not different from placebo. Taken together, these findings imply that heparin is less effective than placebo. However, our models did not yield this result. Accordingly, we termed these models as logically inconsistent.

The primary reason that the results of our models using placebo as a comparator may qualitatively differ from models using the enoxaparin comparator is that the fewer trials had a placebo group. This causes the precision of these models to be lower than that of the models using enoxaparin as a comparator. This criterion serves as a warning that the precision of the model using placebo comparisons may be too low.

These five criteria gave rise to that analytical sequence depicted in Figure 1.

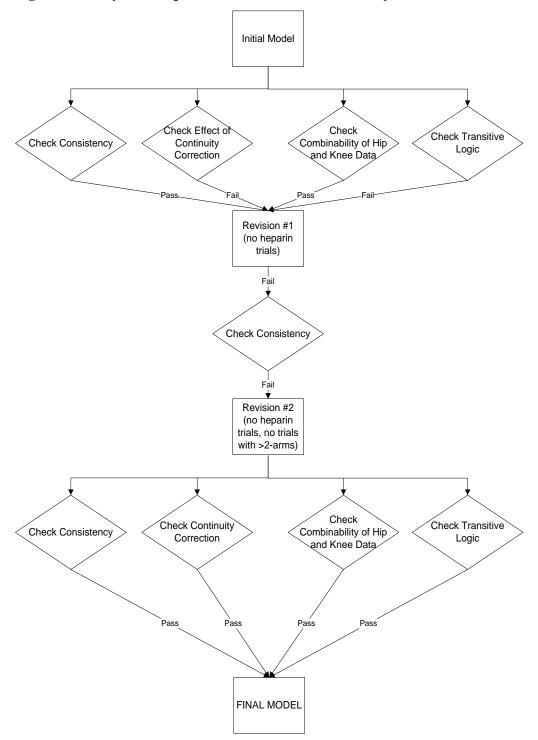


Figure 1. Analytical Sequence for Network Meta-Analyses

We performed these analyses for each of the six outcomes (PE, major bleeding, all-cause mortality, symptomatic DVT, proximal DVT, and DVT) of interest. This resulted in a total of 41 network meta-analyses (Table 10, unshaded cells) and 40 consistency checks (Table 10, shaded cells).

	······································	All-Cause			
Pulmonary Embolism	Major Bleeding	Mortality	Symptomatic DVT	Proximal DVT	DVT
<i>Initial Model</i> (patients with hip and patients with knee replacement and with continuity-corrected data, using placebo as a comparator)	<i>Initial Model</i> (patients with hip and patients with knee replacement and with continuity-corrected data)	<i>Initial Model</i> (patients with hip and patients with knee replacement and with continuity-corrected data)	<i>Initial Model</i> (patients with hip and patients with knee replacement and with continuity-corrected data)	<i>Initial Model</i> (patients with hip and patients with knee replacement and with continuity-corrected data)	<i>Initial Model</i> (patients with hip and patients with knee replacement and with continuity-corrected data)
<i>Logical Consistency</i> <i>Check</i> (patients with hip and patients with knee replacement and with continuity-corrected data)	<i>Logical Consistency</i> <i>Check</i> (patients with hip and patients with knee replacement and with continuity- corrected data)	<i>Logical Consistency</i> <i>Check</i> (patients with hip and patients with knee replacement and with continuity- corrected data)	<i>Logical Consistency</i> <i>Check</i> (patients with hip and patients with knee replacement and with continuity- corrected data)	<i>Logical Consistency</i> <i>Check</i> (patients with hip and patients with knee replacement and with continuity- corrected data)	<i>Logical Consistency</i> <i>Check</i> (patients with hip and patients with knee replacement and with continuity- corrected data)
<i>"Hip Combinability"</i> <i>Check</i> (hip replacement only, continuity-corrected data	<i>"Hip Combinability"</i> <i>Check</i> (hip replacement only, continuity-corrected data)				
<i>"Knee Combinability"</i> <i>Check</i> (knee replacement only, continuity-corrected data)	<i>"Knee</i> <i>Combinability"</i> <i>Check</i> (knee replacement only, continuity-corrected				

Table 13. Network Meta-Analysis Models and Consistency Checks

Pulmonary Embolism	Major Bleeding	All-Cause Mortality	Symptomatic DVT	Proximal DVT	DVT
	data)	data)	data)	data	data)
Statistical Consistency Check #10n Initial Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Initial Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Initial Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Initial Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Initial Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Initial Model (patients with hip and patients with knee replacement, with continuity-corrected data)
<i>Statistical Consistency</i> <i>Check #2</i> (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 Not Performed. Results from other outcomes show this model does not meet our criteria	Statistical Consistency Check #2 (patients with hip and patients with knee replacement, without continuity-corrected data)
<i>Revised Model</i> (patients with hip and patients with knee replacements, no trials of heparin, no continuity-corrected studies)	<i>Revised Model</i> (patients with hip and patients with knee replacements, no trials of heparin, no continuity-corrected studies)	<i>Revised Model</i> (patients with hip and patients with knee replacements, no trials of heparin, no continuity-corrected studies)	<i>Revised Model</i> (patients with hip and patients with knee replacements, no trials of heparin, no continuity-corrected studies)	Revised Model Not Performed. Results from other outcomes show this model does not meet our criteria	<i>Revised Model</i> (patients with hip and patients with knee replacements, no trials of heparin, no continuity-corrected studies)
Statistical Consistency Check on Revised Model (patients with hip and patients with knee replacements, without	Statistical Consistency Check on Revised Model (patients with hip and patients with knee	Statistical Consistency Check on Revised Model (patients with hip and patients with knee	Statistical Consistency Check on Revised Model (patients with hip and patients with knee	Statistical Consistency Check on Revised Model Not Performed. Results from other	Statistical Consistency Check on Revised Model (patients with hip and patients with knee

Pulmonary Embolism trials of heparin, and without continuity- corrected studies)	Major Bleeding replacements, without trials of heparin, and without continuity- corrected studies))	All-Cause Mortality replacements, without trials of heparin, and without continuity- corrected studies)	Symptomatic DVT replacements, without trials of heparin, and without continuity- corrected studies)	Proximal DVT outcomes show this model does not meet our criteria	DVT replacements, without trials of heparin, and without continuity- corrected studies)
<i>Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, without trials of heparin, and without trials with >2 arms, placebo comparator)	<i>Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, without trials of heparin, and without trials with >2 arms, placebo comparator)	<i>Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, without trials of heparin, and without trials with >2 arms)	<i>Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, without trials of heparin, and without trials with >2 arms)	<i>Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, without trials of heparin, and without trials with >2 arms)	<i>Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, without trials of heparin, and without trials with >2 arms)
<i>Logical Consistency</i> <i>Check on Final Model</i> (patients with hip and patients with knee replacement, with continuity-corrected data, enoxaparin comparator)	Logical Consistency Check on Final Model (patients with hip and patients with knee replacement, with continuity- corrected data, enoxaparin comparator)	Logical Consistency Check on Final Model (patients with hip and patients with knee replacement, with continuity- corrected data, enoxaparin comparator)	Logical Consistency Check on Final Model (patients with hip and patients with knee replacement, with continuity- corrected data, enoxaparin comparator)	Logical Consistency Check on Final Model (patients with hip and patients with knee replacement, with continuity- corrected data, enoxaparin comparator)	Logical Consistency Check on Final Model (patients with hip and patients with knee replacement, with continuity- corrected data, enoxaparin comparator)
<i>"Hip Combinability"</i> <i>Check on Final Model</i> (hip replacement only, continuity-corrected data, without trials of heparin, without trials with >2	<i>"Hip Combinability"</i> <i>Check on Final</i> <i>Model</i> (hip replacement only, continuity-corrected data, without trials of heparin, without trials	<i>"Hip Combinability"</i> <i>Check on Final</i> <i>Model</i> (hip replacement only, continuity-corrected data, without trials of heparin, without trials	<i>"Hip Combinability"</i> <i>Check on Final</i> <i>Model</i> (hip replacement only, continuity-corrected data, without trials of heparin, without trials	<i>"Hip Combinability"</i> <i>Check on Final</i> <i>Model</i> (hip replacement only, continuity-corrected data, without trials of heparin, without trials	<i>"Hip Combinability"</i> <i>Check on Final</i> <i>Model</i> (hip replacement only, continuity-corrected data, without trials of heparin, without trials

Pulmonary Embolism	Major Bleeding	All-Cause Mortality	Symptomatic DVT	Proximal DVT	DVT
arms)	with >2 arms)	with >2 arms)	with >2 arms)	with >2 arms)	with >2 arms)
<i>"Knee Combinability"</i> <i>Check on Final Model</i> (knee replacement only, continuity-corrected data, without trials of heparin, without trials with >2 arms)	<i>"Knee</i> <i>Combinability"</i> <i>Check on Final</i> <i>Model</i> (knee replacement only, continuity-corrected data, without trials of heparin, without trials with >2 arms)	<i>"Knee</i> <i>Combinability"</i> <i>Check on Final</i> <i>Model</i> (knee replacement only, continuity-corrected data, without trials of heparin, without trials with >2 arms)	<i>"Knee</i> <i>Combinability"</i> <i>Check on Final</i> <i>Model</i> (knee replacement only, continuity-corrected data, without trials of heparin, without trials with >2 arms)	<i>"Knee"</i> <i>Combinability"</i> <i>Check on Final</i> <i>Model</i> (knee replacement only, continuity-corrected data, without trials of heparin, without trials with >2 arms)	"Knee Combinability" Check on Final Model (knee replacement only, continuity-corrected data, without trials of heparin, without trials with >2 arms)
Statistical Consistency Check #10n Final Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Final Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Final Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Final Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Final Model (patients with hip and patients with knee replacement, with continuity-corrected data)	Statistical Consistency Check #1on Final Model (patients with hip and patients with knee replacement, with continuity-corrected data)
Statistical Consistency Check #2 on Final Model (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 on Final Model (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 on Final Model (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 on Final Model (patients with hip and patients with knee replacement, without continuity-corrected data)	Statistical Consistency Check #2 on Final Model (patients with hip and patients with knee replacement, without continuity-corrected data	Statistical Consistency Check #2 on Final Model (patients with hip and patients with knee replacement, without continuity-corrected data)

PEER REVIEW

A draft of the present guideline was peer reviewed. Peer review was performed using a structured peer review form (see Appendix IX). This form requires all peer reviewers to declare their conflicts of interest.

To determine who would serve as peer reviewers, the work group nominated external specialty societies before work on the guideline began. By having work groups specify *organizations* for review (as opposed to individuals), we are attempting to prevent overly favorable reviews that could arise should work group members choose reviewers whom they had personal or professional relationships. We also blind peer reviewers to the identities of the work group members when they peer review the draft.

The outside specialty societies were nominated at the beginning of the process and solicited for names of peer reviewers approximately six weeks before the final recommendation meeting for a guideline. The physician members of the AAOS Guidelines Oversight Committee and the Evidence Based Practice Committee review all draft AAOS clinical practice guidelines.

On occasion, some specialty societies (both orthopaedic and non-orthopaedic) ask their evidence-based practice (EBP) committee to provide peer review of our guidelines. The specialty society is responsible for compiling this type of review into one document before it is returned to us. We ask that the Chairs of these external EBP committees declare their conflicts of interest and manage the conflicts of interest of their committee members. Some specialty societies ask to post the guideline on their website for review by all of their interested members. Again, the AAOS asks that these reviews be collated into a single response by the specialty society, and that the person responsible for submitting this document to the AAOS disclose his or her financial conflicts of interest. We also ask that this posting be to the "members" only portion of the specialty societies' website because our drafted document represents a "work in progress" and is subject to change as a direct result of the review process. In addition, the draft has not been formally approved by the AAOS Board of Directors. This is not an attempt to restrict input on the draft. Nor do we consider it as a method to imply that outside specialty societies who provide review of the document necessarily agree with the stated recommendations. Hence, the reason all peer review comments and our responses are made publicly available.

The clinical practice guidelines manager drafted initial responses to comments about methodology. These responses were then reviewed by the work group chair and vice-chair, who also responds to questions concerning clinical practice and techniques, and the AAOS Director of Research and Scientific Affairs. All changes to a recommendation as a result of peer review input were voted on and accepted by a majority of the work group members via teleconference. All changes to any guideline recommendation must be based on the evidence. Final changes to the guideline are incorporated, detailed in a summary sheet and forwarded with the document through the rest of the review and approval process.

The AAOS believes that it is important for guideline developers to demonstrate that they are responsive to peer review. Accordingly, after the AAOS Board of Directors approves a guideline, the AAOS posts all peer reviewer comments on its website (see <u>http://www.aaos.org/research/guidelines/guide.asp</u> to access these documents) with a point-by-point description of how the AAOS responded to each non-editorial comment made by each reviewer. Reviewers who wish to remain anonymous can notify the AAOS, and their names will be redacted; their comments, our responses and their conflicts of interest will however still be posted for review.

Twenty-six outside organizations were solicited to provide peer reviewers for this document. The draft of this guideline was sent to 25 review organizations who responded to the solicitation and a total of 33 peer reviewers received the document not including the AAOS Evidence-based Practice Committee and Guidelines Oversight Committee members. Twelve of these reviewers returned comments (see Appendix IX). The disposition of all non-editorial peer review comments was documented and accompanied this guideline through the public commentary and the AAOS guideline approval process.

PUBLIC COMMENTARY

After modifying the draft in response to peer review, the guideline was sent for a thirty day period of "Public Commentary." Public Commentators are blinded to the identities of the work group members. Commentators consist of members of the AAOS Board of Directors (BOD), members of the Council on Research and Quality (CORQ), members of the Board of Councilors (BOC), and members of the Board of Specialty Societies (BOS). AAOS guidelines are automatically forwarded to the AAOS BOD and CORQ for commentary. Members of the BOC and BOS are solicited for interest. If they ask to see the document, it is forwarded to them. For this guideline, 20 members not including the CORQ and the AAOS BOD, received the draft for comment.

The draft guideline is, if warranted, modified in response to public commentary by the AAOS Clinical Practice Guidelines Unit and the work group members. If changes are made as a result of public comment, these changes are summarized, and those who provided commentary are notified that their input resulted in a change in the guideline. Changes as a result of public commentary must be based on evidence. All changes are detailed in a summary sheet that accompanies the document through the approval process.

Over 200 commentators have had the opportunity to provide input into this guideline. Of these, 66 members received the document and returned comments (see Appendix X).

THE AAOS GUIDELINE APPROVAL PROCESS

This final guideline draft was approved by the AAOS Evidence Based Practice Committee, the AAOS Guidelines Oversight Committee, the AAOS Council on Research and Quality, and the AAOS Board of Directors. Descriptions of these bodies are provided in Appendix II. These reviewing bodies do not have the option to modify the draft guideline during the approval process. They can only vote to approve it or reject it. Accordingly, no changes were made to this guideline during the approval process.

REVISION PLANS

This guideline represents a cross-sectional view of current treatment and may become outdated as new evidence becomes available. This guideline will be revised in accordance with new evidence, changing practice, rapidly emerging treatment options, and new technology. This guideline will be updated or withdrawn in five years in accordance with the standards of the National Guideline Clearinghouse.

GUIDELINE DISSEMINATION PLANS

The primary purpose of the present document is to provide interested readers with full documentation about not only our recommendations, but also about how we arrived at those recommendations. This document is also posted on the AAOS website at http://www.aaos.org/research/guidelines/guide.asp.

Shorter versions of the guideline are available in other venues. Publication of most guidelines is announced by an Academy press release, articles authored by the work group and published in the Journal of the American Academy of Orthopaedic Surgeons, and articles published in AAOS *Now*. Most guidelines are also distributed at the AAOS Annual Meeting in various venues such as on Academy Row and at Committee Scientific Exhibits.

Selected guidelines are disseminated by webinar, an Online Module for the Orthopaedic Knowledge Online website, Radio Media Tours, Media Briefings, and by distributing them at relevant Continuing Medical Education (CME) courses and at the AAOS Resource Center.

Other dissemination efforts outside of the AAOS will include submitting the guideline to the National Guideline Clearinghouse and distributing the guideline at other medical specialty societies' meetings.

Recommendations

RECOMMENDATION 1

We recommend against routine post-operative duplex ultrasonography screening of patients who undergo elective hip or knee arthroplasty.

Grade of Recommendation: Strong

Description: Evidence is based on two or more "High" strength studies with consistent findings for recommending for or against the intervention. A **Strong** recommendation means that the benefits of the recommended approach clearly exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a strong negative recommendation), and that the strength of the supporting evidence is high.

Implications: Practitioners should follow a **Strong** recommendation unless a clear and compelling rationale for an alternative approach is present.

RATIONALE

We cannot recommend the routine use of ultrasound for the screening of patients after knee or hip arthroplasty for VTED. The best available evidence comes from two randomized controlled studies, both of high quality and moderate applicability (see Table 14 for a summary of the results of these studies, Table 15 through Table 18 for a detailed presentation of results, and Table 47 in Appendix XIII for our appraisal of their quality and applicability), that compared routine ultrasound screening to not screening. The control group was prolonged prophylaxis in one study, and a sham ultrasound in the other. In the ultrasound groups, treatment of asymptomatic DVTs was based on the ultrasound findings. Neither study found a statistically significant difference in symptomatic PE rates (Table 15) between the ultrasound-screened and unscreened patients, despite the fact that they had adequate statistical power.

Similar results are found when screening is accomplished using venography (Table 14 summarizes the results of the studies that evaluated the effects of ultrasound and venographic screening on patient outcomes). Two retrospective comparative studies of low quality and moderate applicability (see Table 47 in Appendix XIII) compared results of patients who were screened for DVT by venography against results of patients who were not screened (Table 16). Treatment of asymptomatic DVT varied according to venographic results. Rates of readmission for PE and DVT did not significantly differ between those who received screening venography and those who did not.

The available evidence also suggests that D-dimer is not a useful screening test for DVT after arthroplasty. Three studies, one of high quality and two of moderate quality and all of moderate applicability (Table 48 in Appendix XIII), evaluated the screening performance of D-dimer. Two used ultrasound as the reference standard, while one used venography.

One study of high quality and moderate applicability evaluated the screening performance of magnetic resonance (MR) venography as compared to standard

venography. These data indicated that MR venography may be a good "rule in" test but not a good "rule out" test.

Given the lack of utility of ultrasound for diagnosis of unsuspected DVT's and the lack of any commonly available alternative screening test with greater utility, we do not recommend routine screening for DVT in the hip and knee arthroplasty postoperative patient population.

The reasons we excluded some studies initially considered for this recommendation appears in Appendix XIV, Table 57.

FINDINGS

Table 14.	DVT	Screening	Summary	Table

Outcome	Ultrasound vs. Prolonged Prophylaxis	Ultrasound (proximal) vs. Sham Ultrasound	Venography vs. No Venography
Fatal PE	0	0	0
Symptomatic PE	0	0	
Symptomatic DVT	0		
Symptomatic Proximal DVT	0	0	
Symptomatic Distal DVT	0	0	
DVT	0		
Proximal DVT	0		
Distal DVT	0		
Major Bleeding		0	
Readmission for PE			0
Readmission for DVT			0

o: no statistically significant difference. •: statistically significant in favor of screening

QUALITY AND APPLICABILITY

Two high quality randomized trials addressed ultrasound screening. Two low quality comparative studies addressed venography screening. One high quality and two moderate quality diagnostic studies addressed D-dimer screening, and one high quality diagnostic study addressed MR venography. Each of these studies was of moderate applicability. For details, see Table 47 and Table 48 in Appendix XIII.

RESULTS Table 15 Ultrasound Screening vs. No.

Ν Outcome Group1 Results Author Joint Group 1 Group2 Strength Group2 % % (event/n) (event/n) Prolonged Fatal PE Not Schimdt 346 Both Ultrasound High 0% 0.6% Screening Prophylaxis Significant et al. (0/174)(1/172)2003 Prolonged Schimdt 346 Ultrasound High Symptomatic PE 0.6% 1.2% Not Both Screening Prophylaxis (2/172)Significant et al. (1/174)2003 Symptomatic DVT 1.1% 1.7% Schimdt 346 Both Ultrasound Prolonged High Not et al. Prophylaxis (2/174)(3/172)Significant Screening 2003 Schimdt Ultrasound Prolonged 1.1% 1.2% Not 346 Both High Symptomatic Proximal et al. Screening Prophylaxis DVT (2/174)(2/172)Significant 2003 Schimdt Both Ultrasound Prolonged High Symptomatic Distal 0% 0.6% Not 346 Screening Prophylaxis DVT (0/174)(1/172)Significant et al. 2003 Prolonged Moderate Asymptomatic DVT 4.1% 6.8% Not 346 Both Ultrasound Schimdt Prophylaxis Significant Screening (at day 35) (7/172)(11/162)et al. 2003 Prolonged Asymptomatic Schimdt 346 Both Ultrasound Moderate 1.7% 1.9% Not et al. Screening Prophylaxis Proximal DVT (at day (3/172)(3/162)Significant 2003 35) 2.3% 4.9% Schimdt 346 Both Ultrasound Prolonged Moderate Asymptomatic Distal Not Prophylaxis et al. DVT (at day 35) (4/172)(8/162) Significant Screening 2003

Table 15. Ultrasound Screening vs. No Screening - Results

Author	Ν	Joint	Group 1	Group2	Strength	Outcome	Group1	Group2	Results
							%	%	
							(event/n)	(event/n)	
Robinson	1024	Both	Ultrasound	Sham	High	Symptomatic Proximal	0.8%	0.6%	Not
et al.			Screening	Ultrasound		DVT	(4/518)	(3/506)	Significant
1997			(proximal)						
Robinson	1024	Both	Ultrasound	Sham	High	Symptomatic PE	0%	0.4%	Not
et al.			Screening	Ultrasound			(0/518)	(2/506)	Significant
1997			(proximal)						
Robinson	1024	Both	Ultrasound	Sham	High	Fatal PE	0%	0%	Not
et al.			Screening	Ultrasound			(0/518)	(0/506)	Significant
1997			(proximal)						
Robinson	1024	Both	Ultrasound	Sham	High	Major Bleeding	0.2%	0%	Not
et al.			Screening	Ultrasound			(1/518)	(0/506)	Significant
1997			(proximal)						

 Table 15. Ultrasound Screening vs. No Screening - Results

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 % (event/n)	Group2 % (event/n)	Results
Pellegrini et al. 2006	559	Knee	Venogram	No	Low	Readmission	0%	0%	Not
(Rochester data)			_	venogram		for PE	(0/199)	(0/360)	Significant
Pellegrini et al. 2006	707	Knee	Venogram	No	Low	Readmission	0.5%	0%	Not
(Penn State data)				venogram		for PE	(3/611)	(0/96)	Significant
Pellegrini et al. 2006	559	Knee	Venogram	No	Low	Fatal PE	0%	0%	Not
(Rochester data)				venogram			(0/199)	(0/360)	Significant
Pellegrini et al. 2006	707	Knee	Venogram	No	Low	Fatal PE	0.2%	0%	Not
(Penn State data)				venogram			(1/611)	(0/96)	Significant
Pellegrini et al. 2006	559	Knee	Venogram	No	Low	Readmission	0.5%	0.6%	Not
(Rochester data)				venogram		for DVT	(1/199)	(2/360)	Significant
Pellegrini et al. 2006	707	Knee	Venogram	No	Low	Readmission	0.3%	0%	Not
(Penn State data)				venogram		for DVT	(2/611)	(0/96)	Significant
Pellegrini et al. 2005	1079	Hip	Venogram	No	Low	Readmission	1.4%	0.4%	Not
(Rochester data)				venogram		for PE	(5/347)	(3/732)	Significant
Pellegrini et al. 2005	824	Hip	Venogram	No	Low	Readmission	0.9%	0%	Not
(Penn State data)				venogram		for PE	(6/685)	(0/139)	Significant
Pellegrini et al. 2005	1079	Hip	Venogram	No	Low	Fatal PE	0.6%	0%	Not
(Rochester data)				venogram			(2/347)	(0/732)	Significant
Pellegrini et al. 2005	824	Hip	Venogram	No	Low	Fatal PE	0.1%	0%	Not
(Penn State data)				venogram			(1/685)	(0/139)	Significant
Pellegrini et al. 2005	1079	Hip	Venogram	No	Low	Readmission	0.6%	1.2%	Not
(Rochester data)				venogram		for DVT	(2/347)	(9/732)	Significant
Pellegrini et al. 2005	824	Hip	Venogram	No	Low	Readmission	1.0%	0%	Not
(Penn State data)				venogram		for DVT	(7/685)	(0/139)	Significant

Table 16. Venography Screening vs. No Screening - Results

Author	Ν	Test	Joint	Reference Standard	Outcome	Positive LR	Negative LR	Sensitivity	Specificity
Abraham et al. 1999	168	D-dimer, day 1, cut-off 2.808 µg/ml	Both	Ultrasound	Total DVT	2.67 (1.2, 5.95)	0.85 (0.74, 0.99)	0.21 (0.12, 0.34)	0.92 (0.85, 0.96)
Niimi et al. 2010	207	D-dimer, day 1, cut-off 4.88 µg/ml	Both	Ultrasound	Total DVT	1.28 (1.12, 1.47)	0.27 (0.13, 0.57)	0.92 (0.85, 0.97)	0.28 (0.2, 0.38)
Niimi et al. 2010	207	D-dimer, day 1, cut-off 9.78 µg/ml	Both	Ultrasound	Total DVT	1.67 (1.27, 2.19)	0.56 (0.41, 0.76)	0.66 (0.56, 0.75)	0.6 (0.5, 0.7)
Niimi et al. 2010	207	D-dimer, day 7, cut-off 5.35 µg/ml	Both	Ultrasound	Total DVT	1.18 (1.04, 1.33)	0.41 (0.21, 0.82)	0.9 (0.83, 0.95)	0.23 (0.16, 0.33)
Niimi et al. 2010	207	D-dimer, postop day 7, cut-off 8.26 µg/ml	Both	Ultrasound	Total DVT	1.64 (1.28, 2.09)	0.49 (0.34, 0.7)	0.73 (0.63, 0.81)	0.55 (0.45, 0.65)
Bounameaux et al. 1998	119	D-dimer, day 3, cut-off 1µg/ml	Knee	Venography	Total DVT	1.06 (0.99, 1.13)	0.15 (0.01, 2.68)	1 (0.93, 1)	0.06 (0.02, 0.14)
Bounameaux et al. 1998	119	D-dimer, day 3, cut-off 2µg/ml	Knee	Venography	Total DVT	1.15 (0.9, 1.47)	0.75 (0.43, 1.29)	0.73 (0.58, 0.84)	0.37 (0.25, 0.49)
Bounameaux et al. 1998	119	D-dimer, day 3, cut-off 3µg/ml	Knee	Venography	Total DVT	2.22 (1.41, 3.51)	0.56 (0.39, 0.8)	0.59 (0.44, 0.72)	0.74 (0.61, 0.83)
Bounameaux et al. 1998	119	D-dimer, day 3, cut-off 4µg/ml	Knee	Venography	Total DVT	2.67 (1.24, 5.74)	0.78 (0.63, 0.95)	0.31 (0.19, 0.46)	0.88 (0.78, 0.95)
Bounameaux et al. 1998	119	D-dimer, day 3, cut-off 5µg/ml	Knee	Venography	Total DVT	2.93 (1.09, 7.92)	0.85 (0.72, 0.99)	0.22 (0.11, 0.35)	0.93 (0.84, 0.98)

 Table 17. D-dimer - Diagnostic Performance

Author	N	Test	Joint	Reference Standard	Outcome	Positive LR	Negative LR	Sensitivity	Specificity
Larcom et al. 1996	191 ^a	MR venography	Both	Venography	Proximal DVT	44.55 (9.7, 204.3)	0.55 (0.32, 0.95)	0.45 (0.17, 0.77)	0.99 (0.96, 1)

Table 18. MR Venography - Diagnostic Performance

^a207 extremities in 191 patients

RECOMMENDATION 2

Patients undergoing elective hip or knee arthroplasty are already at high risk for venous thromboembolism. The practitioner might further assess the risk of venous thromboembolism by determining whether these patients had a previous venous thromboembolism.

Grade of Recommendation: Limited

Description: Evidence from two or more "Low" strength studies with consistent findings, or evidence from a single "Moderate" quality study recommending for or against the intervention or diagnostic. A **Limited** recommendation means the quality of the supporting evidence that exists is unconvincing, or that well-conducted studies show little clear advantage to one approach versus another.

Implications: Practitioners should exercise clinical judgment when following a recommendation classified as **Limited**, and should be alert to emerging evidence that might negate the current findings. Patient preference should have a substantial influencing role.

Current evidence is not clear about whether factors other than a history of previous venous thromboembolism increase the risk of venous thromboembolism in patients undergoing elective hip or knee arthroplasty and, therefore, we are unable to recommend for or against routinely assessing these patients for these factors.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

RATIONALE

Patients undergoing elective hip or knee arthroplasty are at high risk for venous thromboembolic disease (VTED). Only one risk factor, previous history of VTED, has sufficient evidence indicating that some of these patients may be at even higher risk.

The relevant evidence comes from two studies that evaluated patients with a personal history of VTED – one of medium and one of low strength. The Pedersen study of over 68,000 patients found a relative risk of 8.1, and the Warwick study of over 14,000 patients found a hazard ratio of 4.92 for post-operative VTED in patients with a previous history of VTED (see Table 20 for a summary of the results of these studies).

Twenty-nine studies addressed whether patients with one or more potential risk factors, other than previous VTED, have higher rates of VTED. The list of potential VTED risk factors for which we sought evidence is listed in Table 19. The studies were all of low or very low quality (see Table 49 in Appendix XIII for a summary of our appraisal of the quality and applicability of these studies). A statistically significant increase in VTED

resulting from these other risk factors that confer an increased risk of VTED in surgeries other than primary hip or knee arthroplasty was not found in studies of hip or knee arthroplasty patients. This might be because these other VTED risk factors confer a lower overall risk than primary hip or knee arthroplasty surgery itself. Therefore, their effects may not be seen against the relatively high background risk already being experienced by patients receiving elective hip or knee arthroplasty. Therefore, we are unable to recommend further risk stratification based on these factors.

No data specific to hip or knee arthroplasty were found addressing many potential risk factors, and in many instances where it was found, it was of very low quality and it was contradictory (see Table 19 for a summary of the results of these studies and Table 21 for a detailed presentation of their results). Data from patients undergoing surgical procedures other than primary hip and knee arthroplasty were found also of very low quality (Table 23) and therefore were unreliable. We excluded some of the studies we retrieved to address this recommendation. These studies, and the reasons for their exclusion are listed in Appendix XIV, Table 58.

FINDINGS

Table 19. VTED Risk Factors Summary Table

Risk Factor	Symptomatic VTE	Symp. PE	Symp. DVT	VTE	PE	DVT
Personal history of VTE	••			0		
Age	00			$\bullet \circ \bullet \circ$		•
Cancer	0			0000		
Personal/family history of blood clotting disorders				0		•
Birth control or hormone replacement therapy	0			0	0	0
Varicose Veins				$\bigcirc ullet$		0
Venous Stasis Disease	0					0
Obesity Chronic Lung Disease	•			00●0 0●0		•
Current bed rest or restricted mobility				0		•
Diabetes	0			00		0
Stable hypertension		00	0	00		
Stable cardiovascular disease	• 0			000		
Smoking				0000		00
Ethnicity/race				$\bigcirc ullet ullet$	00••	
Duration of surgery				$\bigcirc ullet$		0
Peripheral vascular disease				0	0	
Recent pelvic or lower extremity surgery				0		
Screening instruments (Caprini)				**		
Central venous access Inflammatory bowel				◆ ◇		
disease Immobilization of limb for last month						
Recent confinement to bed rest for 72 hours (3 months)						
, , , , , , , , , , , , , , , , , , ,						

Lymphedema

•: no statistically significant difference; •: statistically significant risk factor; ◆: statistically significant risk factor among non-arthroplasty patients; ◊: no statistically significant difference among non-arthroplasty patients

Note: Each circle or diamond represents a separate study.

QUALITY AND APPLICABILITY

Three low quality studies addressed the history of VTED as arisk factor for VTED. One study was of high applicability, raising its overall strength to moderate. The other two studies were of moderate applicability. For details, see Table 49 in Appendix XIII.

We included eight low quality and twenty-one very low quality studies addressing other potential risk factors for VTED. One low quality study had high applicability, raising its strength to moderate, while another low quality study had low applicability, lowering its strength to very low. Five very low quality studies had low applicability. All other studies were of moderate applicability. For details, see Table 49 in Appendix XIII.

RESULTS

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
			VTE		History of	RR: 8.1
Pedersen	68,155	Moderate	hospitalization	Hip	VTE	(6.1, 10.8)
			Symptomatic		History of	HR: 4.92
Warwick	14,802	Low	VTE	Both	VTE	(3.15, 7.67)
					History of	
Joseph	569	Low	VTE	Both	VTE	NS

Author	N	Strength	Outcome	Joint	Personal or Family History of VTE	Age	Cancer	Recent Pelvic or Lower Extremity Surgery	History of Blood Clotting Disorders	Birth Control or Hormone Replacement Therapy	Varicose Veins	Venous Stasis Disease	Obesity	Chronic Lung Disease	Diabetes	Hypertension	Stable Cardiovascular Disease	Peripheral Vascular Disease	Smoking	Ethnicity/Race	Duration of Surgery	Restricted Mobility
Pedersen	68,155	Moderate	VTE hospitalization	Hip	•	0	0	x	x	х	x	x	x	х	0	x	•	x	x	x	х	x
Fujita	302	Low	DVT (venogram)	Both	x	•	х	x	x	x	x	x	•	х	0	x	x	x	0	x	0	X
Joseph	569	Low	VTE	Both	0	•	o ^a	Ob	0	Х	х	Х	0	х	Х	Х	Х	Х	Х	Х	0	0
Warwick	14,802	Low	Symptomatic VTE	Both	•	0	X	x	x	x	X	0	•	X	x	x	0	x	x	x	x	x
Leizorovicz	386	Low	VTE	Both	Х	0	0	х	Х	Х	0	Х	0	0	Х	Х	0	Х	0	Х	•	Х
Guijarro (hip)	31,769	Low	VTE	Hip	x	•	0	x	x	x	X	x	0	0	0	0	0	x	X	x	x	x
Guijarro (knee)	58,037	Low	VTE	Knee	x	0	•	x	x	x	X	x	•	•	0	0	0	x	X	x	X	x
Eriksson	135	V. Low	VTE	Hip	٠	0	х	Х	Х	Х	•	Х	Х	х	0	Х	Х	Х	0	Х	0	Х
Beksac	1,986	V. Low	VTE	Hip	•	0	•	Х	Х	Х	X	Х	•	Х	X	Х	Х	Х	0	Х	Х	Х
Lowe	374	V. Low	DVT (venogram)	Hip	x	•	Х	X	• c	x	0	x	•	Х	x	x	x	x	0	X	x	x
Won	1,608	V. Low	VTE	Both	Х	0	O ^a	Х	х	Х	х	х	0	х	0	х	х	х	0	Х	0	х

Table 21. Risk Factors for VTE among Hip and Knee Arthroplasty Patients

		V. Low	Symptomatic																			
Gandhi	1,460		DVT	Knee	х	0	х	х	х	Х	х	х	0 d	х	\circ^{d}	0 ^d	х	х	х	x	x	x
Mahomed	55,975 /	V. Low				0/																
2003	12,233†		PE	Hip	х	•	Х	х	х	х	Х	Х	Х	х	х	х	Х	Х	х	0	Х	х
Mahomed	124,986/	V. Low				•/																
2005	11,726†		PE	Knee	Х	0	Х	х	х	х	Х	Х	Х	х	х	х	Х	Х	Х	0	х	Х
Memtsoudis	6,901,324	V. Low	PE	Both	х	* e	х	х	х	х	х	х	•	0	*	х	*	х	х	•	х	х
		V. Low	DVT																			
Pearse	223		(ultrasound)	Knee	0	0	х	х	х	0	х	0	0	х	х	х	х	х	х	х	х	х
		V. Low	Symptomatic																			
Ryu	338		PE	Knee	х	0	х	х	х	х	х	х	0	0	0	0	Х	х	0	х	0	х
SooHoo		V. Low																				
2006	222,684		PE	Knee	Х	•	Х	х	х	х	Х	Х	Х	х	х	х	Х	Х	Х	•	х	х
		V. Low	Symptomatic																			
Mraovic	7,389		PE	Both	х	•	0	х	х	х	Х	Х	•	0	\circ^{f}	0	0	Х	Х	х	0	Х
Keeney	705	V. Low	VTE	Hip	•	•	Х	х	х	х	х	Х	0	х	х	х	Х	Х	Х	0	0	х
White 1998	77,629	V. Low	VTE	Hip	х		х	х	х	х	х	х	х	х	х	х	Х	х	Х	•	х	х
SooHoo		V. Low																				
2010	138,399		VTE	Hip	х	•	х	х	х	х	х	х	х	х	0	х	х	0	Х	•	х	х
			VTE																			
White 2000	889	Low	hospitalization	Hip	•	•	0	х	х	0	х	х	•	х	х	х	х	х	х	0	0	х
Hurbanek	318	V. Low	VTE	Both				Х	х	0	х	х						х		х	х	Х
Lemos	240	V. Low	PE	Both	0	•	0	Х	х	0	0	х	Х	0	0	0	*	0	0	х	0	Х
			Proximal DVT																			
Nathan	137	V. Low	(ultrasound)	Knee	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x	x	•

•= statistically significant risk factor; \circ = not statistically significant risk factor; x=not included in regression model;*= significantly lower risk; \Box = used as covariate in model, multivariate results not reported

^a History of cancer; ^bRecent surgery; ^cAPC Resistance p=.02 ,Factor V Leiden p=0.08; ^d individual variable not significant but included in model with metabolic syndrome, which was significant and included the individual variables; ^e lower risk at <44 years and at >85 years; ^f diabetes not significant, but elevated blood glucose was significant in same model; †primary / revision

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
Fujita	302	Low	DVT (venogram)	Both	Age	OR: 1.036/yr.
			Symptomatic			
Warwick	14,802	Low	VTE	Both	Age	NS
Joseph	569	Low	VTE	Both	Age	Significant
Leizorovicz	386	Low	VTE	Both	Age	NS
Guijarro	31,769	Low	VTE	Hip	Age	Age >70 OR: 1.5 (1.1, 1.9)
Guijarro	58,037	Low	VTE	Knee	Age	NS
			VTE			<50 yrs = reference 50-59: RR = 0.81 (0.54, 1.22) 60-69: 0.92 (0.64, 1.32) 70-79: 0.92 (0.59, 1.44)
Pedersen	68,155	Moderate	hospitalization	Hip	Age	80+: 0.88 (0.59, 1.32)
Leizorovicz	386	Low	VTE	Both	Cancer	NS
Guijarro	31,769	Low	VTE	Hip	Cancer	NS
Guijarro	58,037	Low	VTE	Knee	Cancer	OR: 2.2 (1.03, 4.6)
Pedersen	68,155	Moderate	VTE hospitalization	Нір	Cancer	RR: 0.93 (0.68, 1.28)
Warwick	14,802	Low	Symptomatic VTE	Both	Cardiovascular Disease	NS
Leizorovicz	386	Low	VTE	Both	Cardiovascular Disease	NS
Guijarro	31,769	Low	VTE	Hip	Cardiovascular Disease	NS
Guijarro	58,037	Low	VTE	Knee	Cardiovascular Disease	NS
Pedersen	68,155	Moderate	VTE hospitalization	Hip	Cardiovascular Disease	RR: 1.4 (1.15, 1.7)

 Table 22. Risk Factors for VTE among Hip and Knee Arthroplasty Patients - Results

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
					Chronic Lung	
Leizorovicz	386	Low	VTE	Both	Disease	NS
					Chronic Lung	
Guijarro	31,769	Low	VTE	Hip	Disease	NS
					Chronic Lung	
Guijarro	58,037	Low	VTE	Knee	Disease	OR: 1.5 (1.02, 2.1)
Guijarro	31,769	Low	VTE	Hip	Diabetes	NS
Guijarro	58,037	Low	VTE	Knee	Diabetes	NS
			VTE			
Pedersen	68,155	Moderate	hospitalization	Hip	Diabetes	RR: 1.13 (0.76, 1.69)
Joseph	569	Low	VTE	Both	Duration of Surgery	NS
Leizorovicz	386	Low	VTE	Both	Duration of Surgery	OR: 1.47/hr. (1.08, 2.01)
Joseph	569	Low	VTE	Both	History of VTE	NS
						APC Resistance OR: 3.13 (1.2,
						8.17)
					History of Blood	Factor V Leiden OR: 3.21 (0.88,
Lowe	374	V. Low	DVT (venogram)	Hip	Clotting Disorders	11.69)
					History of Blood	
Joseph	569	Low	VTE	Both	Clotting Disorders	NS
Joseph	569	Low	VTE	Both	History of Cancer	NS
			Symptomatic			
Warwick	14,802	Low	VTE	Both	History of VTE	HR: 4.92 (3.15, 7.67)
			VTE			
Pedersen	68,155	Moderate	hospitalization	Hip	History of VTE	RR: 8.1 (6.1, 10.8)
					Hormone	
Pearse	223	V. Low	DVT (ultrasound)	Knee	Replacement Therapy	OR: 0.69 (0.15, 3.1)
					Hormone	
Lemos	240	V. Low	PE	Both	Replacement Therapy	NS

 Table 22. Risk Factors for VTE among Hip and Knee Arthroplasty Patients - Results

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
					Hormone	OR: 0.68 (0.3, 1.2)
Hurbanek	318	V. Low	VTE	Both	Replacement Therapy	(95% CI estimated from graph)
		Low	VTE		Hormone	
White 2000	889		Hospitalization	Hip	Replacement Therapy	NS
						OR: 2.3 (0.6, 32.2);
			Symptomatic			also metabolic syndrome OR: 3.0
Gandhi	1,460	V. Low	DVT	Knee	Hypertension	(1.1, 12.4)
Ryu	338	V. Low	Symptomatic PE	Knee	Hypertension	NS
Mraovic	7,389	V. Low	Symptomatic PE	Both	Hypertension	OR: 0.86 (0.56, 1.32)
Guijarro	31,769	Low	VTE	Hip	Hypertension	NS
Guijarro	58,037	Low	VTE	Knee	Hypertension	NS
Fujita	302	Low	DVT (venogram)	Both	Obesity	OR: 1.122/unit BMI
			Symptomatic			
Warwick	14,802	Low	VTE	Both	Obesity	BMI >30: HR: 1.68 (1.25, 2.26)
Joseph	569	Low	VTE	Both	Obesity	NS
Leizorovicz	386	Low	VTE	Both	Obesity	NS
Guijarro	31,769	Low	VTE	Hip	Obesity	NS
Guijarro	58,037	Low	VTE	Knee	Obesity	OR: 1.7 (1.2, 2.3)
					Peripheral Vascular	
Lemos	240	V. Low	PE	Both	Disease	NS
					Peripheral Vascular	
SooHoo 2010	138,399	V. Low	VTE	Hip	Disease	OR: 1.10 (0.69, 1.77)
Mahomed	55,975					African American vs. White
2003	(primary)	V. Low	PE	Hip	Race	OR: 1.07 (0.69, 1.65)
Mahomed	12,233					African American vs. White
2003	(revision)	V. Low	PE	Hip	Race	OR: 1.24 (0.53, 2.92)
Mahomed	124,986					African American vs. White
2005	(primary)	V. Low	PE	Knee	Race	RR: 1.0 (0.8, 1.3)

 Table 22. Risk Factors for VTE among Hip and Knee Arthroplasty Patients - Results

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
Mahomed	11,726					African American vs. White
2005	(revision)	V. Low	PE	Knee	Race	OR: 1.4 (0.6, 3.5)
						White = reference
						African American:
						OR:1.45 (1.38, 1.53)
						Not Stated: OR: 1.32 (1.28,1.36)
Memtsoudis	6,901,324	V. Low	PE	Both	Race	Other: OR: 0.82 (0.72, 0.93)
						White = reference
						African American:
						OR: 1.74 (1.36, 2.23)
SooHoo 2006	222,684	V. Low	PE	Knee	Race	Hispanic: OR: 0.84 (0.65, 1.09)
Keeney	705	V. Low	VTE	Hip	Race	NS (African American vs. White)
						White = reference
						Asian
						African American
White 1998	77,629	V. Low	VTE	Hip	Race	Hispanic
						White = reference
						African American:
						OR: 1.89 (1.44, 2.47)
						Asian: OR: 1.17 (0.75, 1.83)
SooHoo 2010	138,399	V. Low	VTE	Hip	Race	Hispanic: 0.73 (0.53, 1.01)
Joseph	569	Low	VTE	Both	Recent Surgery	NS
						Significant - univariate
						(9.5% of homebound patients vs.
			Proximal DVT			4.8% of ambulant <1 km vs.
Nathan	137	V. Low	(ultrasound)	Knee	Restricted Mobility	0% of ambulant >1 km)
Joseph	569	Low	VTE	Both	Restricted Mobility	NS
Lowe	374	V. Low	DVT (venogram)	Hip	Smoking	NS

 Table 22. Risk Factors for VTE among Hip and Knee Arthroplasty Patients - Results

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
Leizorovicz	386	Low	VTE	Both	Smoking	NS
Eriksson	135	V. Low	VTE	Hip	Smoking	NS
Beksac	1,986	V. Low	VTE	Hip	Smoking	NS
Won	1,608	V. Low	VTE	Both	Smoking	NS
Lowe	374	V. Low	DVT (venogram)	Hip	Varicose Veins	NS
Leizorovicz	386	Low	VTE	Both	Varicose Veins	NS
Eriksson	135	V. Low	VTE	Hip	Varicose Veins	Significant
					Venous Stasis	
Pearse	223	V. Low	DVT (ultrasound)	Knee	Disease	OR: 2.7 (0.95, 7.6)
			Symptomatic		Venous Stasis	
Warwick	14,802	Low	VTE	Both	Disease	NS

Table 22. Risk Factors for VTE among Hip and Knee Arthroplasty Patients - Results

HR= Hazard Ratio; OR= Odds Ratio; RR= Relative Risk; NS= Not Significant in multivariate analysis

Note: If 95% Confidence Intervals are not listed in the above table, they were not reported by the study authors

Author	Ν	Strength	Outcome	Type(s) of Surgery	Risk Factor	Results
Kosir	108	V. Low	DVT	General, lasting at least 1 hour	Prognostic indicator (risk score based on age, BMI, Hemoglobin level, and colorectal patients)	No DVTs in any of 108 patients in study
Hatef	360	V. Low	VTE	Excisional Body Contouring	4-level risk score based on Davison-Caprini model	Significant risk factor; no adjustment for other variables
Bahl	8216	V. Low	VTE	General, Vascular, and Urologic	4-level risk score based on Caprini model	Significant risk factor after adjustment for year and length of inpatient stay
Bahl	8216	V. Low	VTE	General, Vascular, and Urologic	Inflammatory Bowel Disease	Not significant risk factor
Bahl	8216	V. Low	VTE	General, Vascular, and Urologic	Central venous access	Significant risk factor after adjustment for other factors in Caprini model
Frizzelli	810	V. Low (case series)	DVT	Cardiac	Central venous catheter	48% of patients had DVT

 Table 23. Risk Factors for VTE - Data from Non--Arthroplasty Patients

RECOMMENDATION 3

Patients undergoing elective hip or knee arthroplasty are at risk for bleeding and bleeding-associated complications. In the absence of reliable evidence, it is the opinion of this work group that patients be assessed for known bleeding disorders like hemophilia and for the presence of active liver disease which further increase the risk for bleeding and bleeding-associated complications.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

Current evidence is not clear about whether factors other than the presence of a known bleeding disorder or active liver disease increase the chance of bleeding in these patients and, therefore, we are unable to recommend for or against using them to assess a patient's risk of bleeding.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

RATIONALE

Bleeding complications related to the soft tissue envelope around the surgical site and the effects of bleeding on functional outcomes are an important concern. A hematoma can lead to joint stiffness and a compromised functional outcome or to a periprosthetic joint infection (with its associated morbidity). Although these potential risks have historically not been addressed in other guidelines on this topic, given the seriousness of these concerns, this work group believed it necessary to address them.

We found very little data that addressed risk factors for bleeding in patients undergoing elective hip or knee replacement surgery (see Table 24 for the list of risk factors for which we sought evidence and for a summary of these results. Two studies of very low quality (see Table 50 in Appendix XIII) addressed patients with hemophilia, with the

only comparative study finding it to be a significant predictor of hemarthrosis. One comparative study of very low quality addressed cirrhosis of the liver and found it to be a significant predictor of perioperative blood loss (Table 25).

Therefore, patients with a known bleeding disorder or active liver disease may have an increased risk for bleeding. Evaluating patients for these factors has minimal cost and low risk to the patient; we believe that these actions are consistent with the current practice of most orthopaedic surgeons. Recommendation 7 discusses the recommended thromboprophylaxis strategy for these patients.

Evidence about whether factors other than the presence of a known bleeding disorder or active liver disease affect the risk for bleeding in patients undergoing primary hip and knee arthroplasty is unclear. Six low quality studies among non-arthroplasty surgical patients did not find convincing evidence that preoperative coagulation screening predicts postoperative bleeding (Table 50 in Appendix XIII summarizes our evaluation of the quality and applicability of these studies).

- bleeding time predicted blood loss in one of three studies
- fibrinogen predicted blood loss in one of three studies
- platelet count predicted blood loss in one of six studies
- prothrombin time predicted blood loss in one of six studies (Table 27).

In other very low quality (and, therefore, unreliable) studies of non-arthroplasty surgical patients (Table 26):

- thrombocytopenia was a significant predictor of postoperative intracranial hematoma among intracranial surgery patients,
- a history of gastrointestinal (GI) bleed was not a significant predictor of postoperative upper GI bleeding among non-ulcer surgery patients,
- a history of bleeding with previous surgery did predict excessive bleeding among cardiac bypass patients, while
- epistaxis and a history of bleeding with dental extraction each did not predict major bleeding among Type 1 von Willebrand disease patients undergoing surgery.

No data were found addressing the other risk factors (see Table 24 for the list of risk factors for which we sought evidence).

The data on hemorrhage-related complications are also sparse. Three low quality and fourteen very low quality studies addressed whether patients with one or more potential risk factors have higher rates of hemorrhage-associated complications. (The results of these studies are summarized in Table 28, Table 29 and Table 30, which provide a

detailed description of these studies' results. Our evaluation of their quality and applicability is shown in Appendix XIII, Table 51) Low hemoglobin levels and more complex revision procedures did predict a higher risk of transfusion, but none of the factors studied could be directly tied to hemorrhage-associated complications such as deep periprosthetic joint infection.

Due to the inconclusive evidence regarding other risk factors for bleeding or hemorrhageassociated complications among elective hip and knee arthroplasty patients, we are unable to recommend for or against further risk stratification.

The clinician should be aware of established contraindications against the use of individual anticoagulant agents.

We excluded some of the studies we retrieved to address this recommendation. These studies, and the reasons for their exclusion are listed in Appendix XIV, Table 59- Table 60.

FINDINGS QUALITY AND APPLICABILITY

The two studies addressing hemophilia and the study addressing cirrhosis of the liver were of very low quality. The six studies addressing coagulation screening were all of low quality. The five included studies addressing other potential risk factors for bleeding were all of very low quality. All included studies for this recommendation were of moderate applicability. For details, see Table 50 in Appendix XIII.

We included three low quality and fourteen very low quality studies addressing potential risk factors for hemorrhage-associated complications. All included studies were of moderate applicability. For details, see Table 51 in Appendix XIII.

1 **RESULTS**

2 Table 24. Risk Factors for Bleeding Summary Table

Risk Factor	Hemar- throsis	Peri- operative Blood Loss	Intra- operative Blood Loss	Post- operative Blood Loss	Intra- cranial Hematoma	Reoperation due to Bleeding	Major Bleeding	Excessive Bleeding	Upper GI Bleeding
	un 0515	DIOUU LOSS	DIOOU LOSS	DIOUU LOSS	Hematoma	Dieeunig	Dieeunig	Dieeung	∆ Dieeunig
History of GI Bleeding									V
History of Bleeding with								◆	
Previous Surgery	•								
Bleeding Disorder	•						\diamond		
History of Bleeding After Dental Extractions							V		
History of Hemorrhagic Stroke									
History of Retroperitoneal									
Bleeding									
Liver Disease		•							
Thrombocytopenia		•			•				
• •					•				
Easy Bruising							Δ		
Epistaxis							\diamond		
History of DIC									
Abnormal Coagulation									
Screening:									
aPTT		0000	\diamond					٥	
Bleeding Time		$\diamond\diamond$	•					\diamond	
Fibrinogen		•	<u> </u>		\diamond				
Platelet Count			•		♦			\diamond	
Prothrombin Time		~~~~	♦		\diamond			\diamond	
Relevant bleeding in the past									
6 months									

3 o: no statistically significant difference; •: statistically significant risk factor; •: statistically significant risk factor among non-arthroplasty

4 patients; \diamond : no statistically significant difference among non-arthroplasty patients Note: Each circle or diamond represents a separate study.

Author	Risk Factor	Ν	Strength	Joint	Outcome	Results
Sikkema						52% in hemophilia patients vs.
2010	Hemophilia	81	V. Low	Both	Hemarthrosis	7% in control patients (p<.001)
					Perioperative	1100 mL
					Blood Loss	(range: 300-1200)
			V. Low			
Innocenti			(Case			
2007	Hemophilia	20	Series)	Knee	Hemarthrosis	1 (5%)
						470 mL more in cirrhosis
Shih	Cirrhosis				Perioperative	patients
2004	of the Liver	84	V. Low	Knee	Blood Loss	(1370 vs. 900: p <.001)
			V.Low			
Kim	Aplastic		(Case		Postoperative	
2000	Anemia	19	Series)	Hip	Blood Loss	656 mL (range: 252-1274)

Table 25. Risk Factors for Bleeding - Data among Arthroplasty Patients

Author	Risk Factor	Ν	Strength	Patient Type	Outcome	Results
				Type 1 von Willebrand and		
				possible Type 1 von		
				Willebrand disease patients		Not significant in
				undergoing any surgical		multivariate
Woods 2008	Epistaxis	311	V. Low	procedure	Major bleeding	analysis
				Type 1 von Willebrand and		
				possible Type 1 von		
				Willebrand disease patients		Not significant in
	History of Bleeding with			undergoing any surgical		multivariate
Woods 2008	Dental Extractions	311	V. Low	procedure	Major bleeding	analysis
					Excessive	
					Bleeding (chest	
					tube drainage	Significant
	History of Bleeding with			Cardiac Surgery with	over 24 hours of	Adjusted OR: 2.42
Nuttall 2006	Previous Surgery	174	V. Low	Cardiopulmonary Bypass	750mL)	(1.1, 5.29)
					Postoperative	
					Upper	NS
Della Ratta					Grastrointestinal	OR: 1.31 (0.36,
1993	History of GI Bleed	180	V. Low	Nonulcer Surgery	Tract Bleeding	4.36)
					Postoperative	
	Thrombocytopenia (platelet				Intracranial	Significant
Chan 1989	count < 150,000/µl)	1582	V. Low	Intracranial Surgery	Hematoma	OR: 41 (17, 94)

Table 26. Risk Factors for Bleeding - Data among Non-Arthroplasty Patients

Table 27.	Coagulation	Screening among	Non-Arthrop	lasty Patients - R	esults

	Coagulation						Results from Multivariate
Author	Screening Test	Test Range	Ν	Strength	Patient Type	Outcome	Analysis
	Activated Partial			0	Cardiac Surgery with		
Gravlee	Thromboplastin				Cardiopulmonary	Mediastinal Drainage (16	
1994	Time	Not Reported	897	Low	Bypass	hours)	NS
	Activated Partial						
Dorman	Thromboplastin				Coronary Artery	Intraoperative Blood	
1993	Time	17.8-40 (s)	60	Low	Bypass Surgery	Loss	NS
						Cumulative (24 hours)	
	Activated Partial				Cardiac Surgery with	Chest Tube Drainage	
Despotis	Thromboplastin				Cardiopulmonary	(CTD) and Excessive	
1996	Time	Not Reported	487	Low	Bypass	CTD	NS
	Activated Partial	80-153					
ElMalik	Thromboplastin	(Pt/control			Transurethral	Total Blood Loss (24	
2000	Time	%)	121	Low	Prostatectomy	hours)	NS
	Activated Partial				Coronary Artery		
Karlsson	Thromboplastin	All in normal			Bypass Grafting	Chest Tube Drainage (12	
2008	Time	range	170	Low	Surgery	hours)	NS
	Partial						
Gerlach	Thromboplastin						
2002	Time	Not Reported	876	Low	Intracranial Surgery	Intracranial Hematoma	NS
Dorman					Coronary Artery	Intraoperative Blood	
1993	Bleeding Time	1.5-12 (min)	60	Low	Bypass Surgery	Loss	P<.05
						Cumulative (24 hours)	
					Cardiac Surgery with	Chest Tube Drainage	
Despotis					Cardiopulmonary	(CTD) and Excessive	
1996	Bleeding Time	Not Reported	487	Low	Bypass	CTD	NS

	Coagulation						Results from Multivariate
Author	Screening Test	Test Range	Ν	Strength	Patient Type	Outcome	Analysis
	~				Cardiac Surgery with		
Gravlee	Earlobe Bleeding				Cardiopulmonary	Mediastinal Drainage (16	
1994	Time	Not Reported	897	Low	Bypass	hours)	NS
Dorman		201-812			Coronary Artery	Intraoperative Blood	
1993	Fibrinogen	(mg/dL)	60	Low	Bypass Surgery	Loss	NS
Gerlach							
2002	Fibrinogen	Not Reported	876	Low	Intracranial Surgery	Intracranial Hematoma	NS
					Coronary Artery		
Karlsson					Bypass Grafting	Chest Tube Drainage (12	r=-0.53,
2008	Fibrinogen	2.4-8.1 g/L	170	Low	Surgery	hours)	P<.001
					Cardiac Surgery with		
Gravlee					Cardiopulmonary	Mediastinal Drainage (16	
1994	Platelet Count	Not Reported	897	Low	Bypass	hours)	NS
Dorman		140-440			Coronary Artery	Intraoperative Blood	
1993	Platelet Count	$(x10^{3}/mm^{3})$	60	Low	Bypass Surgery	Loss	P<.05
						Cumulative (24 hours)	
					Cardiac Surgery with	Chest Tube Drainage	
Despotis					Cardiopulmonary	(CTD) and Excessive	
1996	Platelet Count	Not Reported	487	Low	Bypass	CTD	NS
ElMalik		101-525 (x			Transurethral	Total Blood Loss (24	
2000	Platelet Count	x10 ³ /µL)	121	Low	Prostatectomy	hours)	NS
Gerlach							
2002	Platelet Count	Not Reported	876	Low	Intracranial Surgery	Intracranial Hematoma	NS
					Coronary Artery		
Karlsson		All in normal			Bypass Grafting	Chest Tube Drainage (12	
2008	Platelet Count	range	170	Low	Surgery	hours)	NS

 Table 27. Coagulation Screening among Non-Arthroplasty Patients - Results

	Coagulation						Results from Multivariate
Author	Screening Test	Test Range	Ν	Strength	Patient Type	Outcome	Analysis
					Cardiac Surgery with		
Gravlee					Cardiopulmonary	Mediastinal Drainage (16	
1994	Prothrombin Time	Not Reported	897	Low	Bypass	hours)	NS
Dorman					Coronary Artery	Intraoperative Blood	
1993	Prothrombin Time	10.7-13.2 (s)	60	Low	Bypass Surgery	Loss	P<.05
						Cumulative (24 hours)	
					Cardiac Surgery with	Chest Tube Drainage	
Despotis					Cardiopulmonary	(CTD) and Excessive	
1996	Prothrombin Time	Not Reported	487	Low	Bypass	CTD	NS
		91-125					
ElMalik		(Pt/control			Transurethral	Total Blood Loss (24	
2000	Prothrombin Time	%)	121	Low	Prostatectomy	hours)	NS
Gerlach							
2002	Prothrombin Time	Not Reported	876	Low	Intracranial Surgery	Intracranial Hematoma	NS
		6 patients					
		had elevated			Coronary Artery		
Karlsson		INR (1.3-			Bypass Grafting	Chest Tube Drainage (12	
2008	Prothrombin Time	1.9)	170	Low	Surgery	hours)	NS

 Table 27. Coagulation Screening among Non-Arthroplasty Patients - Results

Risk Factor	Infection	Transfusion	Dehiscence	Hemarthrosi Requiring Operation
Patient unwilling to accept transfusion				•
Obesity	$\circ \circ \bullet$	00		
Low Hemoglobin		••••		
Immunocompromised State	••	$\bigcirc ullet$		0
Inflammatory Arthritis	$\bigcirc ullet$	00	•	
Connective Tissue Disease Previous surgery or revision arthroplasty Spinal or epidural anesthesia for which >2 attempts at		•••00		
placement were made, or the				
placement was traumatic Planned indwelling intrathecal or epidural catheter >6 hours post-surgery				

14 Table 28. Summary Table for Hemorrhage-Associated Complications Risk Factors

Author	N	Strength	Anticoagulation Used	Outcome	Joint	Immuno- compromised	Inflammatory Arthritis	Low Hemoglobin	Obesity	Revision Arthronlastv
Guerin	162	Low	Yes	Transfusion	Both	Х	Х	•	Х	X
Aderinto	1016	Low	Yes	Transfusion	Hip	Х	х	•	0	X
Borghi	2884	Low	Not Reported	Allogenic Transfusion	Both	Х	х	•	Х	•
Mesa- Ramos	121	V. Low	Yes	Transfusion	Knee	0	Х	•	0	x
Moran	759	V. Low	Not Reported	Superficial Wound Infection	Hip	Х	х	х	0	Х
Amin	76	V. Low	Yes	Superficial Wound Infection	Knee	Х		х	•	Х
Chee	106	V. Low	Yes	Superficial Wound Infection	Hip	Х	Х	х	0	Х
Rashiq	918	V. Low	Not Reported	Allogenic Transfusion	Hip	Х	Х	•	Х	0
Rashiq	957	V. Low	Not Reported	Allogenic Transfusion	Knee	Х	Х	•	Х	0
Bong	1194	V. Low	Yes	Any Transfusion/Allogenic Transfusion	Knee	Х	0/●	•	0	Х
Walsh	1035	V. Low	Yes	Any Transfusion/Allogenic Transfusion	Hip	Х	0	●/o	0	Х
Sikkema	81	V. Low	N/Y†	Hemarthrosis requiring reoperation	Both	0	Х	X	Х	Х
SooHoo	138,399	V. Low	Not Reported	Infection	Hip	•	0	X	Х	x
Marchant	1,032,039	V. Low	Not Reported	Infection/Transfusion/Other Wound Complications	Both	●*/● /○	х	х	Х	х
Larocque	599	V. Low	Not Reported	Transfusion	Both	Х	х	•	Х	•
Saleh	1142	V. Low	Not Reported	Transfusion	Both	Х	х	•	х	•
Marx	354	V. Low	Not Reported	Transfusion	Hip	Х	0	•	Х	0
White	9580	V. Low	Not Reported	Wound infection/dehiscence	Hip	Х	•	х	х	х

18 Table 29. Risk Factors for Hemorrhage-Associated Complications - Multivariate Results

19 •= statistically significant risk factor; \circ = not statistically significant risk factor; x=not included in regression model; \Box = used as covariate in

20 model, multivariate results not reported; *Infection is significant only for uncontrolled diabetes, not controlled diabetes; †Hemophilia patients did

21 not receive antithrombotic prophylaxis but control patients did

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
			Hemarthrosis requiring			11.1% vs. 1.9%
Sikkema	81	V. Low	reoperation	Both	Hemophilia	(not significant)
Bong	1194	V. Low	Allogenic Transfusion	Knee	Inflammatory Arthritis	RR: 2.36 (significant)
Walsh	1035	V. Low	Allogenic Transfusion	Hip	Inflammatory Arthritis	RR: 1.51 (not significant)
Bong	1194	V. Low	Any Transfusion	Knee	Inflammatory Arthritis	RR: 1.41 (not significant)
Walsh	1035	V. Low	Any Transfusion	Hip	Inflammatory Arthritis	RR: 1.27 (not significant)
SooHoo	138,399	V. Low	Infection	Hip	Inflammatory Arthritis	OR: 1.47 (0.90, 2.41)
Marx	354	V. Low	Transfusion	Hip	Inflammatory Arthritis	Not Significant
White	9580	V. Low	Wound Dehiscence	Hip	Inflammatory Arthritis	0.6% vs 0.1% (age- adjusted p<0.001)
White	9580	V. Low	Wound Infection	Hip	Inflammatory Arthritis	1.7% vs. 0.8% (age- adjusted p=.01)
Guerin	162	Low	Transfusion	Both	Low Hemoglobin (continuous)	Significant; <13 g/dL vs. 13-15 g/dL: RR=1.5; vs. 15+: RR=4
Borghi	2884	Low	Allogenic Transfusion	Both	Low Hemoglobin (<10 g/dL)	OR: 8.8 (6.5, 16.8)
Aderinto	1016	Low	Transfusion	Hip	Low Hemoglobin (continuous)	Significant
Moran	759	V. Low	Superficial Wound Infection	Hip	Obesity	Not Significant
Amin	76	V. Low	Superficial Wound Infection	Knee	Obesity	17.1% among morbidly obese vs. 0% among non- obese (significant)
			Superficial Wound			9.1% among morbidly obese vs. 3.6% among non-obese (not
Chee	106	V. Low	Infection	Hip	Obesity	significant)

 Table 30. Risk Factors for Hemorrhage-Associated Complications – Results Details

Author	Ν	Strength	Outcome	Joint	Risk Factor	Results
Aderinto	1016	Low	Transfusion	Hip	Obesity	Not Significant
Mesa-Ramos	121	V. Low	Transfusion	Knee	Obesity	Not Significant
						OR of hip revision vs.
						primary hip or knee: 5.8
Borghi	2884	Low	Allogenic Transfusion	Both	Revision Arthroplasty	(3.9,8.5)
Rashiq	918	V. Low	Allogenic Transfusion	Hip	Revision Arthroplasty	OR: 1.07 (0.61, 1.89);
Rashiq	957	V. Low	Allogenic Transfusion	Knee	Revision Arthroplasty	OR: 1.08 (0.63, 1.85)
Larocque	599	V. Low	Transfusion	Both	Revision Arthroplasty	OR: 4.5 (1.36, 14.6)
						Reference: Primary knee
						Revision knee
						OR: 1.88 (0.62, 5.22)
						Primary hip:
						OR: 4.6 (3.01, 6.83)
						Revision hip:
Saleh	1142	V. Low	Transfusion	Both	Revision Arthroplasty	OR: 17.8 (9.6, 33)
Marx	354	V. Low	Transfusion	Hip	Revision Arthroplasty	Not Significant
Marchant	1,032,039	V. Low	Infection	Both	Uncontrolled Diabetes	OR: 2.310 (1.424,3.747)
Marchant	1,032,039	V. Low	Infection	Both	Controlled Diabetes	OR: 0.998 (0.843, 1.066)
SooHoo	138,399	V. Low	Infection	Hip	Uncomplicated diabetes	OR: 1.72 (1.48, 2.08)
SooHoo	138,399	V. Low	Infection	Hip	Complicated diabetes	OR: 3.7 (2.39, 5.74)
			Other Wound			
Marchant	1,032,039	V. Low	Complications	Both	Uncontrolled Diabetes	OR: 2.587 (0.637, 10.510)
			Other Wound			
Marchant	1,032,039	V. Low	Complications	Both	Controlled Diabetes	OR: 1.062 (0.620, 1.819)
Marchant	1,032,039	V. Low	Transfusion	Both	Uncontrolled Diabetes	OR: 1.29 (1.133,1.468)
Marchant	1,032,039	V. Low	Transfusion	Both	Controlled Diabetes	OR: 1.092 (1.058, 1.126)
Mesa-Ramos	121	V. Low	Transfusion	Knee	Diabetes	Not Significant

 Table 30. Risk Factors for Hemorrhage-Associated Complications – Results Details

RECOMMENDATION 4

We suggest that patients discontinue antiplatelet agents (e.g., aspirin, clopidogrel) before undergoing elective hip or knee arthroplasty.

Grade of Recommendation: Moderate

Description: Evidence from two or more "Moderate" strength studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. A **Moderate** recommendation means that the benefits exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a negative recommendation), but the strength of the supporting evidence is not as strong.

Implications: Practitioners should generally follow a Moderate recommendation but remain alert to new information and be sensitive to patient preferences.

RATIONALE

Among non-arthroplasty surgical patients, preoperative antiplatelet use predicted higher perioperative blood loss in three studies of moderate to high quality. Reoperation rates due to bleeding only varied in one of the three studies (see Table 26 for a detailed presentation of these results, and Table 52 in Appendix XIII for our appraisal of the quality and applicability of these studies).

Although this evidence is not specific to elective hip or knee arthroplasty patients, the work group believed the evidence is still applicable to these patients who are at risk for bleeding and bleeding-associated complications.

We excluded some of the studies we retrieved to address this recommendation. These studies and the reasons for their exclusion are listed in Appendix XIV, Table 61.

FINDINGS

QUALITY AND APPLICABILITY

Of the three studies addressing preoperative antiplatelet use, one was of high quality and two were of moderate quality. All three were of moderate applicability. For details, see Table 52 in Appendix XIII.

RESULTS

Table 31. Preoperative Antiplatelet Use - Data among Non-Arthroplasty Patients

Author	Risk Factor	Ν	Strength	Patient Type	Outcome	Results
						Significantly more
	Antiplatelet Use (aspirin vs.					blood lost in the
	placebo for 2 weeks before			Coronary Artery Bypass	Intraoperative	aspirin group (454
Kallis 1994	surgery)	100	High	Grafting	Blood Loss	vs. 372 ml, p=.05)
	Antiplatelet Use (stopping					
Firanescu	clopidogrel 5 days vs. 3 days			Coronary Artery Bypass	Intraoperative	
2009	vs. 0 days before surgery)	118	Moderate	Grafting	Blood Loss	NS
						Significantly more
						blood lost in the
	Antiplatelet Use (aspirin vs.					aspirin group
	placebo for 2 weeks before			Coronary Artery Bypass	Postoperative	(1185 vs. 791 ml,
Kallis 1994	surgery)	100	High	Grafting	Blood Loss	p=.001)
						Significantly more
	Antiplatelet Use					blood lost in the
	(preoperative aspirin use vs.					aspirin group (608
Ghaffarinejad	no aspirin for at least 7 days			Coronary Artery Bypass	Postoperative	vs. 483 ml,
2007	before surgery)	200	Moderate	Grafting	Blood Loss	p=.005)
						Significantly more
						blood lost in
						patients stopping
	Antiplatelet Use (stopping					clopidogrel the
Firanescu	clopidogrel 5 days vs. 3 days			Coronary Artery Bypass	Postoperative	day of surgery
2009	vs. 0 days before surgery)	118	Moderate	Grafting	Blood Loss	(p=.022)
						Higher reoperation
	Antiplatelet Use (aspirin vs.					rate in aspirin
	placebo for 2 weeks before			Coronary Artery Bypass	Reoperation due	group (8% vs 0%,
Kallis 1994	surgery)	100	High	Grafting	to Bleeding	p=.04)

Author	Risk Factor	Ν	Strength	Patient Type	Outcome	Results
	Antiplatelet Use					
	(preoperative aspirin use vs.					No significant
Ghaffarinejad	no aspirin for at least 7 days			Coronary Artery Bypass	Reoperation due	difference (3% in
2007	before surgery)	200	Moderate	Grafting	to Bleeding	each group)
	Antiplatelet Use (stopping					
Firanescu	clopidogrel 5 days vs. 3 days			Coronary Artery Bypass	Reoperation due	
2009	vs. 0 days before surgery)	118	Moderate	Grafting	to Bleeding	NS

 Table 31. Preoperative Antiplatelet Use - Data among Non-Arthroplasty Patients

RECOMMENDATION 5

We suggest the use of pharmacologic agents and/or mechanical compressive devices for the prevention of venous thromboembolic disease in patients undergoing elective hip or knee arthroplasty, and who are not at elevated risk beyond that of the surgery itself for venous thromboembolism or bleeding.

Grade of Recommendation: Moderate

Description: Evidence from two or more "Moderate" strength studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. A **Moderate** recommendation means that the benefits exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a negative recommendation), but the strength of the supporting evidence is not as strong.

Implications: Practitioners should generally follow a **Moderate** recommendation but remain alert to new information and be sensitive to patient preferences.

Current evidence is unclear about which prophylactic strategy (or strategies) is/are optimal or suboptimal. Therefore, we are unable to recommend for or against specific prophylactics in these patients.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

In the absence of reliable evidence about how long to employ these prophylactic strategies, it is the opinion of this work group that patients and physicians discuss the duration of prophylaxis.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

RATIONALE

We recognize the diversity of opinion concerning the clinical importance of DVT as an isolated event or as a surrogate outcome for PE or post-thrombotic syndrome, (for further discussion, please see the Methods section), and understand that for clinical, and sometimes for even medico-legal reasons, DVT prevention may be the clinician's immediate concern. There is moderate evidence to suggest that pharmacological agents and/or mechanical compression devices reduce DVT rates in patients undergoing elective knee or hip arthroplasty. This is why we are suggesting prophylaxis. Readers of this guideline should recognize, however, that the available, published evidence does not establish whether these prophylactic strategies affect rates of all-cause mortality, fatal PE, symptomatic PE, or symptomatic DVT in patients undergoing elective hip or knee arthroplasty.

We also note that the present recommendation for prophylaxis is of a "Moderate" (rather than "Strong") grade partly because it is based on a surrogate outcome we do not consider "critical" (we considered major bleeding, pulmonary emboli, and all cause mortality as "critical," and symptomatic DVT, any DVT, and proximal DVT as not critical). The "critical" outcomes are all patient-oriented. The non-critical outcomes are not.

The inability to recommend a specific prophylactic strategy is a direct result of the network meta-analyses we performed. We performed numerous such analyses with sensitivity analyses that included separately analyzing data from patients who underwent hip and knee arthroplasty, analyzing these data combined, evaluating the impact of study quality on the results, and by comparing the results of each prophylactic strategy to placebo (or no treatment) and, when placebo/no treatment data were not available, comparing the results of each strategy to results obtained with enoxaparin (as discussed in the Methods section, this use of two comparators allows us to check the logical consistency of our models). The results of these analyses did not consistently suggest that any one strategy is preferable to another (please see Figure 38 - Figure 55 and Table 32 - Table 34; and, for the results of our sensitivity analyses, see Appendix XV).

We also analyzed data on other outcomes but, due to lack of data, network meta-analysis was not possible for them. In total, then, our analyses of the different prophylactic strategies is comprised of 112 high-or medium quality randomized controlled studies that enrolled patients undergoing elective hip and/or knee arthroplasty (see Appendix XIII, Table 53). As with the network meta-analyses, the data did not suggest that any specific prophylactic strategy was superior or inferior.

Part of the reason that current data do not permit a conclusion about specific prophylactic strageties is that, in our final network meta-analyses, no pharmacological agents showed a statistically significant effect in preventing all-cause mortality, symptomatic pulmonary emboli, symptomatic DVT, and major bleeding, when data from hip and knee studies were analyzed separately or when they were combined. This may be because these events are rare. In addition, infection rates and re-operations (for any reason) were not reported. Reoperations due to bleeding were reported, but were often part of the study authors' definition of major bleeding.

Many of the commonly used agents such as sodium warfarin and various low molecular weight heparinoids did not show efficacy for preventing VTED. This may be partially explained by the lack of comparison studies with placebo controls and by the rarity of the events of interest. In the final model with PE as the outcome, there were 181 events among 42,390 patients across 25 trials, and only 3 of these trials had a placebo or no prophylaxis arm.

There were a limited number of studies that evaluated mechanical compression devices. In one study on total hip arthroplasties,⁴⁸ there was a lower risk of major bleeding in the mechanical group. However, this study was only of moderate quality, partially because only 37% of the compression group had this device alone, with the remainder of the patients receiving low dose aspirin (81 mg/day) as well. There were also difficulties with the comparability of the control and intervention groups (that some of the studies we examined were not of high quality is another reason why the present recommendation is of "Moderate" strength).

In some analyses of mechanical compression device studies, less bleeding was found in comparison to no treatment. This may not appear intuitively logical, but might be occurring because of problems with randomization and the patient populations which may not be generalizable to the standard population of patients typically undergoing total hip and knee arthroplasties. The effect may also be occurring for some presently unknown physiological reasons. Other potentially confounding factors with these studies are enumerated below.

Conclusions about specific prophylactic strategies are also difficult because, in addition to the above-mentioned challenges posed by the rarity of the events of interest and the lack of reporting of critical outcomes, the available studies:

- Enrolled a select group of patients and did not necessarily include patients who had a high risk for VTED or bleeding and may not be representative of a typical patient population
- Used different drug doses (e.g. Enoxaparin at 30 mg bid vs. 40 mg per day).
- Used different timing of administration of agents (short-term vs. longer-term dosing)
- Used different routes of administration

Comparing different prophylactic strategies is difficult because there is a paucity of placebo-controlled trials because of early acceptance of prophylaxis being the standard of care.

Also, we are unable to recommend specific pharmacologic agents and/or mechanical devices because the results of our analyses with DVT as the outcome were not robust on sensitivity analyses. Due to the rarity of the critical outcomes of interest and the limited number of placebo-controlled trials, we had to rely on the analysis of DVT (i.e., any DVT), a surrogate measure, to evaluate the relative efficacy of the prophylactic strategies. However, the results of these analyses depend on the structure of the model

used, as agents shown to significantly reduce the occurrence of DVT in one model are often not statistically significant in an alternate model (see Table 97 in Appendix XV).

Some clinical practice guidelines make recommendations about the duration of pharmacologic prophylaxis. The available evidence is partially from manufacturer-funded trials, and is of only one agent. The latter is particularly problematic because the potential differences in the risks and benefits of various pharmacological agents may become more prominent as the duration of prophylaxis increases. We are, therefore, reluctant to make such a recommendation until more is known about the relative risk/benefit profiles of these different agents. Rather, the work group recommends that patients and physicians discuss the appropriate duration of prophylaxis for each individual situation. This physician-patient discussion is low cost and consistent with current practice.

As of April 1, 2011, several of the analyzed agents are not approved for marketing or the treatment of any medical condition in the United States. The United States Food and Drug Administration's (FDA) current policy regarding disclosure of marketing applications can be found in "Current Disclosure Policies for Marketing Applications" on the FDA website.

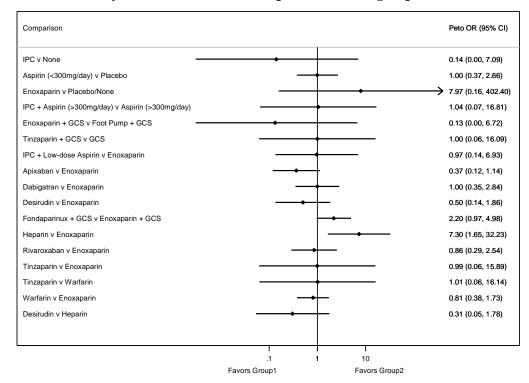
We excluded some studies we retrieved for this recommendation. The reasons for doing so are shown in Appendix XIV, Table 62).

FINDINGS

QUALITY AND APPLICABILITY

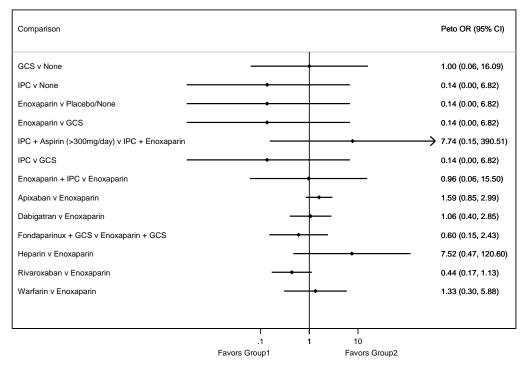
Of the 112 included studies for this recommendation, 87 were of high quality and 25 were of moderate quality. All but two studies were of moderate applicability; the other two were of low applicability. For details, see Table 53 in Appendix XIII.

RESULTS


SUMMARY OF DIRECT COMPARISONS

The figures below summarize the results of direct comparisons made for the six outcomes addressed by the network meta-analysis. If a single study addressed a given comparison of two treatments, that is the result presented. If multiple studies addressed a given comparison, results of the corresponding meta-analysis are presented. More information on these direct comparisons can be found in Appendix XV (Table 67 through Table 84). Studies with no events in any arm are not included in this analysis.

Note: For all figures and tables in this recommendation, the outcome Deep Vein Thrombosis (DVT) refers to any DVT: symptomatic or asymptomatic.


Figure 2. Pulmonary	/ Embolism Direct	Comparisons amons	g Hip and Knee Patients
a a a a a a		<u>r</u>	J

Treatment			
Comparison			Peto OR (95% CI)
GCS v None		+	1.00 (0.06, 16.09)
IPC v None			0.14 (0.01, 2.21)
Aspirin (<300mg/day) v Placebo		┿ ──	1.00 (0.37, 2.66)
Enoxaparin v Placebo/None		↓	1.04 (0.07, 16.59)
IPC + Aspirin (>300mg/day) v Aspirin (>300mg/day)		+	1.04 (0.07, 16.81)
Enoxaparin v GCS	•		0.13 (0.00, 6.82)
Enoxaparin + GCS v Foot Pump + GCS	•		0.13 (0.00, 6.72)
Tinzaparin + GCS v GCS		+	1.00 (0.06, 16.09)
IPC + Low-dose Aspirin v Enoxaparin		•	0.97 (0.13, 6.93)
IPC + Aspirin (>300mg/day) v IPC + Enoxaparin		•	→ 7.74 (0.15, 390.51)
IPC v GCS	•		0.13 (0.00, 6.82)
Enoxaparin + IPC v Enoxaparin		↓	0.96 (0.06, 15.50)
Apixaban v Enoxaparin	-		1.13 (0.65, 1.95)
Dabigatran v Enoxaparin		+	1.03 (0.50, 2.12)
Desirudin v Enoxaparin		<u> </u>	0.50 (0.13, 1.86)
Fondaparinux + GCS v Enoxaparin + GCS		↓ •──	1.58 (0.78, 3.19)
Heparin v Enoxaparin			7.35 (1.98, 27.22)
Rivaroxaban v Enoxaparin		+	0.58 (0.29, 1.20)
Tinzaparin v Enoxaparin			0.99 (0.06, 15.89)
Tinzaparin v Warfarin		+	1.01 (0.06, 16.14)
Warfarin v Enoxaparin	_	▲	0.90 (0.46, 1.76)
Desirudin v Heparin	+	+	0.31 (0.05, 1.78)
	.1	1 10	
	Favors Group1	Favors Group2	

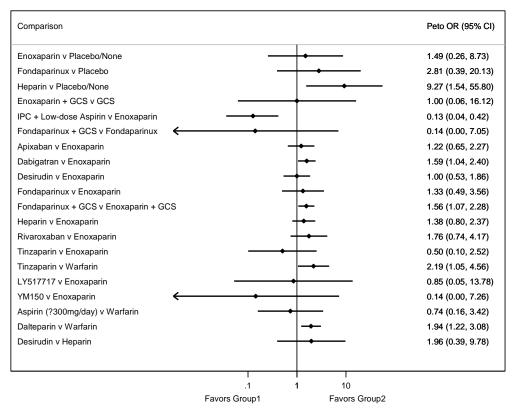
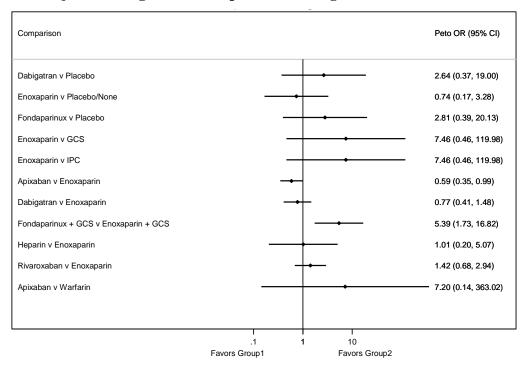
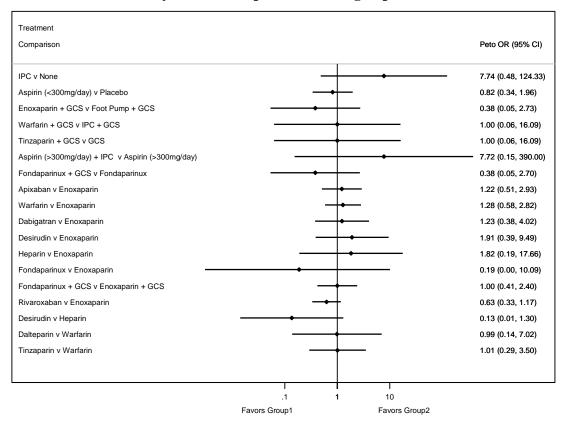

Figure 3. Pulmonary Embolism Direct Comparisons among Hip Patients

Figure 4. Pulmonary Embolism Direct Comparisons among Knee Patients


Treatment Comparison		Peto OR (95% CI)
Dabigatran v Placebo		2.64 (0.37, 19.00)
Enoxaparin v Placebo/None	_	0.99 (0.32, 3.10)
Fondaparinux v Placebo		2.81 (0.39, 20.13)
Heparin v Placebo/None	— • — •	9.27 (1.54, 55.80)
Enoxaparin v GCS		7.46 (0.46, 119.98
Enoxaparin + GCS v GCS		1.00 (0.06, 16.12)
IPC + Low-dose Aspirin v Enoxaparin		0.13 (0.04, 0.42)
Fondaparinux + GCS v Fondaparinux		0.14 (0.00, 7.05)
Enoxaparin v IPC		7.46 (0.46, 119.98
Apixaban v Enoxaparin	→	0.79 (0.53, 1.18)
Dabigatran v Enoxaparin	↓ ←	1.28 (0.90, 1.83)
Desirudin v Enoxaparin	_ + _	1.00 (0.53, 1.86)
Fondaparinux v Enoxaparin	_	1.33 (0.49, 3.56)
Fondaparinux + GCS v Enoxaparin + GCS	-	1.77 (1.23, 2.53)
Heparin v Enoxaparin	+ •	1.34 (0.80, 2.23)
Rivaroxaban v Enoxaparin	↓ →	1.55 (0.89, 2.71)
Tinzaparin v Enoxaparin	+	0.51 (0.10, 2.52)
Tinzaparin v Warfarin		2.19 (1.05, 4.56)
Warfarin v Enoxaparin	—	0.56 (0.30, 1.06)
LY517717 v Enoxaparin		0.85 (0.05, 13.78)
YM150 v Enoxaparin		0.14 (0.00, 7.26)
Apixaban v Warfarin		7.20 (0.14, 363.02)
Aspirin (>300mg/day) v Warfarin	•	0.73 (0.16, 3.42)
Dalteparin v Warfarin	→-	1.94 (1.22, 3.08)
Desirudin v Heparin		1.96 (0.39, 9.78)
	.1 1 10	


Figure 5. Major Bleeding Direct Comparisons among Hip and Knee Patients

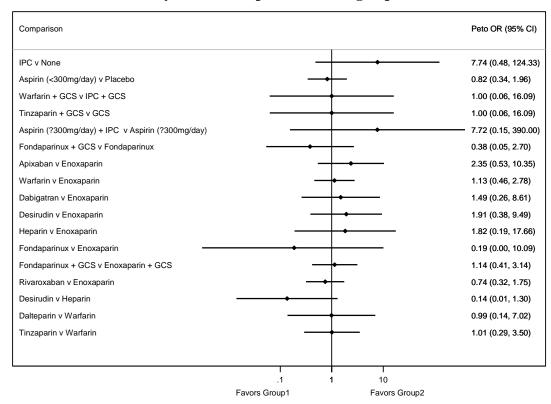

Figure 6. Major Bleeding Direct Comparisons among Hip Patients

Figure 7. Major Bleeding Direct Comparisons among Knee Patients

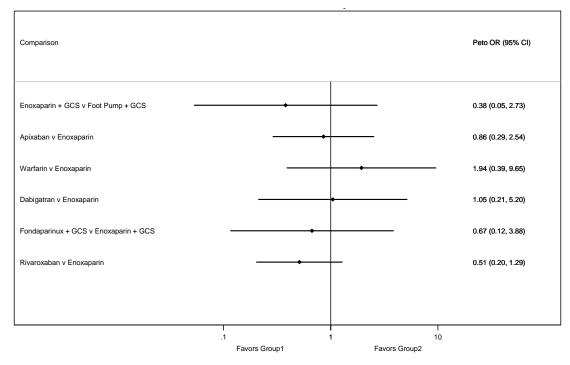


Figure 8. All Cause Mortality Direct Comparisons among Hip and Knee Patients

Figure 9. All Cause Mortality Direct Comparisons among Hip Patients

Figure 10. All Cause Mortality Direct Comparisons among Knee Patients

Figure 11. Symptomatic Deep Vein Thrombosis Direct Comparisons among Hip and Knee Patients

Treatment		
Comparison		Peto OR (95% CI)
Apixaban v Enoxaparin		0.55 (0.29, 1.02)
Apixaban v Warfarin		2.04 (0.21, 19.79)
Warfarin v Enoxaparin		- 1.00 (0.06, 16.09)
Aspirin (<300mg/day) v Placebo		0.79 (0.40, 1.54)
Dabigatran v Enoxaparin		0.76 (0.36, 1.61)
Dabigatran v Placebo		0.49 (0.05, 4.76)
Dalteparin v Warfarin		0.36 (0.15, 0.87)
Desirudin v Enoxaparin		1.12 (0.41, 3.09)
Desirudin v Heparin		0.80 (0.21, 2.99)
Tinzaparin v Enoxaparin		0.66 (0.11, 3.85)
Enoxaparin + GCS v Foot Pump + GCS		1.93 (0.20, 18.70)
Enoxaparin + IPC v Enoxaparin -		- 0.96 (0.06, 15.50)
Fondaparinux + GCS v Enoxaparin + GCS		2.12 (0.80, 5.66)
IPC v None		2.03 (0.21, 19.71)
Rivaroxaban v Enoxaparin		0.48 (0.19, 1.18)
		0.46 (0.19, 1.16)
	1 1 1 .1 1 10	
	Favors Group1 Favors Group2	

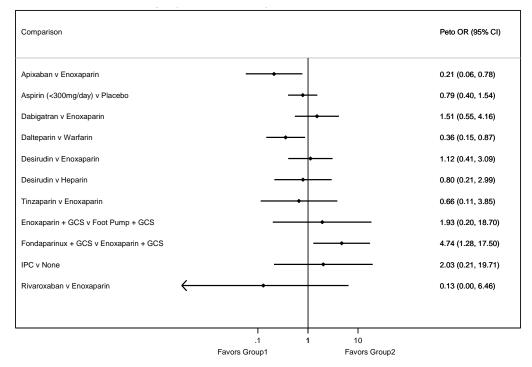


Figure 12. Symptomatic Deep Vein Thrombosis Direct Comparisons among Hip Patients

Figure 13. Symptomatic Deep Vein Thrombosis Direct Comparisons among Knee Patients

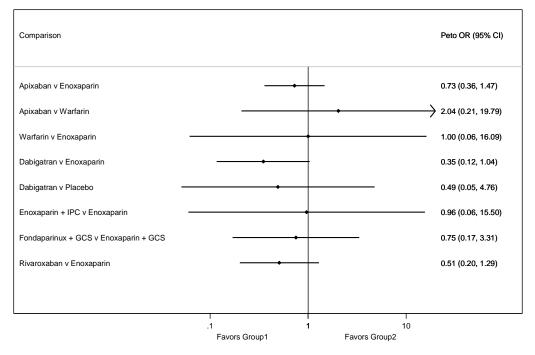
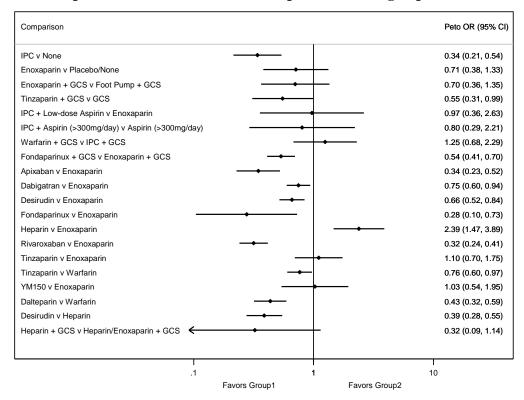



Figure 14. Deep Vein Thrombosis Direct Comparisons among Hip and Knee Patients

Treatment Comparison	Peto OR (95% 0
GCS v None	0.53 (0.26, 1.07
IPC v None	0.34 (0.23, 0.51
Enoxaparin v Placebo/None	- 0.47 (0.29, 0.76
Enoxaparin v GCS	0.42 (0.17, 1.04
Enoxaparin + GCS v Foot Pump + GCS	0.79 (0.51, 1.22
Tinzaparin + GCS v GCS	0.55 (0.31, 0.99
IPC + Low-dose Aspirin v Enoxaparin	0.97 (0.36, 2.63
IPC + Aspirin (>300mg/day) v IPC + Enoxaparin	
IPC + Aspirin (>300mg/day) v Aspirin (>300mg/day)	0.80 (0.29, 2.21
Warfarin + GCS v IPC + GCS	1.25 (0.68, 2.29
Fondaparinux + GCS v Enoxaparin + GCS	0.48 (0.39, 0.60
IPC v GCS	0.62 (0.26, 1.46
Enoxaparin v IPC	0.65 (0.23, 1.86
Enoxaparin + IPC v Enoxaparin	- 0.33 (0.13, 0.81
Apixaban v Enoxaparin	0.60 (0.51, 0.70
Dabigatran v Enoxaparin	
Desirudin v Enoxaparin	- 0.66 (0.52, 0.84
Fondaparinux v Enoxaparin	- 0.28 (0.10, 0.73
Heparin v Enoxaparin	1.86 (1.36, 2.54
Rivaroxaban v Enoxaparin	0.46 (0.39, 0.55
Tinzaparin v Enoxaparin	1.10 (0.70, 1.75
Tinzaparin v Warfarin -	• 0.76 (0.60, 0.97
Warfarin v Enoxaparin	2.07 (1.58, 2.69
YM150 v Enoxaparin	1.03 (0.54, 1.95
Apixaban v Warfarin	- 0.36 (0.18, 0.72
Aspirin (>300mg/day) v Warfarin/Aspirin	1.14 (0.73, 1.78
Dalteparin v Warfarin	0.43 (0.32, 0.59
Desirudin v Heparin	0.39 (0.28, 0.55
Heparin + GCS v Heparin/Enoxaparin + GCS <	0.32 (0.09, 1.14
.1	1 10

Note: For all figures and tables in this recommendation, the outcome Deep Vein Thrombosis (DVT) refers to any DVT: symptomatic or asymptomatic.

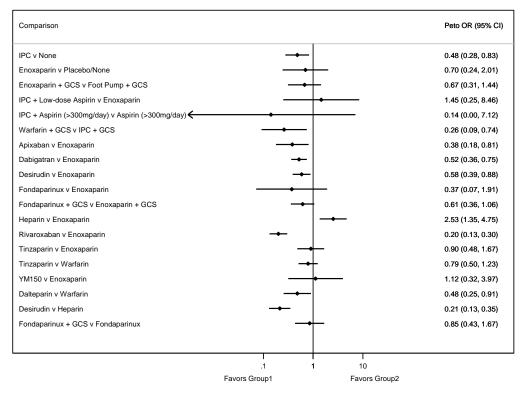

Figure 15. Deep Vein Thrombosis Direct Comparisons among Hip Patients

Figure 16. Deep Vein Thrombosis Direct Comparisons among Knee Patients

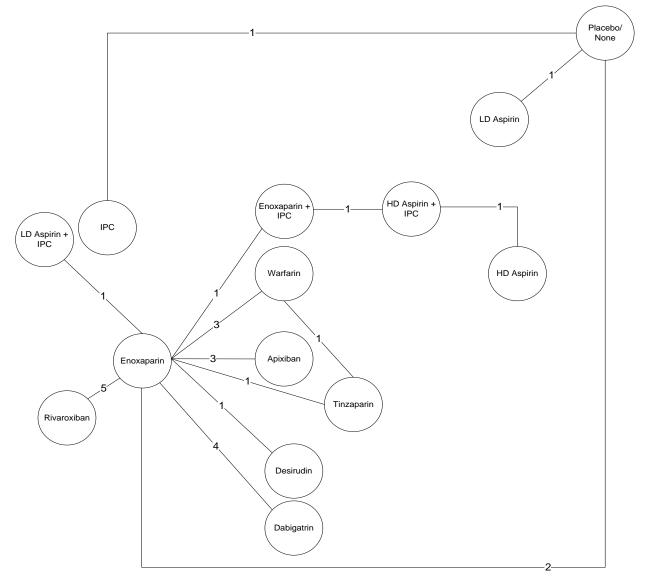
Comparison			Peto OR (95% CI)
GCS v None		+	0.53 (0.26, 1.07)
IPC v None			0.34 (0.17, 0.72)
Enoxaparin v Placebo/None			0.25 (0.12, 0.54)
Enoxaparin v GCS		+	0.42 (0.17, 1.04)
Enoxaparin + GCS v Foot Pump + GCS	+	<u> </u>	0.86 (0.49, 1.53)
IPC + Aspirin (>300mg/day) v IPC + Enoxaparin		.	1.32 (0.69, 2.56)
Fondaparinux + GCS v Enoxaparin + GCS			0.40 (0.28, 0.57)
IPC v GCS			0.62 (0.26, 1.46)
Enoxaparin v IPC			0.65 (0.23, 1.86)
Enoxaparin + IPC v Enoxaparin -			0.33 (0.13, 0.81)
Apixaban v Enoxaparin	_		0.66 (0.56, 0.79)
Dabigatran v Enoxaparin		 •-	1.15 (0.96, 1.38)
Heparin v Enoxaparin		→	1.56 (1.04, 2.34)
Rivaroxaban v Enoxaparin			0.57 (0.47, 0.71)
Warfarin v Enoxaparin		_ 	2.07 (1.58, 2.69)
Apixaban v Warfarin	-		0.36 (0.18, 0.72)
Aspirin (>300mg/day) v Warfarin/Aspirin		↓ →	1.14 (0.73, 1.78)
і .1		 1	і 10
	Favors Group1	Favors Group2	

Comparison			Peto OR (95% C
GCS v None	+		0.36 (0.05, 2.61)
IPC v None	—		0.45 (0.26, 0.76)
Dabigatran v Placebo			0.13 (0.03, 0.66)
Enoxaparin v Placebo/None	+-	-	0.60 (0.24, 1.53)
Enoxaparin v GCS	+		1.00 (0.06, 16.09
Enoxaparin + GCS v Foot Pump + GCS	—• – †		0.55 (0.27, 1.12)
IPC + Low-dose Aspirin v Enoxaparin		◆───	1.45 (0.25, 8.46)
IPC + Aspirin (>300mg/day) v IPC + Enoxaparin	+		0.63 (0.15, 2.56)
IPC + Aspirin (>300mg/day) v Aspirin (>300mg/day)	•		0.14 (0.00, 7.12)
Warfarin + GCS v IPC + GCS	-		0.26 (0.09, 0.74)
IPC v GCS	•		0.14 (0.00, 6.82)
Enoxaparin v IPC		+	7.39 (0.15, 372.4
Apixaban v Enoxaparin	—		0.48 (0.31, 0.73)
Dabigatran v Enoxaparin	- - -		0.65 (0.48, 0.88)
Desirudin v Enoxaparin	- -		0.58 (0.39, 0.88)
Fondaparinux v Enoxaparin		_	0.37 (0.07, 1.91)
Fondaparinux + GCS v Enoxaparin + GCS	—		0.56 (0.36, 0.86)
Heparin v Enoxaparin			2.99 (1.83, 4.88)
Rivaroxaban v Enoxaparin	→		0.26 (0.19, 0.36)
Tinzaparin v Enoxaparin		-	0.90 (0.48, 1.67)
Tinzaparin v Warfarin	_ + -		0.79 (0.50, 1.23)
Warfarin v Enoxaparin	+	←	1.48 (0.92, 2.39)
YM150 v Enoxaparin			1.12 (0.32, 3.97)
Apixaban v Warfarin			1.04 (0.14, 7.48)
Aspirin (>300mg/day) v Warfarin/Aspirin	_ + _	-	0.76 (0.37, 1.55)
Dalteparin v Warfarin			0.48 (0.25, 0.91)
Desirudin v Heparin	—		0.21 (0.13, 0.35)
Fondaparinux + GCS v Fondaparinux		_	0.85 (0.43, 1.67)
	.1 1	10	
	Favors Group1	Favors Group2	

Figure 17. Proximal DVT Direct Comparisons among Hip and Knee Patients

Figure 18. Proximal DVT Direct Comparisons among Hip Patients

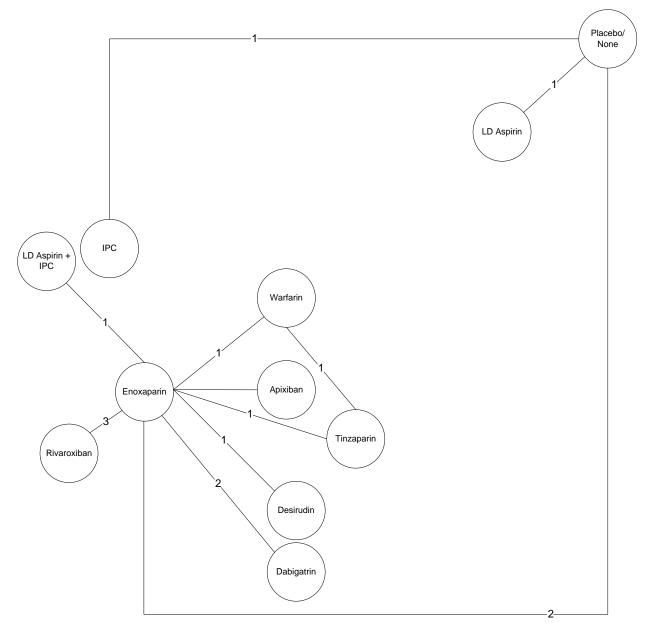
Figure 19. Proximal DVT Direct Comparisons among Knee Patients


Comparison		Peto OR (95% CI)
GCS v None		0.36 (0.05, 2.61)
IPC v None		0.13 (0.01, 1.29)
Dabigatran v Placebo		0.13 (0.03, 0.66)
Enoxaparin v Placebo/None		0.36 (0.05, 2.61)
Enoxaparin v GCS		1.00 (0.06, 16.09)
Enoxaparin + GCS v Foot Pump + GCS		0.14 (0.02, 1.05)
IPC + Aspirin (>300mg/day) v IPC + Enoxaparin		0.63 (0.15, 2.56)
IPC v GCS	•	0.14 (0.00, 6.82)
Enoxaparin v IPC		7.39 (0.15, 372.40)
Apixaban v Enoxaparin	—	0.51 (0.30, 0.84)
Dabigatran v Enoxaparin	_ - _	1.08 (0.62, 1.85)
Fondaparinux + GCS v Enoxaparin + GCS		0.46 (0.22, 0.96)
Heparin v Enoxaparin		3.86 (1.77, 8.40)
Rivaroxaban v Enoxaparin	—	0.40 (0.23, 0.70)
Warfarin v Enoxaparin		1.48 (0.92, 2.39)
Apixaban v Warfarin	_	1.04 (0.14, 7.48)
Aspirin (>300mg/day) v Warfarin/Aspirin	+	0.76 (0.37, 1.55)
	I I .1 1 10	
	Favors Group1 Favors	Group2

NETWORK META-ANALYSES

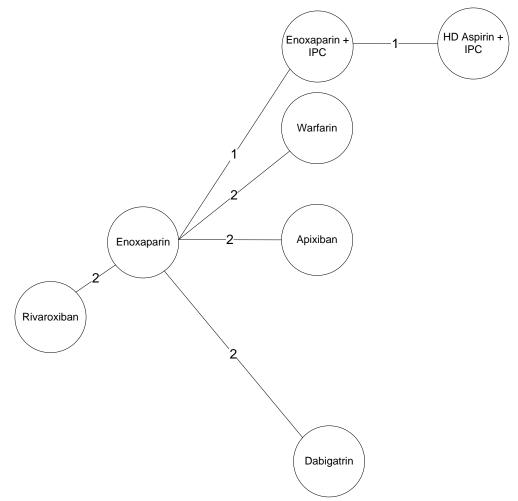
MODELS

This section depicts our final models. Please see Appendix XV for the models depicting our sensitivity analyses.


Figure 20. Final Pulmonary Embolism Model (with continuity correction, without heparin or multi-arm trials)

The model depicted in the figure is the final model for pulmonary embolism. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip arthroplasty and those who received a total knee arthroplasty. It does not include trials of heparin and trials with > 2 arms. Circles denote the treatments studied. Lines between circles denote treatment

comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.


Figure 21. Final Pulmonary Embolism Model (with continuity correction, without heparin, or multi-arm trials, Hip patients only

The model depicted in the figure is a model for pulmonary embolism. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers

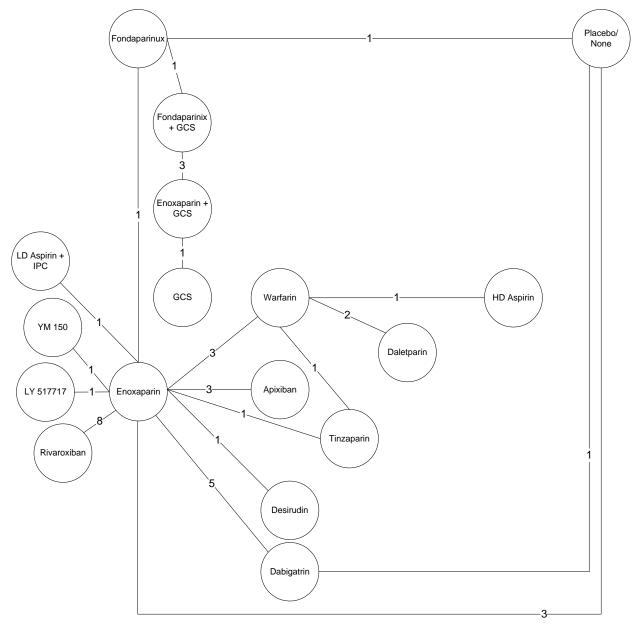
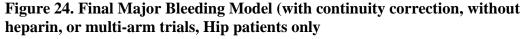

on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 22. Final Pulmonary Embolism Model (with continuity correction, without heparin, or multi-arm trials, Knee patients only



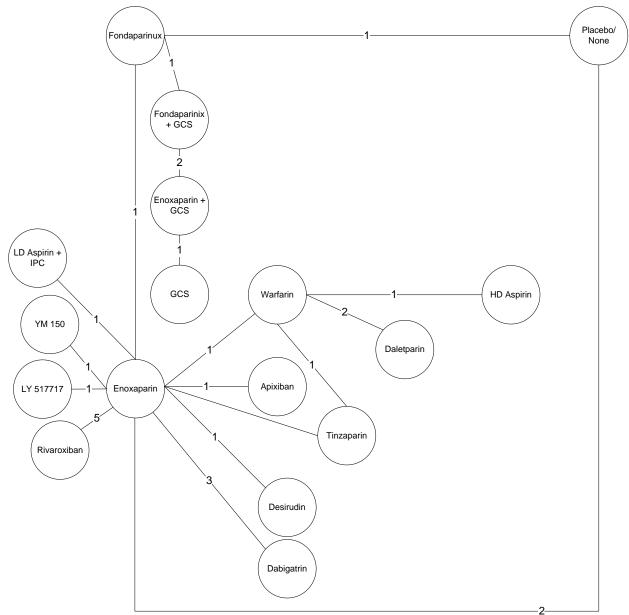

The model depicted in the figure is a model for pulmonary embolism. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 23. Final Major Bleeding Model (with continuity correction, without heparin or multi-arm trials)

The model depicted in the figure is the final model for major bleeding. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip arthroplasty and those who received a total knee arthroplasty. It does not include trials of heparin and trials with > 2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

The model depicted in the figure is a model for major bleeding. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

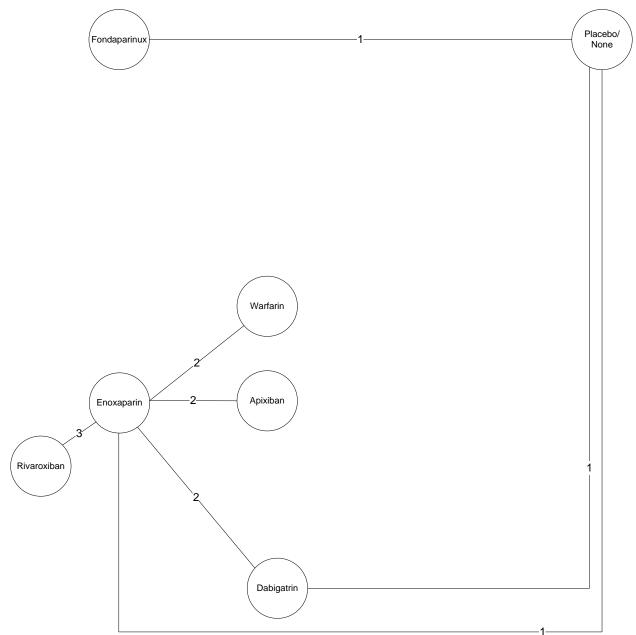
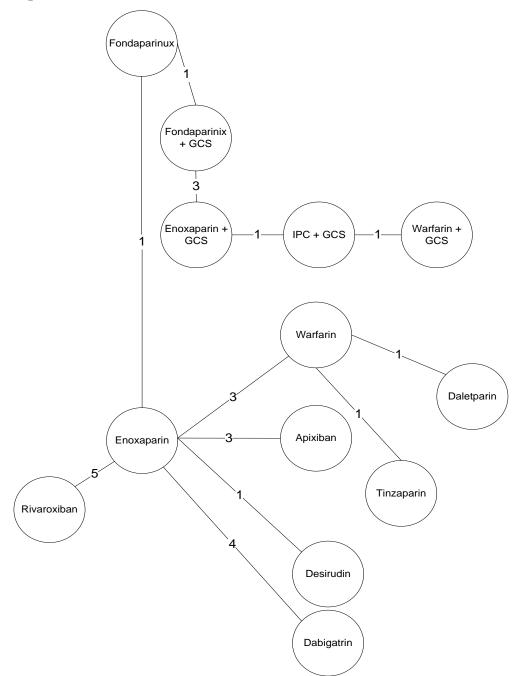



Figure 25. Final Major Bleeding Model (with continuity correction, without heparin, or multi-arm trials, Knee patients only

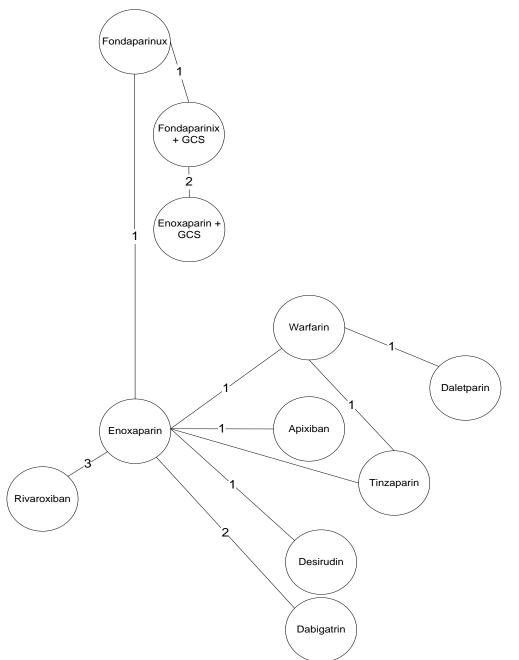

The model depicted in the figure is a model for major bleeding. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 26. Final All Cause Mortality Model (with continuity correction, without heparin or multi-arm trials)

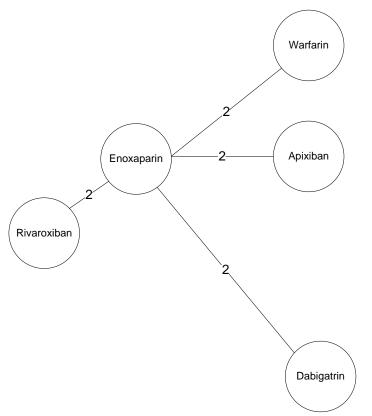

The model depicted in the figure is the final model for all cause mortality. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip arthroplasty and those who received a total knee arthroplasty. It does not include trials of heparin and trials with > 2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 27. Final All Cause Mortality Model (with continuity correction, without heparin, or multi-arm trials, Hip patients only

The model depicted in the figure is a model for all cause mortality. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 28. Final All Cause Mortality Model (with continuity correction, without heparin, or multi-arm trials, Knee patients only

The model depicted in the figure is a model for all cause mortality. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

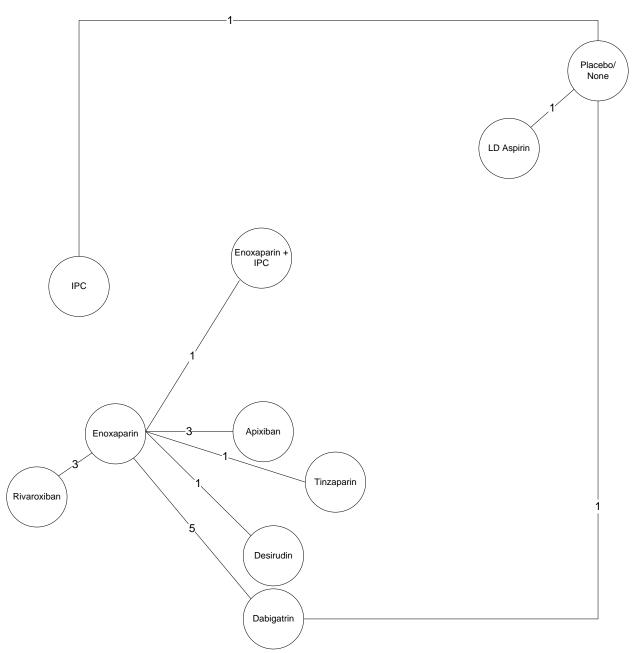
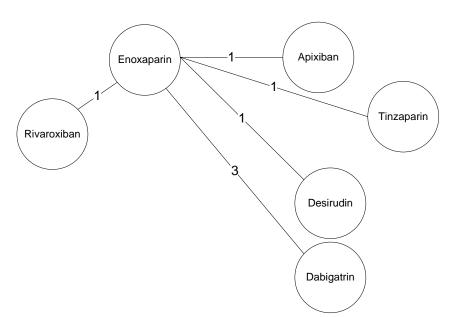



Figure 29. Final Symptomatic DVT Model (with continuity correction, without heparin, or multi-arm trials.

The model depicted in the figure is the final model for symptomatic DVT that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip arthroplasty and those who received a total knee arthroplasty. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. None of the included studies required a continuity correction, so this is the same model as for the model without continuity corrected studies.

Figure 30. Final Symptomatic DVT Model (with continuity correction, without heparin, or multi-arm trials, Hip patients only

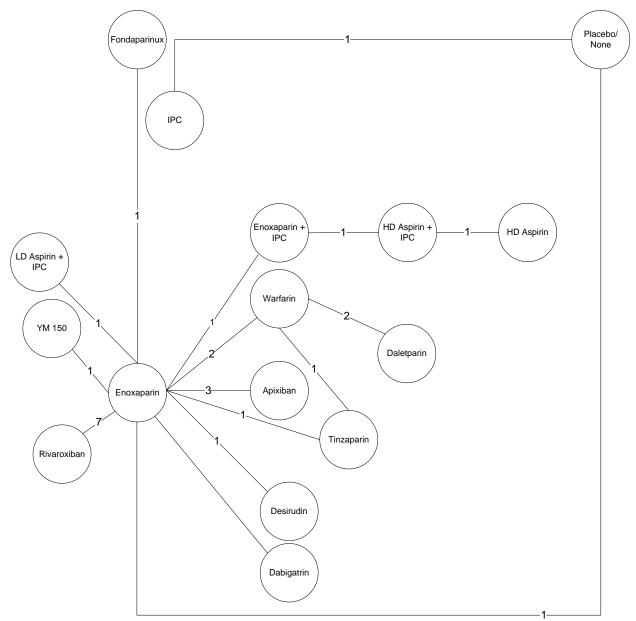
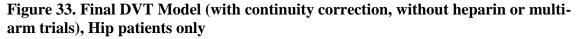

The model depicted in the figure is a model for symptomatic DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 31. Final Symptomatic DVT Model (with continuity correction, without heparin, or multi-arm trials, Knee patients only



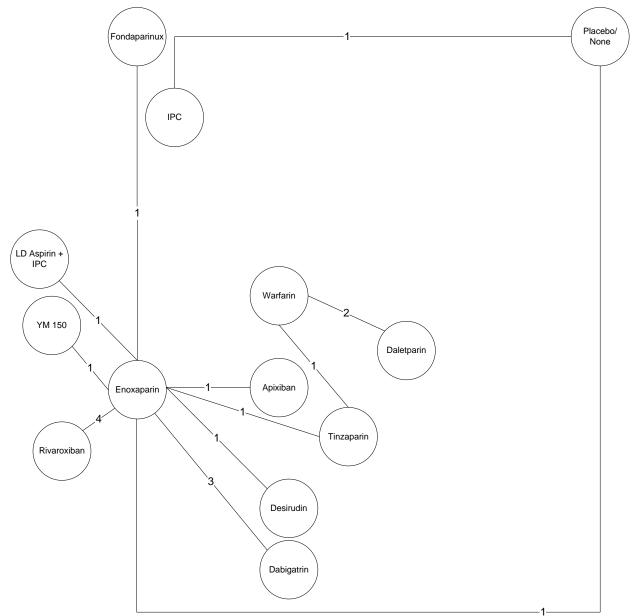
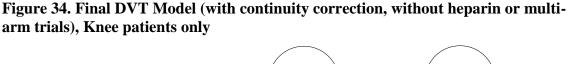
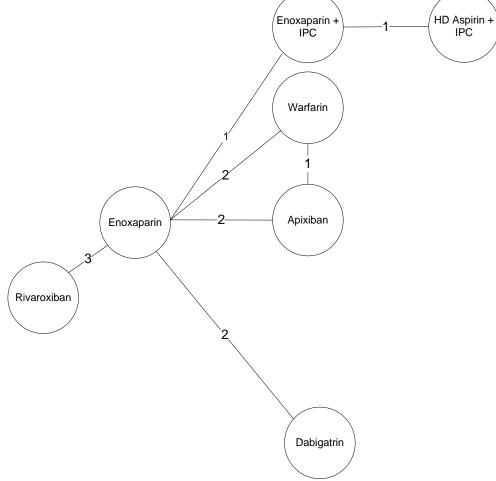
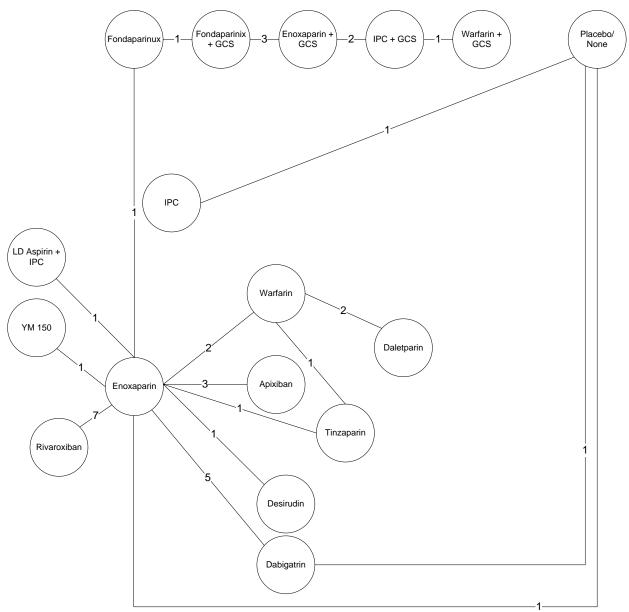

The model depicted in the figure is a model for symptomatic DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 32. Final DVT Model (with continuity correction, without heparin or multiarm trials)



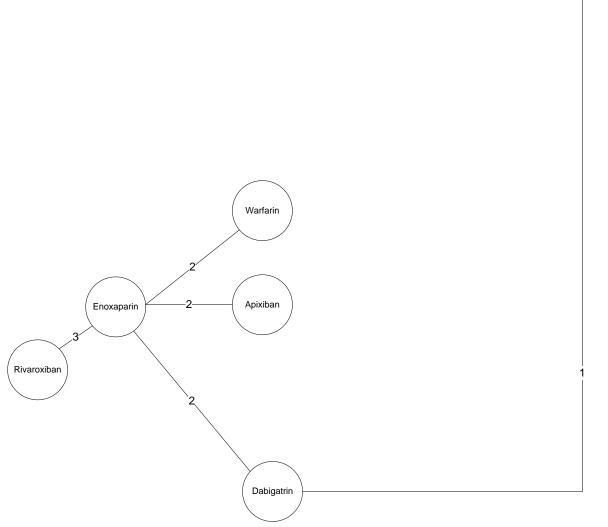

The model depicted in the figure is the final model for DVT that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip arthroplasty and those who received a total knee arthroplasty. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. None of the included studies required a continuity correction, so this is the same model as for the model without continuity corrected studies.


The model depicted in the figure is a model for DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.


The model depicted in the figure is a model for DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee arthroplasty. It does not include trials of heparin or trials with >2 arms. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 35. Final Proximal DVT Model (with continuity correction, without heparin or multi-arm trials)

The model depicted in the figure a model for proximal DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip arthroplasty and those who received a knee arthroplasty. Trials of heparin and trials with >2 arms are not included. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.


Figure 36. Final Proximal DVT Model (with continuity correction, without heparin or multi-arm trials), Hip patients only

The model depicted in the figure a model for proximal DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip arthroplasty. Trials of heparin and trials with >2 arms are not included. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 37. Final Proximal DVT Model (with continuity correction, without heparin or multi-arm trials), Knee patients only

Placebo/ None

The model depicted in the figure a model for proximal DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee arthroplasty. Trials of heparin and trials with >2 arms are not included. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

NETWORK META-ANALYSIS RESULTS

The results of the network meta-analyses for each of the six outcomes are shown in the figures below. Here, we present our final models, which exclude trials with > 2 arms (multi-arm trials) and heparin trials. It includes patients who received a total hip arthroplasty and patients who received a total knee arthroplasty. The two multi-arm trials each had zero events in at least two study arms for major bleeding and pulmonary embolism. In this analysis, we added a continuity correction factor to studies with zero events in one arm of the trial.

In addition to the results presented in the figures below, Appendix XV presents the results of the final model for each outcome with each treatment in the model ranked relative to each other.

Appendix XV presents the results of our sensitivity analyses, first by excluding trials with zero events in one arm of a trial, making the use of the continuity correction unneccesary. Then we excluded trials of heparin and, finally, we also excluded multi-arm trials. The results of these sensitivity analyses were not significantly different than the results of our final model.

The results of our consistency checks appear in Appendix XV. Our final models were consistent.

Goodness-of-fit statistics are also presented in Appendix XV. These results suggest that our model fits the available data.

Results are presented in terms of the odds ratio of each treatment as compared to no treatment. However, for all-cause mortality, results are presented as compared to enoxaparin because there are no trials compared to no treatment for this outcome. In Appendix XV, results are presented as compared to enoxaparin for all models; in addition, results are presented as compared to no treatment for the models using the continuity correction when the data allow.

PULMONARY EMBOLISM

Figure 38. Pumonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

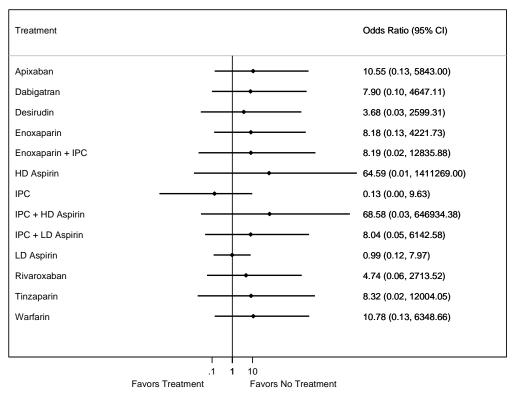
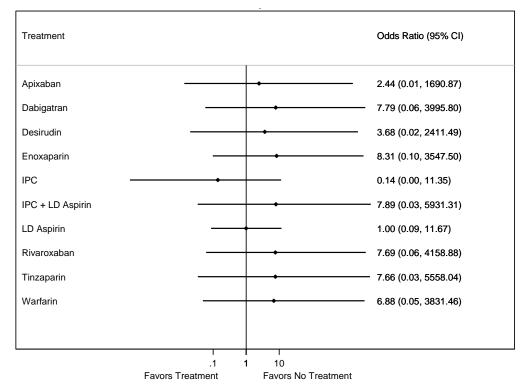
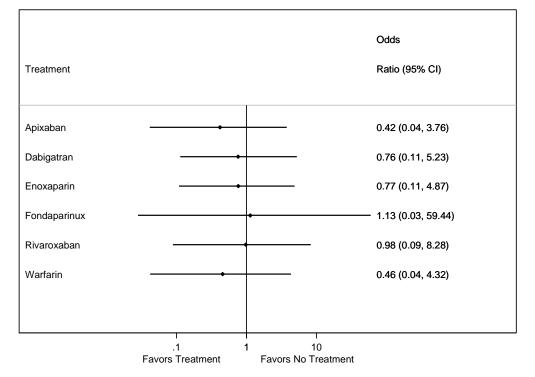



Figure 39. Pumonary Embolism among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

Figure 40. Pumonary Embolism among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

No studies in the model with no treatment as a comparator

MAJOR BLEEDING


Figure 41. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

		Odds
Treatment		Ratio (95% CI)
Apixaban	_ _	0.83 (0.25, 2.82)
Dabigatran	- •	1.45 (0.50, 4.46)
Dalteparin	_	1.04 (0.23, 4.71)
Desirudin	_ + _	1.10 (0.27, 4.68)
Enoxaparin	_ + _	1.10 (0.39, 3.17)
Enoxaparin + GCS		0.15 (0.00, 9.75)
Fondaparinux	_ + •	1.79 (0.48, 6.99)
Fondaparinux + GCS		0.30 (0.00, 17.89)
GCS		0.17 (0.00, 66.55)
HD Aspirin	+	0.37 (0.04, 3.42)
IPC + LD Aspirin -		0.02 (0.00, 0.39)
LY517717		0.94 (0.02, 38.82)
Rivaroxaban	_ + •	1.70 (0.50, 5.87)
Tinzaparin	_	1.00 (0.21, 4.50)
Warfarin	_ + +	0.53 (0.15, 1.97)
YM150	· · · · · · · · · · · · · · · · · · ·	0.16 (0.00, 8.52)
	.1 1 10 Favors Treatment Favors No Treatment	

Figure 42. Major Bleeding among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

Treatment		Odds Ratio (95% CI)
Apixaban		2.45 (0.41, 16.54)
Dabigatran	+	3.26 (0.65, 18.73)
Dalteparin	\$	1.33 (0.16, 12.06)
Desirudin	+	2.00 (0.34, 13.63)
Enoxaparin		2.00 (0.44, 10.35)
Enoxaparin + GCS		0.21 (0.00, 17.17)
Fondaparinux		2.98 (0.58, 19.22)
Fondaparinux + GCS		0.33 (0.00, 26.71)
GCS		0.19 (0.00, 65.76)
HD Aspirin	_	0.48 (0.03, 7.59)
IPC + LD Aspirin	•	0.03 (0.00, 0.85)
LY517717		1.73 (0.03, 108.64)
Rivaroxaban		3.66 (0.61, 26.76)
Tinzaparin	+	1.39 (0.19, 11.40)
Warfarin	_	0.68 (0.10, 5.46)
YM150		0.29 (0.00, 22.60)
	.1 1 10	
	Favors Treatment Favors No Treatment	

Figure 43. Major Bleeding among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

ALL CAUSE MORTALITY

Note: For this outcome, results are only presented compared to enoxaparin because there are no trials with a no treatment arm.

Figure 44. All Cause Mortality among Hip and Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Treatment		Odds Ratio (95% CI)
Apixaban	+	1.36 (0.39, 5.31)
Dabigatran	_ -	1.19 (0.30, 4.86)
Dalteparin	•	1.49 (0.07, 32.04)
Desirudin		2.29 (0.23, 29.11)
Enoxaparin + GCS		0.05 (0.00, 9.08)
Fondaparinux		0.22 (0.00, 11.94)
Fondaparinux + GCS		0.05 (0.00, 7.34)
IPC + GCS		0.22 (0.00, 94.82)
Rivaroxiban		0.61 (0.22, 1.60)
Tinzaparin	+	1.46 (0.14, 17.01)
Warfarin	_ +	1.44 (0.39, 5.80)
Warfarin + GCS		0.22 (0.00, 273.96)
	·····	
	.1 1 10	
	Favors Treatment Favors Enoxap	arin

Figure 45. All Cause Mortality among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

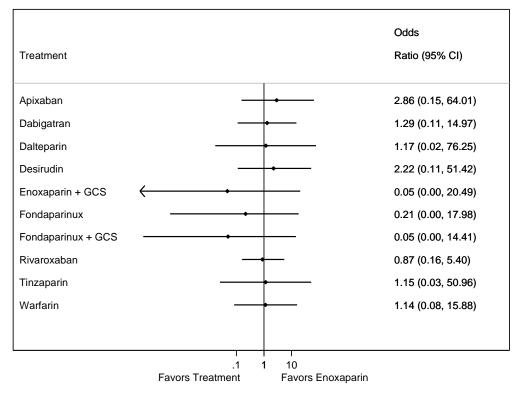
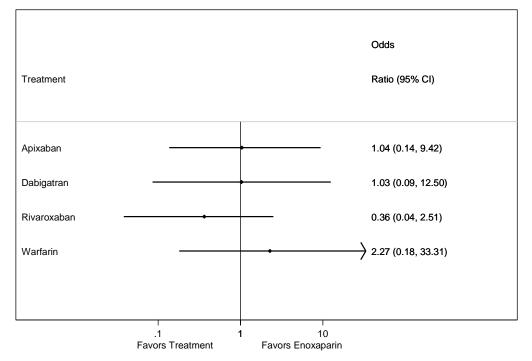
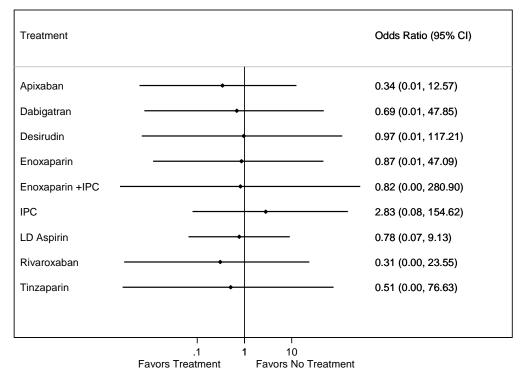




Figure 46. All Cause Mortality among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

SYMPTOMATIC DEEP VEIN THROMBOSIS

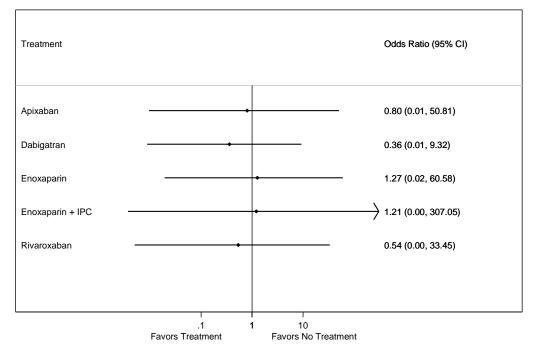
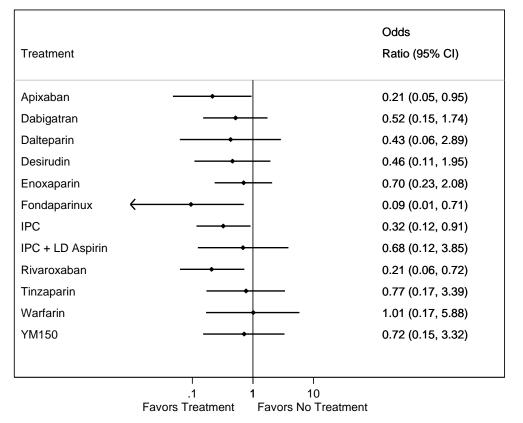

Figure 47. Symptomatic DVT among Hip and Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

Figure 48. Symptomatic DVT among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

No studies in the model with no treatment as a comparator

Figure 49. Symptomatic DVT among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)



DEEP VEIN THROMBOSIS

Figure 50. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

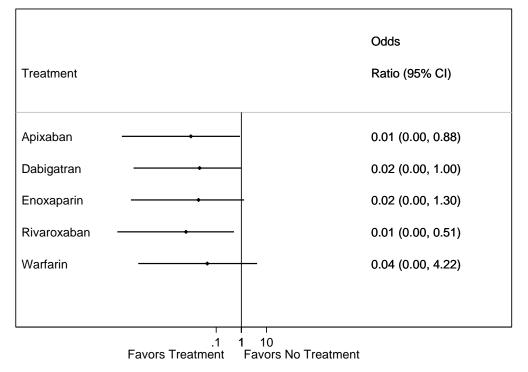
	Odds
	Ratio (95% CI)
	0.39 (0.12, 1.25)
+	0.63 (0.21, 1.93)
	0.58 (0.15, 2.28)
	0.46 (0.12, 1.79)
+	0.71 (0.25, 2.00)
	0.19 (0.03, 1.05)
	0.09 (0.01, 0.69)
	0.33 (0.03, 3.62)
	0.32 (0.12, 0.84)
	0.26 (0.03, 1.91)
	0.68 (0.13, 3.66)
	0.30 (0.10, 0.90)
_	0.92 (0.26, 3.21)
+	1.37 (0.42, 4.51)
	0.73 (0.17, 3.18)
.1 1 10	

Figure 51. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

Figure 52. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

No studies in the model with no treatment as a comparator

PROXIMAL DEEP VEIN THROMBOSIS


Figure 53. Proximal Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

	Odds
Treatment	Ratio (95% CI)
Apixaban	0.17 (0.03, 0.97)
Dabigatran	0.23 (0.04, 1.04)
Dalteparin	0.29 (0.03, 2.70)
Desirudin	0.22 (0.02, 1.83)
Enoxaparin	0.38 (0.08, 1.66)
Enoxaparin + GCS	0.11 (0.00, 4.12)
Fondaparinux	0.07 (0.00, 1.49)
Fondaparinux + GCS	0.06 (0.00, 1.91)
IPC	0.47 (0.09, 2.30)
IPC + GCS	0.26 (0.00, 13.68)
IPD + LD Aspirin	• 0.61 (0.03, 11.80)
Rivaroxaban	0.07 (0.01, 0.39)
Tinzaparin	0.44 (0.06, 3.04)
Warfarin —	• 0.71 (0.11, 4.47)
Warfarin + GCS	0.05 (0.00, 4.17)
YM150 →	0.43 (0.03, 5.11)
1	1 10
Favors Treatment	Favors No Treatment

Figure 54. Proximal Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

	Odds
Treatment	
	Ratio (95% CI)
Apixaban	0.22 (0.01, 5.02)
Dabigatran	0.31 (0.02, 3.94)
Dalteparin	0.31 (0.01, 16.10)
Desirudin	0.38 (0.02, 7.91)
Enoxaparin	0.66 (0.07, 6.26)
Enoxaparin + GCS	0.17 (0.00, 17.65)
Fondaparinux	0.12 (0.00, 5.57)
Fondaparinux + GCS	0.11 (0.00, 8.10)
IPC	0.47 (0.06, 3.67)
IPC + GCS	- 0.27 (0.00, 42.73)
IPC + LD Aspirin	- 1.05 (0.03, 39.53)
Rivaroxaban	0.08 (0.01, 1.11)
Tinzaparin	0.59 (0.03, 12.63)
Warfarin	- 0.75 (0.02, 30.02)
Warfarin + GCS ←	0.05 (0.00, 13.44)
YM150	0.74 (0.03, 19.20)
.1 1 10	
Favors Treatment Favors I	No Treatment

Figure 55. Proximal Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. No Treatment)

1 NETWORK META-ANALYSIS PAIRWISE COMPARISONS

- 2 All significant pairwise comparisons from the final network meta-analysis are listed in the tables below. There were no significant
- 3 comparisons for pulmonary embolism, symptomatic DVT, or all cause mortality. All pairwise comparisons from all network meta-

4 analyis models are presented in Appendix XV.

6

7

5 Table 32. Major Bleeding Significant Pairwise Comparisons - Final Model

Comparison	Patient Populations with Significant Comparison
Enoxaparin + GCS favored over Fondaparinux + GCS	Hip and Knee
IPC + LD Aspirin favored over Apixaban	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Dabigatran	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Dalteparin	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Desirudin	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Enoxaparin	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Fondaparinux	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over No Treatment	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Rivaroxaban	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Tinzaparin	Hip and Knee, and Hip Only
IPC + LD Aspirin favored over Warfarin	Hip and Knee
Warfarin favored over Dabigatran	Hip and Knee, and Hip Only
Warfarin favored over Rivaroxaban	Hip and Knee, and Hip Only

129

8 Table 33. DVT Significant Pairwise Comparisons - Final Model

Comparison

Patient Populations with Significant Comparison

Comparison	Comparison
Apixaban favored over Enoxaparin	Hip and Knee, and Hip Only
Apixaban favored over No Treatment	Hip Only
Apixaban favored over Warfarin	Hip and Knee, and Knee Only
Dabigatran favored over Warfarin	Hip and Knee
Dalteparin favored over Warfarin	Hip and Knee, and Hip Only
Desirudin favored over Warfarin	Hip and Knee
Enoxaparin + IPC favored over Dabigatran	Knee Only
Enoxaparin + IPC favored over Enoxaparin	Knee Only
Enoxaparin + IPC favored over Tinzaparin	Hip and Knee
Enoxaparin + IPC favored over Warfarin	Hip and Knee, and Knee Only
Enoxaparin favored over Warfarin	Hip and Knee, and Knee Only
Fondaparinux favored over Dabigatran	Hip and Knee
Fondaparinux favored over Enoxaparin	Hip and Knee, and Hip Only
Fondaparinux favored over No Treatment	Hip and Knee, and Hip Only
Fondaparinux favored over Tinzaparin	Hip and Knee, and Hip Only
Fondaparinux favored over Warfarin	Hip and Knee, and Hip Only
Fondaparinux favored over YM150	Hip and Knee, and Hip Only
HD Aspirin + IPC favored over Warfarin	Knee Only
IPC favored over No Treatment	Hip and Knee, and Hip Only
Rivaroxaban favored over Dabigatran	Hip and Knee, and Hip Only
Rivaroxaban favored over Enoxaparin	Hip and Knee, Hip Only, and Knee Only
Rivaroxaban favored over No Treatment	Hip and Knee, and Hip Only
Rivaroxaban favored over Tinzaparin	Hip and Knee, and Hip Only
Rivaroxaban favored over Warfarin	Hip and Knee, Hip Only, and Knee Only

9

Comparison	Patient Populations with Significant Comparison
Apixaban favored over No Treatment	Hip and Knee, and Knee Only
Apixaban favored over Warfarin	Hip and Knee
Rivaroxaban favored over Dabigatran	Hip and Knee
Rivaroxaban favored over Enoxaparin	Hip and Knee, and Hip Only
Rivaroxaban favored over No Treatment	Hip and Knee, and Knee Only
Rivaroxaban favored over Tinzaparin	Hip and Knee
Rivaroxaban favored over Warfarin	Hip and Knee

Table 34. Proximal DVT Significant Pairwise Comparisons - Final Model

INDIVIDUAL STUDY RESULTS

Individual study results for each of the six outcomes analyzed in a network meta-analysis, as well as for other outcomes reported by the included studies, can be found in Appendix XV. Details of each study can also be found in Appendix XV.

RECOMMENDATION 6

In the absence of reliable evidence, it is the opinion of this work group that patients undergoing elective hip or knee arthroplasty, and who have also had a previous venous thromboembolism, receive pharmacologic prophylaxis and mechanical compressive devices.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

RATIONALE

Given that patients who are receiving a hip or knee arthroplasty are already at high risk for VTED, a further risk increase in these patients is of concern. Although none of the studies we located enrolled such patients, the work group deemed that an even greater risk of VTED in these patients justified issuing a consensus-based recommendation for these patients. The consensus of the work group is that both pharmacologic prophylaxis and mechanical compressive devices are appropriate for these patients, assuming that their risk of VTED is greater than their risk of bleeding. Since patients undergoing hip or knee arthroplasty will be receiving some form of prophylaxis anyway, the added costs of using both pharmacologic and mechanical compressive devices will not always be large. Furthermore, the approach in this recommendation is consistent with current practice.

RECOMMENDATION 7

In the absence of reliable evidence, it is the opinion of this work group that patients undergoing elective hip or knee arthroplasty, and who also have a known bleeding disorder (e.g., hemophilia) and/or active liver disease, use mechanical compressive devices for preventing venous thromboembolism.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

RATIONALE

As discussed in Recommendation 3, patients who have a known bleeding disorder or active liver disease are at elevated risk for bleeding. Due to the serious complications that can occur in these patients, the work group deemed it appropriate to issue a consensusbased recommendation in spite of a lack of relevant, published data. It is the consensus of the work group that mechanical compressive devices are appropriate for these patients, as pharmacologic prophylaxis may exacerbate the risk of bleeding. Using mechanical compressive devices is of low risk and consistent with current practice. Consultation with a hematologist or other specialist may be warranted in some cases, especially when a patient is both at an elevated risk of bleeding and at an elevated risk of VTED.

RECOMMENDATION 8

In the absence of reliable evidence, it is the opinion of this work group that patients undergo early mobilization following elective hip and knee arthroplasty. Early mobilization is of low cost, minimal risk to the patient, and consistent with current practice.

Grade of Recommendation: Consensus

Description: The supporting evidence is lacking and requires the work group to make a recommendation based on expert opinion by considering the known potential harm and benefits associated with the treatment. A **Consensus** recommendation means that expert opinion supports the guideline recommendation even though there is no available empirical evidence that meets the inclusion criteria of the guideline's systematic review.

Implications: Practitioners should be flexible in deciding whether to follow a recommendation classified as **Consensus**, although they may give it preference over alternatives. Patient preference should have a substantial influencing role.

RATIONALE

VTED is a potentially catastrophic complication faced by all patients who undergo elective hip and knee arthroplasty. Risk factors that predispose to VTED are embodied by "Virchow's Triad" – hypercoagulability, endothelial injury, and stasis. Early mobilization following hip or knee arthroplasty addresses the stasis limb of Virchow's triad; movement of the operated limb promotes regional blood flow. Mobilization should begin as soon postoperatively as possible. Practices should be in place to ensure that appropriate support are provided throughout the hospital stay to minimize the risk of falls during transfer and ambulation.

Although one moderate quality study and five low quality studies compared VTED rates based on timing of mobilization, their results are conflicting (these results are summarized in Table 35, our evaluation of their quality and applicability is shown in Table 54, and a more detailed presentation of their results is in Table 36). One study of moderate quality suggests patients mobilizing within 2-4 hours of surgery do not have lower VTED readmission rates vs. patients mobilizing the afternoon or evening of surgery. Three low quality studies suggest that there is no difference in VTED due to timing of mobilization, while two other low quality studies did find lower rates of PE or VTED readmission among patients who mobilized earlier. Based on the fact that early mobilization has minimal cost, low risk to the patient, and is consistent with current clinical practice, issuing a consensus based consensus-based recommendation is warranted.

Table 63 in Appendix XIV summarizes the reasons for excluding some of the studies we initially considered for this recommendation.

FINDINGS

•	•			
Outcome	2-4 hours vs. 6-12 hours	0-1 day vs. 2+ days	0-2 days vs. 2+ days	2 days vs. 3+ days
All-Cause Mortality	0	•		-
DVT		0		
DVT Readmission	0			
Fatal PE				0
PE		0		•
PE Readmission	0			
Symptomatic VTE			0	
VTE		0		
VTE Readmission		•		
Minor Wound				
Problems		♦		
Wound Dehiscence		0		

Table 35. Early Mobilization Summary Table

c: no statistically significant difference. •: statistically significant in favor of earlier mobilization.
e: statistically significant in favor of mobilization on the 2nd post operative day as opposed to within the first 24 hours.

QUALITY AND APPLICABILITY

Of the included studies addressing VTED-related outcomes, one was of moderate quality and five were of low quality. One additional moderate quality study addressed wound problems. All seven included studies were of moderate applicability. For details, see Table 54 in Appendix XIII.

RESULTS

Author	Ν	Joint	Group 1	Group2	Strength	Outcome (Duration)	% Group1	% Group2	Results
Johnson Husted	7846 1977	Hip Both	Mobilization starting day 2 Mobilized within 2-4h	Grp2: Day 3-6 Grp3: Day 7-10 Grp4:Day 11-14 Grp5:Day 15-19 Grp6:Day 20+ Mobilized afternoon or	Low Moderate	Fatal PE All-Cause Mortality	0	Grp2: 0.9% Grp3: 1.3% Grp4: 0.9% Grp5: 2.4% Grp6: 0.7% 0.3%	No significant difference No significant difference
				evening of surgery		(3 months)			
Husted	1977	Both	Mobilized within 2-4h	Mobilized afternoon or evening of surgery	Moderate	PE readmission (3 months)	0.1%	0.4%	No significant difference OR: 0.3 (.01, 2.4)
Johnson	7846	Hip	Mobilization starting day 2	Grp2: Day 3-6 Grp3: Day 7-10 Grp4:Day 11-14 Grp5:Day 15-19 Grp6:Day 20+	Low	PE	7.4%	Grp2: 10.5% Grp3: 11.9% Grp4: 6.1% Grp5: 9.6% Grp6: 6.1%	Favors Group1 (vs. all other groups combined) OR: 0.8 (0.6, 0.97)
Kelsey	1035	Hip	1 day in bed	Grp2: 2-3 days in bed Grp3: 4+ days in bed	Low	PE	7.8%	Grp2: 9.1% Grp3: 10.9%	No significant difference OR: 0.8 (0.4, 1.3)

Table 36. Early Mobilization Results

Author	Ν	Joint	Group 1	Group2	Strength	Outcome (Duration)	% Group1	% Group2	Results
Husted	1977	Both	Mobilized within 2-4h	Mobilized afternoon or evening of surgery	Moderate	DVT readmission (3 months)	0.5%	0.6%	No significant difference OR: 0.8 (0.2, 3.0)
Kelsey	1035	Hip	1 day in bed	Grp2: 2-3 days in bed Grp3: 4+ days in bed	Low	DVT	12.8%	Grp2: 8.6% Grp3:14.5%	No significant difference OR: 1.1 (0.7, 1.7)
White	886	Hip	Mobilization on day 0 or 1	Mobilization on day 2 or later	Low	VTE readmission (3 months)	44%	61%	Favors Group1 Adjusted OR*: 0.7 (0.5, 0.9)
Samama	1062	Both	Weight-bearing within 48h	No weight-bearing within 48h	Low	Symptomatic VTE (3 months)	Not Reported	Not Reported	No significant difference OR: 0.4 (0.1, 1.4)
Kelsey	1035	Hip	1 day in bed	Grp2: 2-3 days in bed Grp3: 4+ days in bed	Low	VTE	17.1%	Grp2:15.1% Grp3:22.3%	No significant difference† OR: 0.9 (0.6, 1.3)
Leizorovicz	386	Both	Duration of immobilization – continuous variable	Not Applicable	Low	VTE or sudden death (hospital discharge)	Median: 4 days (range 1- 87)	NA	No significant difference
Pearse	195	Knee	Walk independently within 24h	Walk on 2 nd post- operative day	Moderate	Minor Wound Problems - ooze and erythema	23.7%	11.2%	Favors Group2 OR: 2.5 (1.1, 6.0)
Pearse	195	Knee	Walk independently within 24h	Walk on 2 nd post- operative day	Moderate	Wound dehiscence	0	0	No difference

*Adjusted for Age, sex, race, history of thromboembolism, rheumatoid arthritis, BMI, thromboprophylaxis;† no significant differences comparing grp 1 vs any group, OR presented is grp1 vs grp2+3

RECOMMENDATION 9

We suggest the use of neuraxial (such as intrathecal, epidural, and spinal) anesthesia for patients undergoing elective hip or knee arthroplasty to help limit blood loss, even though evidence suggests that neuraxial anesthesia does not affect the occurrence of venous thromboembolic disesase.

Grade of Recommendation: Moderate

Description: Evidence from two or more "Moderate" strength studies with consistent findings, or evidence from a single "High" quality study for recommending for or against the intervention. A **Moderate** recommendation means that the benefits exceed the potential harm (or that the potential harm clearly exceeds the benefits in the case of a negative recommendation), but the strength of the supporting evidence is not as strong.

Implications: Practitioners should generally follow a **Moderate** recommendation but remain alert to new information and be sensitive to patient preferences.

RATIONALE

There is one high quality study and two moderate quality studies that addressed neuraxial anesthesia and VTE disease (Table 37 summarizes their results, Table 38 through Table 44 present a detailed description of their results, and Table 55 in Appendix XIII summarizes the results of our quality and applicability evaluations). None of these studies found a statistically significant difference in outcomes between regional (epidural or spinal) and general anesthesia.

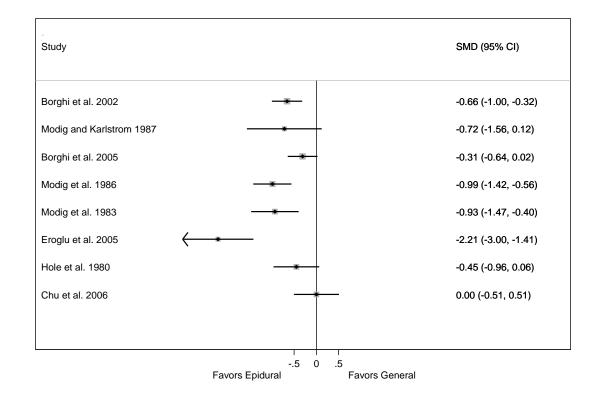
Fifteen randomized controlled trials of high quality and moderate applicability compared peri-operative blood loss among patients receiving general, epidural, or a combination of general and epidural, or a combination of general anesthesia and lumbar plexus block. There were eight high quality studies comparing epidural and general anesthesia. Epidural anesthesia resulted in lower intra-operative blood loss. The combination of epidural and general anesthesia resulted in lower intra-operative blood loss compared to general anesthesia alone in two high quality studies. The combination of lumbar plexus block and general anesthesia resulted in lower intra- and post-operative blood loss compared to general anesthesia alone in two high quality studies. Hypotensive epidural anesthesia resulted in lower post-operative blood loss compared to spinal anesthesia in two high quality studies.

Table 64 in Appendix XIV summarizes the reasons for excluding some of the studies we initially considered for this recommendation.

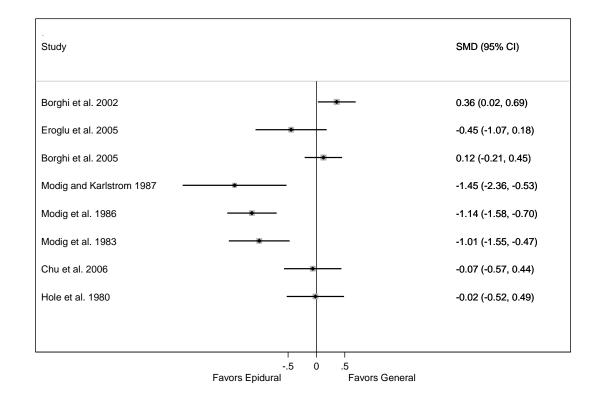
FINDINGS Table 37. Neuraxial Anesthesia Summary Table

				General			
	Epidural vs.	Spinal vs.	General + Epidural vs.	+ Lumbar Plexus Block vs.	Epidural vs.	Epidural vs. General +	Epidural + Spinal vs.
Outcome	General	General	General	General	Spinal	Epidural	General
All-Cause							
Mortality	0						
Symptomatic							
VTE	0	00			0		
New							
Perfusion							
Defects	0						
Intraoperative							
Blood Loss	$\bullet \circ \bullet \bullet \circ \bullet \circ$		$\bullet \bigcirc \bullet \bullet$	••	*•	00	0
Postoperative							
Blood Loss	$\diamond \circ \circ \bullet \circ \bullet$		♦00●	$\bigcirc ullet$	••	$\bullet \circ$	0
Total Blood							
Loss	00		$\bigcirc ullet ullet$	•	ullet $ullet$	0	
Wound							
Hematoma	0						
Wound							
Infection	0						0
Transfusion	00		$\bigcirc igodot$	0		0	

o: no statistically significant difference; •: statistically significant in favor of group 1 (listed first)
•: statistically significant in favor of group 2


QUALITY AND APPLICABILITY

Of the three included studies addressing VTED-related outcomes, one was of high quality and two were of moderate quality. All three were of moderate applicability. Fifteen included studies addressing blood loss were all of high quality and moderate applicability. For details, see Table 55 in Appendix XIII.


RESULTS

Author	N	Joint	Group 1	Group2	Strength	Outcome	% Group1	% Group2	Results
Williams- Russo et al. 1996	262	Knee	Epidural	General	High	All-Cause Mortality (2 months)	0.7%	0.8%	No significant difference OR:0.95 (.01, 75.5)
Williams- Russo et al. 1996	178	Knee	Epidural	General	Moderate	Proximal DVT (day 5)	0	0	No events
Williams- Russo et al. 1996	153	Knee	Epidural	General	Moderate	New Perfusion Defects (day 5)	11.6%	9.0%	No significant difference OR: 1.3 (0.4, 4.7)
Warwick et al. 2007	15903	Both	Any spinal	Grp2: Any general Grp3: Epidural Grp4: Lumbar plexus block	Moderate	Symptomatic VTE	2.2%	Grp2: 1.2% Grp3: 1.0% Grp4:1.9%	No significant difference in multivariate analysis
Maurer et al. 2007	606	Hip	Spinal	General	Moderate	Symptomatic VTE	1.6%	1.7%	No significant difference OR:0.9 (0.2, 4.6)

Table 38. Regional vs. General Anesthesia - VTED-related Outcomes

Figure 56. Epidural vs. General Anesthesia - Intraoperative Blood Loss

Figure 57. Epidural vs. General Anesthesia - Postoperative Blood Loss

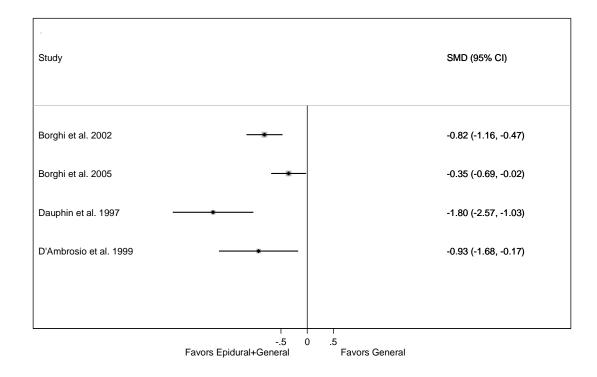


Figure 58. Epidural + General vs. General Anesthesia - Intraoperative Blood Loss

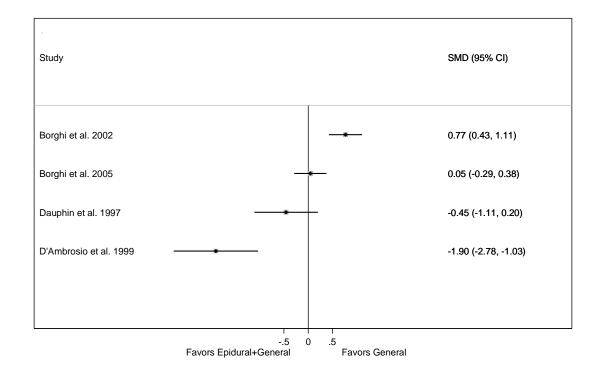


Figure 59. Epidural + General vs. General Anesthesia - Postoperative Blood Loss

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 Mean (SD) o r Median (range)	Group2 Mean (SD) o r Median (range)	Results
Eroglu et al. 2005	40	Hip	Hypotensive Epidural	Hypotensive Total IV	High	Intraoperative Blood Loss	305 (210- 550)	515 (380- 780)	Favors Hypotensive Epidural
Hole et al. 1980	60	Hip	Epidural	General	High	Intraoperative blood loss	1274 (598)	1567 (696)	No Difference
Modig et al. 1983	60	Hip	Epidural	General	High	Intraoperative Blood Loss	1148 (446)	1548 (410)	Favors Epidural
Modig et al. 1986	94	Hip	Epidural	General	High	Intraoperative Blood Loss	1210 (490)	1680 (460)	Favors Epidural
Modig and Karlstrom 1987	38	Hip	Epidural	Grp2:General Grp3: General (IPPV)	High	Intraoperative Blood Loss	950 (300)	Grp2:1140 (200) Grp3:1540 (340)	Favors Epidural and General vs. General (IPPV); no difference in Epidural vs. General
Borghi et al. 2002	210	Hip	Epidural	Grp2: General Grp3: Epidural- General	High	Intraoperative Blood Loss	479 (107)	Grp2:547 (99) Grp3:465 (102)	Favors Epidural vs. General and Epidural- General vs. General; no difference in Epidural vs. Epidural- General
Borghi et al. 2005	210	Hip	Epidural	Grp2: General Grp3: Epidural- General	High	Intraoperative Blood Loss	449 (207)	Grp2:515 (219) Grp3:435 (233)	No Difference
Chu et al. 2006	60	Knee	Spinal- Epidural	General	High	Intraoperative Blood Loss	200 (5- 300)	200 (100- 212.5)	No Difference

Table 39. Epidural vs. General Anesthesia - Intraoperative Blood Loss

IPPV: Intermittent Positive Pressure Ventilation

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 Mean (SD) o r Median (range)	Group2 Mean (SD) o r Median (range)	Results
Hole et al. 1980	60	Hip	Epidural	General	High	Postoperative Blood Loss	552 (232)	556 (206)	No Difference
Eroglu et al. 2005	40	Hip	Hypotensive Epidural	Hypotensive Total IV	High	Postoperative Blood Loss	645 (380- 960)	682 (520- 980)	No Difference
Modig et al. 1983	60	Hip	Epidural	General	High	Postoperative Blood Loss	294 (64)	427 (175)	Favors Epidural
Borghi et al. 2002	210	Hip	Epidural	Grp2: General Grp3: Epidural- General	High	Postoperative Blood Loss	545 (110)	Grp2:502 (129) Grp3:593 (106)	Favors General vs. Epidural and vs. Epidural-General; Favors Epidural vs. Epidural-General
Borghi et al. 2005	210	Hip	Epidural	Grp2: General Grp3: Epidural- General	High	Postoperative Blood Loss	541 (402)	Grp2:495 (342) Grp3:510 (322)	No Difference
Modig et al. 1986	94	Hip	Epidural	General	High	Postoperative Blood Loss	412 (70)	518 (112)	Favors Epidural
Modig and Karlstrom 1987	38	Hip	Epidural	Grp2:General Grp3: General (IPPV)	High	Postoperative Blood Loss	370 (80)	Grp2:480 (70) Grp3:500 (110)	Favors Epidural vs. both forms of General
Chu et al. 2006	60	Knee	Spinal- Epidural	General	High	Postoperative Blood Loss	385 (275- 560)	400 (197.5- 530)	No Difference

 Table 40. Epidural vs. General Anesthesia - Postoperative Blood Loss

IPPV: Intermittent Positive Pressure Ventilation

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 Mean (SD) o r Median (range) or %	Group2 Mean (SD) o r Median (range) or %	Results
Jorgensen et al. 1991	39	Knee	Extradural	General	High	Total Drain Volume	650 (340- 1845)	950 (195- 3275)	No Difference
Borghi et al. 2005	210	Hip	Epidural	Grp2: General Grp3: Epidural- General	High	Total Blood Loss	972 (470)	Grp2:1003 (431) Grp3:917 (399)	No Difference
Hole et al. 1980	60	Hip	Epidural	General	High	Wound Hematoma	3%	10%	No Difference
Hole et al. 1980	60	Hip	Epidural	General	High	Wound Infection	3%	10%	No Difference
Hole et al. 1980	60	Hip	Epidural	General	High	Transfusion	24%	26%	No Difference
Borghi et al. 2002	210	Hip	Epidural	Grp2: General Grp3: Epidural- General	High	Homologous Blood Transfusion	23%	Grp2: 13% Grp3: 19%	No Difference
Chu et al. 2006	60	Knee	Spinal- Epidural	General	High	Wound Infection	3%	3%	No Difference

Table 41. Epidural vs. General Anesthesia - Other Outcomes

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 Mean (SD) o r Median (range) or %	Group2 Mean (SD) o r Median (range) or %	Results
Dauphin et al. 1997	37	Hip	General	Epidural-General	High	Intraoperative Blood Loss	1259.2 (366)	663.8 (299)	Favors Epidural- General
D'Ambrosio et al. 1999	60	Hip	Epidural- General- Aprotinin	Grp2: Epidural- General Grp3: General- Aprotinin Grp4: General	High	Intraoperative Blood Loss	252.1 (108)	Grp2: 246.5 (127) Grp3:273.5 (84) Grp4:355.5 (107)	Favors all 3 groups vs. General (Grp4); all other comparisons not significant
Dauphin et al. 1997	37	Hip	General	Epidural-General	High	Postoperative Blood Loss	600.8 (390.8)	444 (300.8)	No Difference
D'Ambrosio et al. 1999	60	Hip	Epidural- General- Aprotinin	Grp2: Epidural- General Grp3: General- Aprotinin Grp4: General	High	Postoperative Blood Loss	330.8 (210)	Grp2: 486.2 (185) Grp3:574.6 (146) Grp4:862.9 (210)	Favors Grp1 vs. each of other 3 groups; Favors all 3 groups vs. General (Grp4)
Dauphin et al. 1997	37	Hip	General	Epidural-General	High	Total Blood Loss	1860 (616.6)	1107.8 (378.6)	Favors Epidural- General
D'Ambrosio et al. 1999	60	Hip	Epidural- General- Aprotinin	Grp2: Epidural- General Grp3: General- Aprotinin Grp4: General	High	Total Blood Loss	583 (300)	Grp2: 732.7 (262) Grp3:848.2 (169) Grp4:1198 (280)	Favors all 3 groups vs. General (Grp4); Favors Grp1 vs. Grp3
Dauphin et al. 1997	37	Hip	General	Epidural-General	High	Homologous Blood Transfusion	88%	35%	Favors Epidural- General

Table 42. General + Epidural vs. General Anesthesia - Results

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 Mean (SD) o r Median (range) or %	Group2 Mean (SD) o r Median (range) or %	Results
Twyman et al. 1990	20	Hip	General- Lumbar Plexus Block	General	High	Intraoperative Blood Loss	310 (81)	617 (230)	Favors General- Lumbar Plexus Block
Stevens et al. 2000	60	Hip	General- Lumbar Plexus Block	General	High	Intraoperative Blood Loss	420 (187)	538 (254)	Favors General- Lumbar Plexus Block
Twyman et al. 1990	20	Hip	General- Lumbar Plexus Block	General	High	Postoperative Blood Loss	402 (185)	457 (111)	No Difference
Stevens et al. 2000	60	Hip	General- Lumbar Plexus Block	General	High	Postoperative Blood Loss	170 (125)	310 (204)	Favors General- Lumbar Plexus Block
Twyman et al. 1990	20	Hip	General- Lumbar Plexus Block	General	High	Total Blood Loss	712 (199)	1074 (250)	Favors General- Lumbar Plexus Block
Stevens et al. 2000	60	Hip	General- Lumbar Plexus Block	General	High	Autologous Blood Transfusion	13%	13%	No Difference

Table 43. General + Lumbar Plexus Block vs. General Anesthesia - Results

Author	N	Joint	Group 1	Group2	Strength	Outcome	Group1 Mean (SD) o r Median (range)	Group2 Mean (SD) o r Median (range)	Results
Juelsgaard et al. 2001	30	Knee	Hypotensive Epidural	Spinal	High	Intraoperative Blood Loss	146 (100)	13 (27)	Favors Spinal
Niemi et al. 2000	30	Hip	Hypotensive Epidural	Spinal	High	Intraoperative Blood Loss	400 (163- 575)	900 (663- 1100)	Favors Hypotensive Epidural
Juelsgaard et al. 2001	30	Knee	Hypotensive Epidural	Spinal	High	Postoperative Blood Loss at 3hours	499 (171)	1036 (595)	Favors Hypotensive Epidural
Juelsgaard et al. 2001	30	Knee	Hypotensive Epidural	Spinal	High	Postoperative Blood Loss at 24 hours	816 (271)	1461 (612)	Favors Hypotensive Epidural
Juelsgaard et al. 2001	30	Knee	Hypotensive Epidural	Spinal	High	Total Blood Loss	1056 (272)	1826 (765)	Favors Hypotensive Epidural
Niemi et al. 2000	30	Hip	Hypotensive Epidural	Spinal	High	Total Blood Loss at 3 hours	600 (300- 775)	1100 (763- 1338)	Favors Hypotensive Epidural
Niemi et al. 2000	30	Hip	Hypotensive Epidural	Spinal	High	Total Blood Loss at 24 hours	850 (500- 1350)	1500 (1025- 1838)	No Difference

Table 44. Epidural vs. Spinal Anesthesia - Blood Loss

RECOMMENDATION 10

Current evidence does not provide clear guidance about whether inferior vena cava (IVC) filters prevent pulmonary embolism in patients undergoing elective hip and knee arthroplasty who also have a contraindication to chemoprophylaxis and/or known residual venous thromboembolic disease. Therefore, we are unable to recommend for or against the use of such filters.

Grade of Recommendation: Inconclusive

Description: Evidence from a single low quality study or conflicting findings that do not allow a recommendation for or against the intervention. An **Inconclusive** recommendation means that there is a lack of compelling evidence resulting in an unclear balance between benefits and potential harm.

Implications: Practitioners should feel little constraint in following a recommendation labeled as **Inconclusive**, exercise clinical judgment, and be alert for emerging evidence that clarifies or helps to determine the balance between benefits and potential harm. Patient preference should have a substantial influencing role.

RATIONALE

No studies met the inclusion criteria for VTED-related outcomes in arthroplasty patients. Two studies of non-arthroplasty patients compared PE and death rates between patients who received IVC filters and those who did not (see Table 45 for a summary of the results of these studies, Table 46 for a detailed presentation of the results of these studies, and Table 56 in Appendix XIII for our evaluations of their quality and applicability). One was a low quality study of bariatric surgery patients, which found no differences in VTED outcomes between patients with and without IVC filters. The other was a low quality study of trauma patients which reported lower rates of PE and fatal PE in patients who received IVC filters. The work group did not make a consensus recommendation for or against the use of inferior vena cava filters because these filters require surgery to place in the patient. Surgery adds cost and potential harms to the patient, and consensus recommendations are only allowed for low cost and low risk interventions. Therefore, based on the limited and conflicting data regarding the benefits of IVC filters in preventing pulmonary embolism, and the fact that none of the studies included arthroplasty patients, we are unable to recommend for or against their use in hip and knee arthroplasty patients (the reasons we excluded some studies that were initially considered for this recommendation are provided in Appendix XIV, Table 65).

FINDINGS Table 45. IVC Filter Summary Table

Arthroplasty	Bariatric Surgery	Trauma Surgery
Patients	Patients	Patients
No data	0	0
	0	•
		•
	0	
	Patients	Arthroplasty PatientsSurgery PatientsNo dataOO

o: no statistically significant difference •: statistically significant in favor of filter

QUALITY AND APPLICABILITY

The two included studies for this recommendation were both of low quality and moderate applicability. For details, see Table 56 in Appendix XIII.

RESULTS

Table 46. IVC Filter Results

Author	Ν	Patient Population	Study Design	Strength	Outcome	Results
Obeid	2099	Bariatric surgery patients	Retro Comparative	Low	All-Cause Mortality	No significant difference OR: 3.8 (0.3, 26.3)
Obeid	2099	Bariatric surgery patients	Retro Comparative	Low	PE	No significant difference OR: 1.4 (0.1, 6.3)
Obeid	2099	Bariatric surgery patients	Retro Comparative	V. Low	DVT	No significant difference OR: 1.9 (0.3, 7.0)
Khan- sarinia	324	Trauma patients	Historically- matched controls	Low	All-Cause Mortality	No significant difference OR: 0.7 (0.4, 1.4)
Khan- sarinia	324	Trauma patients	Historically- matched controls	Low	PE-related Death	Favors filter patients OR: 0 (0, 0.8)
Khan- sarinia	324	Trauma patients	Historically- matched controls	Low	PE	Favors filter patients OR: 0 (0, 0.6)

FUTURE RESEARCH

The inability of the available data to distinguish between prophylaxis and no prophylaxis as well as between different prophylactic regimens with regard to the critical outcomes (reoperation due to bleeding, death from bleeding, symptomatic PE, death from PE, periprosthetic joint infection, all cause mortality, reoperation for any reason within 90 days of surgery) in addition to the uncertainty concerning the value of surrogate outcomes (such as the incidence of deep vein thrombosis), suggests that the approach to conducting clinical trials on thrombo-prophylactic agents needs to be re-examined. Studies need to be sufficiently powered to detect relatively rare events; the use of registries may help in addressing this requirement. In addition, clinical trials need to report the critical outcomes noted above. Specific areas that the work group targeted for further research include:

- 1. Characterization of risk factors for VTED and bleeding in hip and knee arthroplasty patients;
- 2. Evaluation of multi-modal treatment regimens which combine pharmacoprophylaxis, mechanical prophylaxis, and other modalities (e.g. early mobilization and regional anesthesia);
- 3. Utilization of administrative data sets to obtain the necessary sample size. This would be facilitated by creating codes for the different drugs and mechanical devices used during hospitalization;
- 4. Utilization of placebo controls in patients at standard risk of VTED in future clinical trials;
- 5. Utilization of advanced imaging studies (such as Magnetic Resonance Venography) to establish the presence of DVT in patients with definitive evidence of PE, as prior studies that have evaluated the prevalence of DVT in this population with ultrasonography have found a prevalence similar to routine screening;
- 6. Performance of a meta-analysis of the studies that have attempted to correlate DVT and PE;
- 7. Performance of studies evaluating the optimal timing and duration of administration of prophylactic agents and/or mechanical compression devices;
- 8. Performance of focused studies enrolling patients at high risk of VTED or bleeding;
- 9. Performance of clinical trials in revision hip and knee arthroplasty procedures; and
- 10. Clarification of the role of IVC filters in prophylaxis of high-risk patients.

Appendices

APPENDIX I

Work Group Roster

Joshua J. Jacobs M.D., Chair

1725 W Harrison St Ste 1063 Chicago, IL 60612-3828

Michael A Mont M.D., Vice Chair

Sinai Hospital of Baltimore Rubin Institute for Advanced Orthopedics 2401 West Belvedere Ave 5th FL Baltimore, MD 21215

Kevin John Bozic M.D., MBA

University of California, San Francisco Department of Orthopaedic Surgery 500 Parnassus Ave. MU-320W San Francisco, CA 94143

Craig J Della Valle, M.D.

Rush University Med Ctr 1725 W Harrison St Ste 1063 Chicago, IL 60612

Stuart Barry Goodman, M.D.

Stanford Univ Med Ctr/Ortho Surg 450 Broadway St Redwood City, CA 94063

Courtland G Lewis, M.D.

Connecticut Joint Replacement Institution 114 Woodland Street Hartford, CT 06105

Adolph "Chick" J Yates Jr, M.D.

Univ of Pittsburgh Med Ctr Shadyside Medical Bldg Ste 415 5200 Centre Ave Pittsburgh, PA 15232-1300

Lisa N. Boggio M.D. M.S.

Assistant Professor of Medicine Rush University Medical Center 1725 W Harrison Street Suite 809 Chicago, IL 60612

Guidelines Oversight Chair

William C Watters III M.D.

6624 Fannin #2600 Houston, TX 77030

AAOS Staff:

Charles M Turkelson Ph.D

Director of Research & Scientific Affairs 6300 N River Road Rosemont, IL 60018

Janet L Wies MPH

Manager, Clinical Practice Guidelines wies@aaos.org

Patrick Sluka MPH

Lead Research Analyst <u>Sluka@aaos.org</u>

Kristin Hitchcock MIS

AAOS Medical Librarian

APPENDIX II AAOS BODIES THAT APPROVED THIS CLINICAL PRACTICE GUIDELINE Guidelines Oversight Committee

The AAOS Guidelines Oversight Committee (GOC) consists of sixteen AAOS members. The overall purpose of this Committee is to oversee the development of the clinical practice guidelines, performance measures, health technology assessments and utilization guidelines.

Evidence Based Practice Committee

The AAOS Evidence Based Practice Committee (EBPC) consists of ten AAOS members. This Committee provides review, planning and oversight for all activities related to quality improvement in orthopaedic practice, including, but not limited to evidence-based guidelines.

Council on Research, Quality Assessment, and Technology

To enhance the mission of the AAOS, the Council on Research and Quality promotes the most ethically and scientifically sound basic, clinical, and translational research possible to ensure the future care for patients with musculoskeletal disorders. The Council also serves as the primary resource to educate its members, the public, and public policy makers regarding evidenced-based medical practice, orthopaedic devices and biologics, regulatory pathways and standards development, patient safety, occupational health, technology assessment, and other related areas of importance.

The Council is comprised of the chairs of the AAOS Biological Implants, Biomedical Engineering, Evidence Based Practice, Guidelines Oversight, Occupational Health and Workers' Compensation, Patient Safety, Research Development, and US Bone and Joint Decade committees. Also on the Council are the AAOS second vice-president, representatives of the Diversity Advisory Board, the Women's Health Issues Advisory Board, the Board of Specialty Societies (BOS), the Board of Councilors (BOC), the Communications Cabinet, the Orthopaedic Research Society (ORS), the Orthopedic Research and Education Foundation (OREF), and three members at large.

Board of Directors

The 17 member AAOS Board of Directors manages the affairs of the AAOS, sets policy, and determines and continually reassesses the Strategic Plan.

DOCUMENTATION OF APPROVAL

AAOS Work Group Draft Completed	April 22, 2011
Peer Review Completed	May 22, 2011
Public Commentary Completed	August 26, 2011
AAOS Guidelines Oversight Committee	September 7, 2011
AAOS Evidence-Based Practice Committee	September 7, 2011
AAOS Council on Research and Quality	September 13, 2011
AAOS Board of Directors	September 23, 2011

A minimum of $\underline{63}$ professionals reviewed and were provided the opportunity to vote on the contents of this document during the approval process.

APPENDIX III DETERMINING CRITICAL OUTCOMES WORK GROUP PARTICIPATION

The first task of the work group is to determine what outcomes are critical to addressing the recommendations in the guideline. This is accomplished by asking the work group to construct a preliminary list of important outcomes prior to attending the introductory meeting. Following the introductory meeting, the work group will be asked to participate in three Delphi rounds, completing the "Critical Outcomes Form" shown below.

CRITICAL OUTCOMES FORM DETERMINING OUTCOMES

The first task as a guideline work group is to determine what outcomes the guideline should address. We accomplish this by listing the outcomes you think are relevant, by determining how important each outcome is, by focusing on patient-oriented outcomes, and by looking at benefits <u>and</u> harms.

Criticality

Some outcomes are more important than others. The outcomes that are *most* important are critical outcomes. Critical outcomes are vital to determining whether you should offer a treatment or diagnostic test to a patient. Without knowing what the critical outcomes are and how that treatment or test affects them, you cannot determine whether the treatment or test is worth giving.

For example, you couldn't decide whether to give a patient a knee replacement if you knew nothing about whether it would relieve that patient's pain or nothing about the severity and frequency of adverse surgical-related events like the frequency of pulmonary emboli. Pain relief and pulmonary embolisms are critical outcomes, If you knew absolutely nothing about how knee replacement affected them, the formal possibility that knee replacement surgery did not relieve pain but did cause pulmonary emboli would exist. As physicians, your goal is just the opposite; to relive suffering and to first do no harm.

Patient-Oriented Outcomes

In general, good medicine and good evidence-based medicine gives priority to patientoriented outcomes. These are the outcomes patients care about. Patient oriented outcomes:

- Help the patient live longer or better
- Are typically something the patient feels
- Are often the patient's diagnostic or treatment goal(s)
- Do not require extrapolation or interpolation to determine their importance to the patient

Examples of patient-oriented outcomes are:

- Survival/mortality
- Pain relief
- Fracture prevention
- Functional Status
- Quality of Life

Surrogate Outcomes

Patient-oriented outcomes contrast with surrogate outcomes. Surrogate outcomes:

- Substitute measures for patient-oriented outcomes
- Are typically not felt by the patient
- Are typically not the reason the patient goes to a physician and, therefore, not typically the patient's goal for the treatment.
- Require extrapolation or interpolation to determine their relationship to (or effect on) patient-oriented outcomes

Examples of surrogate outcomes are:

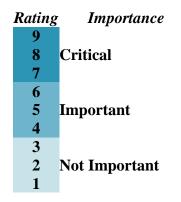
- Blood cholesterol (a surrogate for survival)
- Bone mineral density (a surrogate for fractures)
- All imaging results (imaging results are often surrogates for pain or functional status, but they can be surrogates for other patient-oriented outcomes, too)

Benefits and Harms

As physicians, you are interested in benefits <u>and</u> harms. Benefits are patient-oriented outcomes the patient wants and harms are patient-oriented outcomes they don't want. Avoiding something (e.g. fractures or death) can be a benefit.

Words of Warning

To determine which outcomes to examine and their importance, you need to think not only like a physician, but like a patient. Ask yourself, "What do patients want?" "How will they judge whether the treatment is a success or failure?"


If you only spend about 15 minutes on specifying critical outcomes:

• You haven't done your job

- The strength of the recommendation you can make on a given topic will be adversely affected. It may even be the case that a guideline cannot make a recommendation about a very important treatment or diagnostic
- You will be unhappy the final guideline

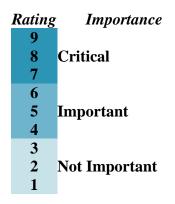
Rating Outcomes

In addition to asking you to identify important outcomes, we are also asking you to specify how important each outcome is. To do this, please rate them on a scale of 1-9. The meaning of these ratings is shown in the table below:

Please also note that:

- 1. Unless you are interested in measures of diagnostic test performance (e.g., sensitivity and specificity), no surrogate outcome may be rated as "Critical" (i.e., rated 7-9)
- 2. If you rate every outcome as important in an effort to include every outcome in the guideline, we will have to discard your input. The outcomes you list and the ratings you provide will not be considered.

Final Determinations


We expect that the work group input will differ. Some of you will list outcomes that are not listed by others and your ratings of the importance of outcomes will also differ from those of other members of your work group. We will use the Delphi method to determine which outcomes to include, and which outcomes are critical and which are not. We will limit the method to three rounds.

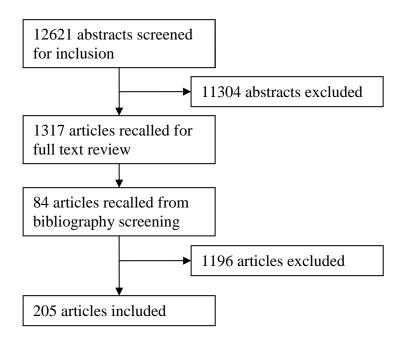
PLEASE RETURN THIS PAGE WITH YOUR INPUT

On this page, please list up to 10 outcomes that this guideline should address, and rate them on a scale from 1-9. PLEASE DO NOT CONSULT WITH OTHER MEMBERS OF THE WORK GROUP WHEN LISTING OUTCOMES OR MAKING YOUR RATINGS.

Outcome Number	Outcome	Rating
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Please use the table below to assist you in assigning ratings to the importance of each of the outcomes you listed:

Please also note that:


- 1. Unless you are interested in measures of diagnostic test performance (e.g., sensitivity and specificity), no surrogate outcome may be rated as "Critical" (i.e., rated as 7-9).
- 2. If you rate every outcome as critical (i.e., as 7, 8, or 9) in an effort to include every outcome in the guideline, we will discard your input. The outcomes you list and the ratings you provide will be discarded.
- 3. This form will be forwarded <u>three times.</u> We will use the Delphi method to determine which outcomes to include, and which outcomes are critical and which are not. We will limit the method to three rounds. Thank you in advance for your cooperation.

Using this Delphi process, the work group identified seven critical outcomes for this guideline: all cause mortality, death from bleeding, death from pulmonary embolism, periprosthetic joint infection, reoperation due to bleeding, reoperation for any reason within 90 days of surgery, and symptomatic pulmonary embolism.

The work group identified the following outcomes as important: asymptomatic PE, bleeding (any site), cellulitis/minor wound hematoma, disability from PE, disability from vein occlusion, duration of hospitalization, ease of use of prophylactic regimen, function, infection (all sites), long-term anticoagulation due to symptomatic PE, long-term anticoagulation for proximal DVT, major post-phlebitic syndrome, non-surgical site bleeding, pain, post-op bleeding/hematoma, post-phlebitic syndrome, quality of life, readmission, symptomatic DVT, thigh DVT, and vena caval filter for recalcitrant/recurrent DVT.

The work group identified the following outcomes as not important: asymptomatic DVT, calf DVT, duration of anti-coagulation, long-term anticoagulation for distal DVT, and looks better.

APPENDIX IV INCLUDED AND EXCLUDED ARTICLES FLOWCHART

[(12,621-11,304) + 84] - 1,196 = 205

APPENDIX V LITERATURE SEARCHES SEARCH STRATEGY TIER 1 (HIP AND KNEE ARTHROPLASTY) *MEDLINE*

#1 "arthroplasty, replacement, hip"[mh] OR "arthroplasty, replacement, knee"[mh] OR "hip prosthesis"[mh] OR "knee prosthesis"[mh] OR (("Joint Prosthesis"[mh:noexp] OR "Prostheses and Implants"[mh:noexp] OR "arthroplasty"[mh:noexp] OR "arthroplasty, replacement"[mh:noexp]) AND (hip OR hips OR knee OR knees OR joint* OR "lower limb"))

#2 "total knee" OR "total hip" OR ((THR OR TKR OR THA OR TKA OR prosthesis OR prostheses OR replacement* OR arthroplast*) AND (hip OR hips OR knees OR knee OR joint* OR "lower limb"))

#3 #1 OR #2

#4 "Venous Thrombosis"[mh:noexp] OR Thrombophlebitis[mh] OR "Venous Thromboembolism"[mh] OR dvt OR vte OR thrombos* OR thrombophleb* OR thromboembol* OR thromboprophyla* OR "Pulmonary embolism"[mh] OR ((pulmonary OR lung OR lungs) AND (infarct* OR embol* OR clot OR clots OR bloodclot*))

#5 chemoprophyla*[tiab] OR Anticoagulants[mh] OR anticoagulants[pa] OR anticoagul*[tiab] OR "fibrinolytic agents"[mh] OR "fibrinolytic agents"[pa] OR antithrombo*[tiab] OR thrombolytic*[tiab] OR thromboprophyla*[tiab] OR antiplatelet*[tiab] OR anti-platelet*[tiab] OR "platelet aggregation inhibitors"[mh] OR heparin[mh] OR heparin*[tiab] OR enoxaparin[tiab] OR lovenox[tiab] OR plavix[tiab] OR coumadin[tiab] OR clopidogrel[nm] OR warfarin[mh] OR warfarin*[tiab] OR fragmin[tiab] OR dalteparin[tiab] OR innohep[tiab] OR tinzaparin[nm] OR arixtra[tiab] OR fondaparinux[nm] OR "factor Xa inhibitor"[tiab] OR angiomax[tiab] OR bivalirudin[nm] OR refludan[tiab] OR aspirin[mh] OR aspirin[tiab] OR lepirudin[nm] OR iprivask[tiab] OR desirudin[nm] OR pradaxa[tiab] OR dabigatran[tiab] OR "dabigatran etexilate"[nm] OR xarelto[tiab] OR rivaroxaban[nm] OR YM150 OR LY517717 OR apixaban[tw]

#6 "Vena cava filters"[mh] OR ("Vena cava, inferior"[mh] AND "Filtration/instrumentation"[mh] AND 1972:1990[mhda]) OR (("vena cava"[tiab] OR ivc[tiab] OR Greenfield[tiab]) AND (filter*[tiab] OR filtration[tiab]))

#7 "stockings, compression"[mh] OR (compression[tiab] AND (sequential[tiab] OR stocking*[tiab] OR device*[tiab] OR (bandages[mh] AND 1970:2006[mhda]))) OR "Intermittent Pneumatic Compression Devices"[mh] OR (foot[tiab] AND (pump[tiab] OR pumps[tiab])) OR ((pneumatic[tiab] OR leg[tiab] OR calf[tiab]) AND compression[tiab]) OR (mechanical[tiab] AND prophyla*[tiab])

#8 #4 OR #5 OR #6 OR #7

#9 "1966"[PDat]:"2011"[PDat] AND English[lang]

#10 (animal[mh] NOT human[mh]) OR cadaver[mh] OR cadaver*[titl] OR ((comment[pt] OR editorial[pt] OR letter[pt] OR "historical article"[pt]) NOT "Study Characteristics"[pt]) OR addresses[pt] OR news[pt] OR "newspaper article"[pt] OR "case report"[titl]

#11 #3 AND #8 AND #9 NOT #10

#12 #1 OR (#2 NOT medline[sb])

#13 bleed*[tiab] OR blood*[tiab] OR hemorrhag*[tiab] OR "Hemorrhage"[mh] OR "Blood Loss, Surgical"[mh] OR "Blood transfusion"[mh] OR transfus*[tiab] OR hematoma* OR haematoma*

#14 #12 AND #13 AND #9 NOT #10

#15 #11 OR #14

EMBASE

#1 Arthroplasty/de OR 'hip arthroplasty'/exp OR 'knee arthroplasty'/exp

#2 (hip OR hips OR knee OR knees OR joint* OR 'lower limb') NEAR/5 (prosthe* OR replacement* OR arthroplast*)

#3 #1 OR #2

#4 'Vein thrombosis'/de OR thrombophlebitis/de OR 'venous thromboembolism'/exp OR 'deep vein thrombosis' OR dvt OR vte OR thrombos* OR thrombophelb* OR thromboembol* OR ((pulmonary OR lung OR lungs) AND (infarct* OR embolism* OR clot OR clots OR bloodclot*))

#5 chemoprophyla* OR 'anticoagulant agent'/exp OR 'thrombin inhibitor'/exp OR 'blood clotting inhibitor'/exp OR antithromb* OR thrombolytic* OR thromboprophyla* OR 'factor Xa inhibitor' OR antiplatelet* OR anti-platelet OR lovenox OR enoxaparin OR plavix OR Coumadin OR clopidogrel/de OR warfarin/de OR warfarin OR fragmin OR dalteparin OR 'heparin derivative'/exp OR innohep OR tinzaparin/de OR arixtra OR fondaparinux/de OR angiomax OR hirulog/de OR refludan OR lepirudin/de OR aspirin OR 'acetylsalicylic acid'/de OR heparin/exp OR argatroban OR argatroban/de OR iprivask OR desulfatohirudin/de OR pradaxa OR 'dabigatran etexilate'/de OR dabigatran/de OR xarelto OR rivaroxaban/de OR YM150 OR LY517717 OR apixaban

#6 'vena cava filter'/de OR (('vena cava' OR ivc OR Greenfield:ti,ab) AND (filter*:ti,ab OR filtration:ti,ab))

#7 'compression garment'/de OR (compression AND (sequential OR stocking* OR device*)) OR 'intermittent pneumatic compression device'/de OR 'foot pumps' OR

((pneumatic OR calf) NEAR/3 compression) OR (mechanical AND prophyla*) OR mobilization OR mobilisation

#8 bleed*:ti,ab OR blood*:ti,ab OR hemorrhag*:ti,ab OR bleeding/exp OR 'Blood transfusion'/de OR transfus* OR hematoma* OR haematoma*

#9 #4 OR #5 OR #6 OR #7 OR #8

#10 #3 AND #9

#11 English:la AND [humans]/lim AND [embase]/lim

#12 cadaver/de OR 'in vitro study'/exp OR 'abstract report'/de OR book/de OR editorial/de OR note/de OR (letter/de NOT 'types of study'/exp) OR 'case report':ti

#13 #10 AND #11 NOT #12

COCHRANE LIBRARY

((hip OR hips OR knee OR knees OR joint* OR "lower limb") AND (arthroplast* OR prosthe*)):ti,ab

AND

(thrombos* OR thrombophleb* OR thromboembol* OR thromboprophyla* OR "pulmonary embolism" OR dvt OR vte OR chemoprophyla* OR anticoagulant OR antithromb* OR thrombolytic* OR thromboprophyla* OR "factor Xa inhibitor" OR antiplatelet* OR lovenox OR plavix OR Coumadin OR clopidogrel OR warfarin OR fragmin OR heparin OR enoxaparin OR dalteparin OR innohep OR tinzaparin OR arixtra OR fondaparinux OR angiomax OR hirulog OR refludan OR lepirudin OR aspirin OR argatroban O OR iprivask OR desulfatohirudin OR pradaxa OR dabigatran OR xarelto OR rivaroxaban OR YM150 OR LY517717 OR apixaban OR "vena cava filter" OR "Greenfield filter" OR "foot pumps" OR ((pneumatic OR calf OR stocking*) AND compression) OR (mechanical AND prophyla*) OR mobilization OR mobilization):ti,ab

SEARCH STRATEGY TIER 2 (EXPAND TO ALL SURGICAL PATIENTS)

For potential risk factors for VTED and bleeding with no evidence from hip or knee arthroplasty patients, we conducted a supplementary search in August, 2010, which expanded the search paramaters to include any surgical patients. We also expanded the search to include any surgical patients for IVC filters due to the lack of evidence specific to hip or knee arthroplasty patients.

RISK OF VTE IN SUBPOPULATIONS

Search strategy PubMed/MEDLINE

#1 "Surgical Procedures, Operative"[mh] OR surgery[tw] OR surgical[tw] OR invasive[tw] OR procedure*[tw]

#2 "Venous Thrombosis"[majr:noexp] OR "Venous Thromboembolism"[majr] OR "Pulmonary embolism"[majr] OR ((dvt[titl] OR vte[titl] OR thrombos*[titl] OR thromboembol*[titl] OR ((pulmonary[titl] OR lung[titl] OR lungs[titl]) AND (infarct*[titl] OR embol*[titl] OR clot[titl] OR clots[titl] OR bloodclot*[titl]))) NOT medline[sb])

#3 "risk factors"[titl] OR "risk assessment"[titl] OR "risk stratification"[titl] OR epidemiolog*[titl]

#4 "pelvic bones/surgery"[mh] OR "Bones of Lower Extremity/surgery"[mh] OR knee/surgery[mh] OR "Bed rest"[mh] OR "bed rest" OR confinement[tiab] OR immobilization[tiab] OR mobility[tiab] OR "casts, surgical"[mh] OR "Catheterization, Central Venous"[mh] OR "Inflammatory Bowel Diseases"[mh] OR "Peripheral Vascular Diseases"[mh] OR Lymphedema[mh] OR screening[tiab] OR caprini[tiab]

#5 risk[tw] OR predict*[tw] OR incidence[tw]

#6 #1 AND #2 AND (#3 OR (#4 AND #5))

#7 "1966"[PDat]:"2010"[PDat] AND English[lang]

#8 (animal[mh] NOT human[mh]) OR cadaver[mh] OR cadaver*[titl] OR ((comment[pt] OR editorial[pt] OR letter[pt] OR "historical article"[pt]) NOT "Study Characteristics"[pt]) OR addresses[pt] OR news[pt] OR "newspaper article"[pt] OR "case report"[titl] OR pmcbook

#9 #6 AND #7 NOT #8

Search Strategy EMBASE

#1 Surgery/exp/mj OR surgery:ti OR surgical:ti OR invasive:ti OR procedure*:ti

#2 'deep vein thrombosis'/mj OR 'leg thrombosis'/mj OR 'venous thromboembolism'/exp/mj

#3 Risk/mj OR "risk stratification":ti OR epidemiolog*:ti

#4 'bones of the leg and foot'/exp/dm_su OR leg/exp/dm_su OR 'bed rest'/de OR confinement:ti,ab OR immobilization/de OR 'plaster cast'/de OR 'restricted mobility' OR 'limited mobility' 'central venous catheterization'/de OR 'enteritis'/de OR 'ulcerative colitis'/de OR 'colon Crohn disease'/de OR 'Crohn disease'/de OR 'peripheral vascular disease'/exp OR lymphedema/exp OR 'screening test'/de OR screening/de OR caprini:ti,ab

#5 Risk/exp OR predict*:ti,ab OR incidence/de

#6 #1 AND #2 AND (#3 OR (#4 AND #5))

#7 English:la AND [humans]/lim AND [embase]/lim

#8 cadaver/de OR 'in vitro study'/exp OR 'abstract report'/de OR book/de OR editorial/de OR note/de OR (letter/de NOT 'types of study'/exp) OR 'case report':ti

#9 #6 AND #7 NOT #8

RISK OF HEMORRHAGE IN SELECTED SUBPOPULATIONS Search strategy PubMed/MEDLINE

#1 "Postoperative Hemorrhage"[majr] OR (Hemorrhage[majr] AND "postoperative complications"[majr] AND 1966[mhda]:1995[mhda]) OR "Blood Loss, Surgical"[majr] OR (bleeding[titl] AND ("intraoperative complications"[mh] OR "Postoperative Hemorrhage"[mh] OR "Blood Loss, Surgical"[mh] OR (hemorrhage[mh] AND 1966[mhda]:1995[mhda] AND "Surgical procedures, operative"[mh])))

#2 "risk factors"[tw] OR "risk assessment"[tw] OR "risk stratification"[tw] OR epidemiolog*[tw]

#3 "Peptic Ulcer"[mh] OR "Coagulation Protein Disorders"[mh] OR "Intracranial Hemorrhages"[mh] OR "Intracranial Aneurysm"[mh] OR aneurysm*[tiab] OR "Brain Neoplasms"[mh] OR "Liver Diseases"[mh] OR "Tooth Extraction"[mh] OR "Platelet Aggregation Inhibitors"[mh] OR Contusions[mh] OR bruising[tiab] OR epistaxis[tw] OR "Disseminated Intravascular Coagulation"[mh] OR "Blood Coagulation Tests"[mh] OR "Platelet Count"[mh] OR "Platelet Function Tests"[mh] OR "Blood Coagulation Tests"[mh] OR retroperitoneal[tiab] OR "Medical History Taking"[mh] OR ((history[tiab] OR previous[tiab]) AND bleeding[tiab])

#4 risk[tw] OR predict*[tw] OR incidence[tw]

#5 #1 AND (#2 OR (#3 AND #4))

#6 "1966"[PDat]:"2010"[PDat] AND English[lang]

#7 (animal[mh] NOT human[mh]) OR cadaver[mh] OR cadaver*[titl] OR ((comment[pt] OR editorial[pt] OR letter[pt] OR "historical article"[pt]) NOT "Study Characteristics"[pt]) OR addresses[pt] OR news[pt] OR "newspaper article"[pt] OR "case report"[titl] OR pmcbook

#8 #5 AND #6 NOT #7

Search Strategy EMBASE

#1 bleeding/mj OR 'wound hemorrhage'/mj OR 'postoperative hemorrhage'/mj

#2 Risk/exp OR "risk stratification" OR epidemiolog*

#3 'gastrointestinal hemorrhage'/de OR 'bleeding tendency'/de OR 'bleeding disorder'/de OR 'blood clotting factor deficiency'/exp OR 'dental surgery'/de OR 'tooth extraction'/de OR 'brain hemorrhage'/exp OR 'brain tumor'/exp OR 'intracranial aneurysm'/exp OR 'retroperitoneal hemorrhage'/de OR 'liver disease'/exp OR 'antithrombocytic agent'/exp OR thrombocytopenia/exp OR 'skin bruising'/de OR 'epistaxis'/de OR 'disseminated intravascular clotting'/de OR 'blood clotting test'/exp OR 'blood clotting parameters'/exp OR 'medical history'/de #4 English:la AND [humans]/lim AND [embase]/lim

#5 cadaver/de OR 'in vitro study'/exp OR 'abstract report'/de OR book/de OR editorial/de OR note/de OR (letter/de NOT 'types of study'/exp) OR 'case report':ti

#6 #1 AND #2 AND #3 AND #4 NOT #5

IVC IN PATIENTS CONTRAINDICATED FOR CHEMOPROPHYLAXIS <u>Search strategyPubMed/MEDLINE</u>

#1 "Surgical Procedures, Operative"[mh] OR surgery[titl] OR surgical[titl] OR invasive[titl] OR procedure*[titl]

#2 "Vena cava filters"[mh] OR ("Vena cava, inferior"[mh] AND "Filtration/instrumentation"[mh] AND 1972:1990[mhda]) OR (("vena cava"[tiab] OR ivc[tiab] OR Greenfield[tiab]) AND (filter*[tiab] OR filtration[tiab]) NOT medline[sb]) OR "stockings, compression"[mh] OR (compression[tiab] AND (sequential[tiab] OR stocking*[tiab] OR device*[tiab] OR (bandages[mh] AND 1970:2006[mhda]))) OR "Intermittent Pneumatic Compression Devices"[mh] OR (foot[tiab] AND (pump[tiab] OR pumps[tiab])) OR ((pneumatic[tiab] OR leg[tiab] OR calf[tiab]) AND compression[tiab]) OR (mechanical[tiab] AND prophyla*[tiab])

#3 contraindicat*[tw] OR recurr*[tiab] OR "high risk" OR residual[tiab] OR hemorrhag*[tiab] OR bleeding[tiab] OR chemoprophyla*[tiab] OR anticoagulants[pa] OR "fibrinolytic agents"[pa]

#4 "Venous Thrombosis"[mh:noexp] OR Thrombophlebitis[mh] OR "Venous Thromboembolism"[mh] OR "Pulmonary embolism"[mh] OR thromboprophyla*[tiab] OR ((thrombos* OR thrombophleb* OR thromboembol* OR ((pulmonary OR lung OR lungs) AND (infarct* OR embol* OR clot OR clots OR bloodclot*))) NOT medline[sb])

#5 #1 AND #2 AND #3 AND #4

#6 "1966"[PDat]:"2010"[PDat] AND English[lang]

#7 (animal[mh] NOT human[mh]) OR cadaver[mh] OR cadaver*[titl] OR ((comment[pt] OR editorial[pt] OR letter[pt] OR "historical article"[pt]) NOT "Study Characteristics"[pt]) OR addresses[pt] OR news[pt] OR "newspaper article"[pt] OR "case report"[titl] OR pmcbook

#8 #5 AND #6 NOT #7

Search Strategy EMBASE

#1 Surgery/exp OR surgery:ti OR surgical:ti OR invasive:ti OR procedure*:ti

#2 'vena cava filter'/mj OR 'intermittent pneumatic compression devices'/mj OR 'compression garment'/mj OR 'foot pump' OR 'foot pumps' OR 'mechanical prophylaxis'

#3 Contraindicat* OR recur* OR 'high risk' OR 'high risk patient'/de OR (residual AND ('deep vein thrombosis'/de OR 'leg thrombosis'/de)) OR 'chemoprophylaxis'/de

#4 English:la AND [humans]/lim AND [embase]/lim

#5 cadaver/de OR 'in vitro study'/exp OR 'abstract report'/de OR book/de OR editorial/de OR note/de OR (letter/de NOT 'types of study'/exp) OR 'case report':ti

#6 #1 AND #2 AND #3 AND #4 NOT #5

APPENDIX VI QUALITY AND APPLICABILITY QUESTIONS STUDIES OF INTERVENTIONS QUALITY

Quality questions are separately asked for every outcome reported in a study. The quality questions that are asked vary according to the study's design. Different questions are asked when a study is a controlled study with a contemporary control group, a crossover study, a historically controlled study, or a case series. A total of 20 questions are asked for each design. The questions asked for each design, the domain that each question addresses, and the answers that give rise to the highest possible strength of evidence within each design are shown in the table below.

	Farallel,			
	Contemporary	Crossover	Historical	Case
Question:	Controls	Trials	Controls	Series
Stochastic	Yes	Yes	No	No
Quasi-random Assignment	No	No	No	na*
Matched Groups	No	No	Yes	No
Consecutive Enrollment	na	na	na	Yes
Prospective	Yes	Yes	Yes	Yes
Blinded Patients	Yes	Yes	No	No
Blinded Assessors	Yes	Yes	No	No
Blinding Verified	Yes	Yes	No	No
Allocation Concealment	Yes	Yes	No	No
>80% Follow-up	Yes	Yes	No	Yes
<20% Completion Difference	Yes	Yes	No	No
Similar Baseline Outcome Values	Yes	na	Yes	No
Comparable Pt. Characteristics	Yes	na	Yes	No
Same Control Group Results	na	Yes	na	na
Same Experimental Group Results	na	Yes	na	na
Same Centers	Yes	Yes	Yes	No
Same Treatment Duration in and across All Groups	Yes	Yes	Yes	No
Same Concomitant Treatment to All Groups				
(controlled studies only)	Yes	Yes	Yes	na
No Confounding Treatment (case series only)	na	na	na	Yes
Same Instruments	Yes	Yes	Yes	Yes
Valid Instrument	Yes	Yes	Yes	Yes
Article & Abstract Agree	Yes	Yes	Yes	Yes
	StochasticQuasi-random AssignmentMatched GroupsConsecutive EnrollmentProspectiveBlinded PatientsBlinded AssessorsBlinding VerifiedAllocation Concealment>80% Follow-up<20% Completion Difference	Question:ControlsStochasticYesQuasi-random AssignmentNoMatched GroupsNoConsecutive EnrollmentnaProspectiveYesBlinded PatientsYesBlinded AssessorsYesBlindig VerifiedYesAllocation ConcealmentYes>80% Follow-upYes<20% Completion Difference	Question:Contemporary ControlsCrossover TrialsStochasticYesYesQuasi-random AssignmentNoNoMatched GroupsNoNoConsecutive EnrollmentnanaProspectiveYesYesBlinded PatientsYesYesBlinded AssessorsYesYesBlinding VerifiedYesYesAllocation ConcealmentYesYes>80% Follow-upYesYesSimilar Baseline Outcome ValuesYesnaComparable Pt. CharacteristicsYesnaSame Control Group ResultsnaYesSame CentersYesYesSame CentersYesYesSame Concomitant Treatment to All GroupsYesYesNo Confounding Treatment (case series only)nanaSame InstrumentsYesYesValid InstrumentYesYesValid InstrumentYesYes	Question:Contemporary ControlsCrossover TrialsHistorical ControlsStochasticYesYesNoQuasi-random AssignmentNoNoNoMatched GroupsNoNoNoConsecutive EnrollmentnananaProspectiveYesYesYesBlinded PatientsYesYesNoBlinded AssessorsYesYesNoBlinding VerifiedYesYesNoAllocation ConcealmentYesYesNo>80% Follow-upYesYesNo<20% Completion Difference

Quality Questions and Domains for Four Designs of Studies of Interventions

Parallel

		Parallel,			
		Contemporary	Crossover	Historical	Case
Domain	Question:	Controls	Trials	Controls	Series
Bias	All Outcomes Reported	Yes	Yes	Yes	Yes
Bias	A Priori Analysis	Yes	Yes	Yes	Yes
Statistical Power	Statistically Significant	High	High	High	High
Statistical Power	Number of patients in analysis	See below for further information			

*"na" means "not asked"

The statistical power domain is assessed differently from the other domains. We characterize this domain as free from flaws if any one of the following is true:

- The results of a statistical test on the outcome of interest were statistically significant (it is obvious that the study must have had enough power if it found statistically significant results).
- The results of a statistical test of the outcome of interest were not statistically significant (or it was unclear whether the results were statistically significant), and the study was either an uncontrolled study in which data from 34 or more patients were included in the statistical analysis of the outcome of interest OR a controlled study in which data from 128 or more patients were included in the analysis of the outcome of interest.
- The study's results for the outcome of interest are used in a meta-analysis. We make this assumption because one reason for performing a meta-analysis is to compensate for the low statistical power of individual studies. Implicit in this assumption is a second assumption; that the power of the meta-analysis will be sufficient to detect an effect as statistically significant.

We term the power domain as flawed if all of the following are true:

- The results of a statistical test on the outcome of interest were either not statistically significant or it was unclear whether the results of statistical test on the outcome of interest were statistically significant.
- The study was an uncontrolled study in which data from fewer than 15 patients were included in the analysis of the outcome of interest OR the study was a controlled study in which data from fewer than 52 patients were included in the analysis of the outcome of interest.
- The results on the outcome of interest will not be used in a meta-analysis.

The numbers of used to determine whether a study is of sufficient power are based on Cohen's⁴⁹ definitions of small, medium, and large effects. To compute the number of patients needed for an uncontrolled study that uses a pretest/posttest design, we assume a paired, 2-tailed t-test on the pre- and post-treatment results. We then determine whether the number of patients in the study was sufficient to detect large effect (defined as a standardized mean difference of ≥ 0.8) while assuming and an alpha of 0.05 as the

significance level, and 80% power. If a study does not have the ability to detect even a large effect as statistically significant, we characterize it as underpowered, and term the power domain as flawed.

To compute the number of patients needed for a controlled study, we assume a 2-tailed t-test of independent groups that contained an equal number of patients, and then determine whether the number of patients in the study was a large effect, again assuming an alpha of 0.05 and 80% power. As above, we term a study as underpowered and the Power domain as flawed if the study did not enroll enough patients to detect a large effect size, and adequately powered if it enrolled enough patients to detect a small effect. *APPLICABILITY*

We determine the applicability of a study using the PRECIS instrument.²² This instrument consists of 10 questions. The domains to each question applies is shown in the table below.

Question	Domain
All Types of Patients Enrolled	Participants
Flexible Instructions to Practitioners	Interventions and Expertise
Full Range of Expt'l Practitioners	Interventions and Expertise
Usual Practice Control	Interventions and Expertise
Full Range of Control Practitioners	Interventions and Expertise
No Formal Follow-up	Interventions and Expertise
Usual and Meaningful Outcome	Interventions and Expertise
Compliance Not Measured	Compliance and Adherence
No Measure of Practitioner Adherence	Compliance and Adherence
All Patients in Analysis	Analysis

Applicability Questions and the Domains for Studies of Interventions

SCREENING AND DIAGNOSTIC TESTS

QUALITY

We evaluate the quality of screening and diagnostic tests using the QUADAS instrument.²³ The 14 QUADAS questions and the quality domains addressed by each are shown in the table below.

QUADAS Question:	Domain
Full Patient Spectrum	Participants
Patient Selection Criteria Described	Reporting
Ref. Std. Classifies Condition	Reference Test
Disease Progression Absent	Study Design
Partial Verification Avoided	Study Design
Differential Verification Avoided	Study Design
Independent Ref. Std. and Index Test	Reference Test
Index Test Execution Described	Reporting
Reference Std. Execution Described	Reporting
Index Test Interpreted without Ref. Std.	
Results	Index Test
Ref. Test Interpreted without Index Test	
Results	Reference Test
Usual Clinical Data Available	Information
Uninterpretable /Indeterminate Results	
Reported	Reporting
Withdrawals Explained	Reporting

QUADAS Questions and Domains

Nine of the QUADAS instrument questions address quality and five address reporting. Quality and reporting are distinct. Quality addresses whether a study's results are "believable" whereas reporting addresses the how well the design, conduct, and analysis of a study were described in a published article. The questions about reporting are:

- Patient Selection Criteria Described
- Index Test Execution Described
- Reference Std. Execution Described
- Uninterruptable/Indeterminate Results Reported
- Withdrawals Explained

The remaining QUADAS questions address quality. Some flaws in quality flaws are so serious that they have a major effect on the quality of a study. These serious flaws are:

- Spectrum bias (Spectrum bias occurs when a study does not enroll the full spectrum of patients who are seen in clinical practice. For example, a diagnostic case control study enrolls only those known to be sick and those known to be well, a patient population quite different from that seen in practice. Because diagnostic case control studies enroll only the easy to diagnose patients, these kinds of studies typically overestimate the abilities of a diagnostic test.)
- Failure to give all patients the reference standard regardless of the index test results

• Non-independence of the reference test and the index text

Because the QUADAS instrument contains reporting questions, quality questions, and questions about whether a study flaw was serious, we arrive at quality ratings in a stepwise answer. First, we determine if one or more serious flaw is present. First, we determine whether any serious flaws are present. If so the quality of evidence is automatically set to "Very Low". "Serious flaws" are present only if the relevant QUADAS question is answered "No". We do not use "Unclear" answers to indicate the presence of a serious flaw.

If no serious flaws are present, we then determine a quality rating using all domains *except* the reporting domain. A domain is considered flawed if there are one or more "No" answer or two or more "Unclear" to the questions that address that domain. The relationship between the five quality domains and the reporting domain are shown in the table below:

Number of Flawed Domains	Strength of Evidence
0	High
1	Moderate
2	Low
≥3	Very Low

Relationship between Quality and Domain Scores for Screening/Diagnostic Tests

Finally, we use the reporting domain to modify the quality determined in the second step. If one or two of the five QUADAS reporting questions are answered "No", the quality rating is not changed. If three questions are answered "No" the quality is reduced by one category (e.g., from "High" to "Moderate), if four reporting questions are "No", the quality is reduced by two categories (e.g., from "High" to "Low"), and if all five reporting questions are answered "No" the quality is reduced by three categories. (e.g., from "High" to "Very Low"). Two "Unclear" answers are counted as equivalent to one "No" answer in the reporting domain. We also set "floor" so that no study can ever have less than "Very Low" quality. For example, evidence classed as "Low" quality at the second step of our quality appraisal cannot be reduced below "Very Low" even if all of the reporting questions are answered "No."

APPLICABILITY

We evaluate the evidence about screening and diagnostic tests using seven questions that fall into four domains. Some of these questions are from the PRECIS instrument. However, because the PRECIS instrument was designed to evaluate studies of interventions, some of the original questions have been deleted and others have been added. The applicability questions that APPRAISE uses for screening and diagnostics, and the domains to which they relate are shown in the table below. For instructions on how to answer these questions, click on the "Help" button shown on the form that displays these questions.

Question	Domain
All Types of Patients Enrolled	Participants
Flexible Instructions about Index Test Methods to Practitioners	Index Test
Full Range of Practitioners & Settings	Index Test
Full Range of Index Text Readers	Index Test
Index Test Usable in Routine Practice	Index Test
Patient's Outcomes Measured	Directness
All Patients in Analysis	Analysis

Applicability Questions and Domains for Screening and Diagnostic Tests

STUDIES OF PROGNOSTICS

QUALITY

We ask one or more questions to evaluate each of the five domains for the quality of the evidence on a prognostic. Most questions about prognostics are from Bagley and Golomb⁵⁰ and Concato et al.⁵¹ All questions on prognostics are answered "Yes" or "No."

Quality questions are separately asked for every prognostic variable reported in a study. A minimum of nine questions are asked. When a prognostic variable is one that predicts a dichotomous outcome an additional question is asked, and when the prognostic is one that attempts to predict response to a treatment yet another question is asked. The questions asked, and the domain that each question addresses, are shown in the table below:

Question	Domain
Prospective	Prospective
At Least 10 Patients per Important Variable	Power
At Least 10 Events*	Power
All Important Variables Screened for Entry Into Model	Analysis
Interactions Tested	Analysis
Collinearity Absent	Analysis
Primary Analysis (not subgroup or post hoc)	Analysis
Statistically Significant Fit	Model
Article and Abstract Agree	Investigator Bias
Results Reported for All Variables Studies	Investigator Bias
Blinded Data Analysts**	Investigator Bias

Quality Questions and Domains for Studies of Prognostics

*Asked only if the variable predicted by the prognostic is dichotomous.

**Asked only if the prognostic variable is derived from a study that attempts to predict which patients respond best to a treatment.

APPLICABILITY

We evaluate the applicability of evidence about prognostics using six questions that fall into three domains. We separately evaluate applicability for each prognostic a study reports. All of questions about the applicability of evidence on prognostics are answered "Yes" or "No". The six questions and the domains they address are shown in the table below.

Applicability Questions and Domains for Studies of Prognostics

Question	Domain
Full Spectrum of Patients	Patients
All Patients in Analysis	Patients
No Stepwise Analysis	Analysis
Unambiguous Coding Scheme	Analysis
Model Validated	Analysis
Clinically Meaningful Outcome	Outcome

APPENDIX VII FORM FOR ASSIGNING GRADE OF RECOMMENDATION

GUIDELINE RECOMMENDATION_____

PRELIMINARY GRADE OF RECOMMENDATION: _____

STEP 1: LIST BENEFITS AND HARMS

Please list the benefits (as demonstrated by the systematic review) of the intervention.

Please list the harms (as demonstrated by the systematic review) of the intervention.

Please list the benefits for which the systematic review is not definitive.

Please list the harms for which the systematic review is not definitive.

STEP 2: IDENTIFY CRITICAL OUTCOMES

Please circle the above outcomes that are critical for determining whether the intervention is beneficial and whether it is harmful.

Are data about critical outcomes lacking to such a degree that you would lower the preliminary strength of the recommendation?

What is the resulting strength of recommendation?

STEP 3: EVALUATE APPLICABILITY OF THE EVIDENCE

Is the applicability of the evidence for any of the critical outcomes so low that substantially worse results are likely to be obtained in actual clinical practice?

Please list the critical outcomes backed by evidence of doubtful applicability.

Should the strength of recommendation be lowered because of low applicability?

What is the resulting strength of recommendation?

STEP 4: BALANCE BENEFITS AND HARMS

Are there trade-offs between benefits and harms that alter the strength of recommendation obtained in STEP 3?

What is the resulting strength of recommendation?

STEP 5 CONSIDER STRENGTH OF EVIDENCE

Does the strength of the existing evidence alter the strength of recommendation obtained in STEP 4?

What is the resulting strength of recommendation?

NOTE: Because we are not performing a formal cost analyses, you should only consider costs if their impact is substantial.

APPENDIX VIII RULES FOR MAKING OPINION BASED RECOMMENDATIONS

A guideline can contain recommendations that are backed by little or no data. Under such circumstances, work groups often issue opinion-based recommendations. Although doing so is sometimes acceptable in an evidence-based guideline (expert opinion is a form of evidence), it is also important to avoid constructing a guideline that liberally uses expert opinion; research shows that expert opinion is often incorrect.

Opinion-based recommendations are developed only if they address a vitally important aspect of patient care. For example, constructing an opinion-based recommendation in favor of taking a history and physical is warranted. Constructing an opinion-based recommendation in favor of a specific modification of a surgical technique is seldom warranted. To ensure that an opinion-based recommendation is absolutely necessary, the AAOS has adopted rules to guide the content of the rationales that underpin such recommendations. These rules are based on those outlined by the US Preventive Services Task Force (USPSTF).³⁰ Specifically, rationales based on expert opinion must:

- Not contain references to or citations from articles not included in the systematic review that underpins the recommendation.
- Not contain the AAOS guideline language "We Recommend", "We suggest" or "The practitioner might".
- Contain an explanation of the potential preventable burden of disease. This involves considering both the incidence and/or prevalence of the disease, disorder, or condition and considering the associated burden of suffering. To paraphrase the USPSTF, when evidence is insufficient, provision of a treatment (or diagnostic) for a serious condition might be viewed more favorably than provision of a treatment (or diagnostic) for a condition that does not cause as much suffering. The AAOS (like the USPSTF) understand that evaluating the "burden of suffering" is subjective and involves judgment. This evaluation should be informed by patient values and concerns. The considerations outlined in this bullet make it difficult to recommend new technologies. It is not appropriate for a guideline to recommend widespread use of a technology backed by little data and for which there is limited experience. Such technologies are addressed in the AAOS' Technology Overviews.
- Address potential harms. In general, "When the evidence is insufficient, an intervention with a large potential for harm (such as major surgery) might be viewed less favorably than an intervention with a small potential for harm (such as advice to watch less television)."³⁰
- Address apparent discrepancies in the logic of different recommendations. Accordingly, if there are no relevant data for several recommendations and the work group chooses to issue an opinion-based recommendation in some cases but chooses not to make a recommendation in other cases, the rationales for the opinion-based recommendations must explain why this difference exists. Information garnered from the previous bullet points will be helpful in this regard.

- Consider current practice. The USPSTF specifically states that clinicians justifiably fear that not doing something that is done on a widespread basis will lead to litigation.³⁰The consequences of not providing a service that is neither widely available nor widely used are less serious than the consequences of not providing a treatment accepted by the medical profession and thus expected by patients. Discussions of available treatments and procedures rely on mutual communication between the patient's guardian and physician, and on weighing the potential risks and benefits for a given patient. The patient's "expectation of treatment" must be tempered by the treating physician's guidance about the reasonable outcomes that the patient can expect.
- Justify, why a more costly device, drug, or procedure is being recommended over a less costly one whenever such an opinion-based recommendation is made.

Work group members write the rationales for opinion based recommendations on the first day of the final work group meeting. When the work group re-convenes on the second day of its meeting, it will vote on the rationales. The typical voting rules will apply. If the work group cannot adopt a rationale after three votes, the rationale and the opinion-based recommendation will be withdrawn, and a "recommendation" stating that the group can neither recommend for or against the recommendation in question will appear in the guideline.

Discussions of opinion-based rationales may cause some members to change their minds about whether to issue an opinion-based recommendation. Accordingly, at any time during the discussion of the rationale for an opinion-based recommendation, any member of the work group can make a motion to withdraw that recommendation and have the guideline state that the work group can neither recommend for or against the recommendation in question.

CHECKLIST FOR VOTING ON OPINION BASED RECOMMENDATIONS

When voting on the rationale, please consider the following:

- 1. Does the recommendation affect a substantial number of patients or address treatment (or diagnosis) of a condition that causes death and/or considerable suffering?
- 2. Does the recommendation address the potential harms that will be incurred if it is implemented and, if these harms are serious, does the recommendation justify;
 - a. why the potential benefits outweigh the potential harms and/or
 - b. why an alternative course of treatment (or diagnostic workup) that involves less serious or fewer harms is not being recommended?
- 3. Does the rationale explain why the work group chose to make a recommendation in the face of minimal evidence while, in other instances, it chose to make no recommendation in the face of a similar amount of evidence?

- 4. Does the rationale explain that the recommendation is consistent with current practice?
- 5. If relevant, does the rationale justify why a more costly device, drug, or procedure is being recommended over a less costly one?

VOTING BY THE NOMINAL GROUP TECHNIQUE

Voting on guideline recommendations will be conducted using a modification of the nominal group technique (NGT), a method previously used in guideline development. ³¹ Briefly each member of the guideline Work Group ranks his or her agreement with a guideline recommendation or performance measure on a scale ranging from 1 to 9 (where 1 is "extremely inappropriate" and 9 is "extremely appropriate"). Consensus is obtained if the number of individuals who do not rate a measure as 7, 8, or 9 is statistically non-significant (as determined using the binomial distribution). Because the number of Work Group members who are allowed to dissent with the recommendation depends on statistical significance, the number of permissible dissenters varies with the size of the work group. The number of permissible dissenters for several work group sizes is given in the table below:

Work Group Size	Number of Permissible Dissenters
≤3	Not allowed. Statistical
	significance cannot be
	obtained
4-5	0
6-8	1
9	1 or 2

The NGT is conducted by first having members vote on a given recommendation/performance measure without discussion. If the number of dissenters is "permissible", the recommendation/measure is adopted without further discussion. If the number of dissenters not permissible, there is further discussion to see whether the disagreement(s) can be resolved. Three rounds of voting are held to attempt to resolve disagreements. If disagreements are not resolved after three voting rounds, no recommendation/measure is adopted.

APPENDIX IX STRUCTURED PEER REVIEW FORM

Review of any AAOS confidential draft allows us to improve the overall guideline but <u>does not imply endorsement</u> by any given individual or any specialty society who participates in our review processes. The AAOS review process may result in changes to the documents; therefore, endorsement cannot be solicited until the AAOS Board of Directors officially approves the final guideline.

Reviewer Information:			
Name of Reviewer			
Address			
City	State	Zip Code	
Phone	Fax	E-mail	
Specialty Area/Disciplin	e:		
Work setting:	Credential	S:	
If you do not wish to be		idelines (GL)? oved for identification purposes. th the comments you have made	☐ Yes ☐ No
Are you reviewing this	s guideline as a representati	ve of a professional society?	Yes No
If yes, may we list you	r society as a reviewer of th	is guideline?	Yes No
Society Name:			
(Listing the specialty so	ciety as a reviewing society de	oes not imply or otherwise indica	ate endorsement of this guideline.)

Conflicts of Interest (COI): All Reviewers must declare their conflicts of interest.

If the boxes below are not checked and/or the reviewer does not attach his/her conflicts of interest, the reviewer's comments will not be addressed by the AAOS nor will the reviewer's name or society be listed as a reviewer of this GL. If a committee reviews the guideline, only the chairperson/or lead of the review must declare their relevant COI.

 I have declared my conflicts of interest on page 2 of this form. I have declared my conflicts of interest in the AAOS database; my customer # is
☐ I understand that the AAOS will post my declared conflicts of interest with my comments concerning review of this guideline or technology overview on the AAOS website.

REVIEWER CONFLICT OF INTEREST - The Orthopaedic Disclosure Program

Each item below requires an answer. Please report information for the last 12-months as required by the Accreditation Council for Continuing Medical Education (ACCME) guidelines.

Do you or a member of your immediate family receive royalties for any pharmaceutical, biomaterial or orthopaedic product or device?	🗌 Yes 🗌 No
If YES, please identify product or device:	
Within the past twelve months, have you or a member of your immediate family served on the speakers bureau or have you been paid an honorarium to present by any pharmaceutical, biomaterial or orthopaedic product or device company?	🗌 Yes 🗌 No
If YES, please identify company:	
Are you or a member of your immediate family a PAID EMPLOYEE for any pharmaceutical, biomaterial or orthopaedic device or equipment company, or supplier?	🗌 Yes 🗌 No
If YES, please identify company or supplier:	
Are you or a member of your immediate family a PAID CONSULTANT for any pharmaceutical, biomaterial or orthopaedic device or equipment company, or supplier?	🗌 Yes 🗌 No
If YES, please identify company or supplier:	
Are you or a member of your immediate family an UNPAID CONSULTANT for any pharmaceutical, biomaterial or orthopaedic device or equipment company, or supplier?	🗌 Yes 🗌 No
If YES, please identify company or supplier:	
Do you or a member of your immediate family own stock or stock options in any pharmaceutical, biomaterial or orthopaedic device or equipment company, or supplier (excluding mutual funds)	🗌 Yes 🗌 No
If YES, please identify company or supplier:	
Do you or a member of your immediate family receive research or institutional support as a principal investigator from any pharmaceutical, biomaterial or orthopaedic device or equipment company, or supplier?	🗌 Yes 🗌 No
If YES, please identify company or supplier:	
Do you or a member of your immediate family receive any other financial or material support from any pharmaceutical, biomaterial or orthopaedic device and equipment company or supplier?	🗌 Yes 🗌 No
If YES, please identify company or supplier:	<u> </u>
Do you or a member of your immediate family receive any royalties, financial or material support from any medical and/or orthopaedic publishers?	🗌 Yes 🗌 No
If YES, please identify publisher:	
Do you or a member of your immediate family serve on the editorial or governing board of any medical and/or orthopaedic publication?	🗌 Yes 🗌 No
If YES, please identify:	<u> </u>
Do you or a member of your immediate family serve on the Board of Directors or a committee of any medical and/or orthopaedic professional society?	🗌 Yes 🗌 No
If YES, please identify:	

Reviewer Instructions

Please read and review this Draft Clinical Practice Guideline and its associated Technical Report with particular focus on your area of expertise. Your responses are confidential and will be used only to assess the validity, clarity and accuracy of the interpretation of the evidence. If applicable, please specify the draft page and line numbers in your comments. Please feel free to also comment on the overall structure and content of the guideline and Technical Report. If you need more space than is provided, please attach additional pages.

Please complete and return this form electronically to <u>wies@aaos.org</u> or fax the form back to Jan Wies at (847) 823-9769. Thank you in advance for your time in completing this form and giving us your feedback. We value your input and greatly appreciate your efforts. Please send the completed form and comments by end of day **DATE**.

Please indicate your level of agreement with each of the following statements by placing an "X" in the appropriate box.

	Disagree	Somewhat Disagree	Somewhat Agree	Agree
1. The recommendations are clearly stated		Ō	Ď	Ō
2. There is an explicit link between the recommendations and the supporting evidence				
3. Given the nature of the topic and the data, all clinically important outcomes are considered				
4. The guideline's target audience is clearly described				
5. The patients to whom this guideline is meant to apply are specifically described				
6. The criteria used to select articles for inclusion are appropriate				
7. The reasons why some studies were excluded are clearly described				
8. All important studies that met the article inclusion criteria are included				
9. The validity of the studies is appropriately appraised				
10. The methods are described in such a way as to be reproducible.				
11. The statistical methods are appropriate to the material and the objectives of this guideline				
12. Important parameters (e.g., setting, study population, study design) that could affect study results are systematically addressed				
13. Health benefits, side effects, and risks are adequately addressed				
14. The writing style is appropriate for health care professionals.				
15. The grades assigned to each recommendation are appropriate				

COMMENTS

Please provide a brief explanation of both your positive and negative answers in the preceding section. If applicable, please specify the draft page and line numbers in your comments. Please feel free to also comment on the overall structure and content of the guideline and Technical Report

OVERALL ASSESSMENT

Would you recommend these guidelines for use in practice? (check one)

- Strongly recommend
- Recommend (with provisions or alterations)
- U Would not recommend
- Unsure

APPENDIX X PARTICIPATING PEER REVIEW ORGANIZATIONS

Participation in the AAOS peer review process does not constitute an endorsement of this guideline by the participating organization.

Peer review of the draft guideline is completed by external organizations with an interest in the guideline. Outside peer reviewers are solicited for each AAOS guideline and consist of experts in the guideline's topic area. These experts represent professional societies other than AAOS and are nominated by the guideline work group prior to beginning work on the guideline. For this guideline, twenty-six outside peer review organizations were invited to review the draft guideline and all supporting documentation. Eleven societies participated in the review of the guideline on Preventing Venous Thromboembolic Disease in patients Undergoing Elecitve Hip or Knee Arthroplasty. Seven organizations explicitly consented to be listed as a peer review organization in this appendix.

The organizations that reviewed the document and consented to be listed as a peer review organization are listed below:

American Academy of Family Physicians (AAFP)

American Association of Hip and Knee Surgeons (AAHKS)

American College of Chest Physicians (ACCP)

American Society of Regional Anesthesia and Pain Medicine (ASRAPM)

American Surgical Association, Society of Surgical Chairs

International Society on Thrombosis and Hemostasis

Joint Commission on Accreditation of Healthcare Organizations

Individuals who participated in the peer review of this document and gave their explicit written consent to be listed as reviewers of this document are:

Ethan Balk, M.D. MPH

Henri Bounameaux, M.D.

John Eikelboom M.D., MBBS, MSc, FRACP, FRCPA, FRCPC

Crystal A. Riley, PharmD, R.Ph.

Karen Kolbusz, RN, BSN, MBA

Robyn Liu, MD, MPH, FAAFP, ABFM, ABPM

Charles M. Davis III, M.D., PhD

Yngve Falck-Ytter, M.D.

Terese T. Horlocker, M.D.

K. Craig Kent M.D.

Gregory R. Wise, MD, CPE, FACP, FACHE, CPHQ

These reviewers' comments are available with all other guideline documentation on our website.

Participation in the AAOS guideline peer review process does not constitute an endorsement of the guideline by the participating organizations or the individuals listed above nor does it is any way imply the reviewer supports this document.

PUBLIC COMMENTATORS

A period of public commentary follows the peer review of the draft guideline. If significant non-editorial changes are made to the document as a result of public commentary, these changes are also documented and forwarded to the AAOS bodies that approve the final guideline.

Public commentators who gave explicit consent to be listed in this document include the following:

Participation in the AAOS guideline public commentary review process does not constitute an endorsement of the guideline by the participating organizations or the individual listed nor does it in any way imply the reviewer supports this document.

APPENDIX XI INTERPRETING FOREST PLOTS

We use descriptive diagrams known as forest plots to present data from studies comparing the differences in outcomes between two treatment groups when a metaanalysis has been performed (combining results of multiple studies into a single estimate of overall effect). The estimate of overall effect is presented at the bottom of the graph using a diamond to illustrate the confidence intervals of the estimated overall effect. The odds ratio is the effect measure used to depict differences in outcomes between the two treatment groups of a study. The horizontal line running through each point represents the 95% confidence interval for that point. The solid vertical line represents "no effect" where the odds ratio is equal to one.

ABBREVIATIONS USED IN THIS REPORT

μL	microliter
μL 95% CI	95% Confidence Interval
AAOS	American Academy of Orthopaedic Surgeons
APC	Activated protein C
aPTT	activated partial thromboplastin time
BMI	Body mass index
BOC	AAOS Board of Councilors
BOD	AAOS Board of Directors
BOD	AAOS Board of Specialty Societies
COI	Conflict of interest
CORQ	AAOS Council on Research and Quality
CPG	Clinical practice guidelines
dL	deciliter
DVT	Deep vein thrombosis
EBM	Evidence-based medicine
EBP	Evidence-based practice
EBPC	AAOS Evidence-Based Practice Committee
FDA	United States Food and Drug Administration
g	gram
GČS	Graduated compression stocking
GI	Gastrointestinal
GOC	AAOS Guidelines Oversight Committee
	Grading of Recommendations, Assessment, Development, and
GRADE	Evaluation
HD	High dose
HR	Hazard ratio
INR	International normalized ratio
IOM	Institute of Medicine
IPC	Intermittent pneumatic compression
IU	International unit
IVC	Inferior vena cava
LD	Low dose
LMWH	Low molecular weight heparin

μL	microliter
Mg	milligram
mĹ	milliliter
MR	Magnetic resonance
NR	Not reported
NS	Not significant
NSAID	Non-steroidal anti-inflammatory drug
OR	Odds ratio
OREF	Orthopaedic Research and Education Foundation
ORS	Orthopaedic Research Society
PE	Pulmonary embolism
PRECIS	pragmatic-explanatory continuum indicator summary
PT	Prothrombin time
PTT	Partial throboplastin time
QUADAS	Quality Assessment of Diagnostic Accuracy Studies instrument
RR	Relative risk
SCD	Sequential compression device
THA	Total hip arthroplasty
THR	Total hip replacement
TKA	Total knee arthroplasty
TKR	Total knee replacement
USPSTF	United States Preventive Services Task Force
VTE	Venous thromboembolism
VTED	Venous thromboembolic disease

APPENDIX XII CONFLICT OF INTEREST

All members of the AAOS work group disclosed any conflicts of interest prior to the development of the recommendations for this guideline. Conflicts of interest are disclosed in writing with the American Academy of Orthopaedic Surgeons via a private on-line reporting database and also verbally at the recommendation approval meeting.

Disclosure Items: (n) = Respondent answered 'No' to all items indicating no conflicts. 1=Board member/owner/officer/committee appointments; 2= Medical/Orthopaedic Publications; 3= Royalties; 4= Speakers bureau/paid presentations;5A= Paid consultant; 5B= Unpaid consultant; 6= Research or institutional support from a publisher; 7= Research or institutional support from a company or supplier; 8= Stock or Stock Options; 9= Other financial/material support from a publisher; 10= Other financial/material support from a company or supplier.

APPENDIX XIII QUALITY AND APPLICABILITY OF INCLUDED STUDIES *ROUTINE SCREENING*

Table 47 Quality and Applicability of Treatment Studies for Routine Screening

•: Domain fre •: Domain flav Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Schmidt 2003	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Schmidt 2003	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Schmidt 2003	Symptomatic DVT	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Schmidt 2003	Asymptomatic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Robinson 1997	Symptomatic PE	•	•	•	•	•	•	•	•	High	•	0	•	•	Moderate
Robinson 1997	Symptomatic proximal DVT	•	•	•	•	•	•	•	•	High	•	0	●	•	Moderate
Robinson 1997	Fatal PE	•	•	•	•	•		•	•	High	•	0		•	Moderate

•: Domain fre •: Domain flav Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Robinson 1997	Major bleeding	•	•	•	•	•	•	•	•	High	•	0	•	•	Moderate
Pellegrini 2005	Readmission for PE	•	•	0	0	0	0	•	•	Low	0	•	•	•	Moderate
Pellegrini 2005	Fatal PE	•	•	0	0	0	0	•	•	Low	0	•	•	•	Moderate
Pellegrini 2005	Readmission for DVT	•	•	0	0	0	0	•	•	Low	0	•	•	•	Moderate
Pellegrini 2006	Readmission for PE	•	•	0	0	0	0	•	•	Low	0	•	•	•	Moderate
Pellegrini 2006	Fatal PE	•	•	0	0	0	0	•	•	Low	0	•	•	•	Moderate
Pellegrini 2006	Readmission for DVT	•	•	0	0	0	0	•	•	Low	0	•	•	•	Moderate

Table 47 Quality and Applicability of Treatment Studies for Routine Screening

Table 48 Quality and Applicability of Diagnostic Studies for Routine Screening

•: Domain free of flaws

○: Domain flaw Study	vs present Test	Reporting (Penalty)	Index Test	Reference Test	Participants	Information	Study Design	Quality	Participants	Index Test	Directness of Results	Analysis	Applicability
Bounameaux 1998	D-dimer	0	•	•	•	•	•	High	•	0	•	0	Moderate
Abraham 1999	D-dimer	0	•	•	•	•	0	Moderate	•	0	0	0	Moderate
Niimi 2010	D-dimer	0	•	•	•	•	0	Moderate	•	0	•	0	Moderate
Larcom 1996	MR Venography	0	•	•	•	•	•	High	•	•	0	0	Moderate

RISK FACTORS FOR VTED

 Table 49. Quality and Applicability of Prognostic Studies for Risk Factors for VTED

•: Domain free of flaws

						Bias					
Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bias	Quality	Patients	Analysis	Outcomes	Applicability
Fujita 2000	Age	•	•	0	0	•	Low	•	0	0	Moderate
Joseph 2005	Age	•	•	0	0	•	Low	•	0	0	Moderate
Warwick 2007	Age	•	•	0	0	•	Low	0	0	•	Moderate
Leizorovicz 2007	Age	•	•	0	0	•	Low	•	0	0	Moderate
Pedersen 2010	Age	•	•	0	0	•	Low	•	•	•	High
Guijarro 2011	Age	•	•	0	0	•	Low	•	0	•	Moderate
Guijarro 2011	Cancer	•	•	0	0	•	Low	•	0	•	Moderate
Leizorovicz 2007	Cancer	•	•	0	0	•	Low	•	0	0	Moderate

•: Domain free of flaws

Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bias	Quality	Patients	Analysis	Outcomes	Applicability
Pedersen 2010	Cancer	•	•	0	0	•	Low	•	•	•	High
Guijarro 2011	Cardiovascular Diseases	•	•	0	0	•	Low	•	0	•	Moderate
Pedersen 2010	Cardiovascular Diseases	•	•	0	0	•	Low	•	•	•	High
Leizorovicz 2007	Chronic Heart Failure	•	•	0	0	•	Low	•	0	0	Moderate
Leizorovicz 2007	Chronic Respiratory Failure	•	•	0	0	•	Low	•	0	0	Moderate
Guijarro 2011	Diabetes	•	•	0	0	•	Low	•	0	•	Moderate
Pedersen 2010	Diabetes	•	•	0	0	•	Low	•	•	•	High
Lemos 1992	Estrogen	0	0	0	0	•	Very Low	0	0	•	Moderate
Joseph 2005	History of Blood Clotting Disorders	•	•	0	0	•	Low	•	0	0	Moderate

•: Domain free of flaws

Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bias	Quality	Patients	Analysis	Outcomes	Applicability
	History of Blood										Аррисиониу
Lowe 1999	Clotting Disorders	•	•	0	0	•	Low	0	0	0	Low
Warwick 2007	History of Heart Disease	•	•	0	0	•	Low	0	0	•	Moderate
Joseph 2005	History of Malignancy	•	•	0	0	•	Low	•	0	0	Moderate
Joseph 2005	History of VTE	•	•	0	0	•	Low	•	0	0	Moderate
Warwick 2007	History of VTE	•	•	0	0	•	Low	0	0	•	Moderate
Pedersen 2010	History of VTE	•	•	0	0	•	Low	•	•	•	High
Pearse 2007	Hormone Replacement Therapy	0	0	0	0	•	Very Low	•	0	0	Moderate
Hurbanek 2004	Hormone Replacement Therapy	0	•	0	0	•	Very Low	0	0	0	Low
White 2000	Hormone Replacement Therapy	0	•	0	•	•	Low	0	0	•	Moderate

•: Domain free of flaws

Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bias	Quality	Patients	Analysis	Outcomes	Applicability
Guijarro 2011	Hypertension	•	•	0	0	•	Low	•	0	•	Moderate
Gandhi 2009	Hypertension	0	•	0	0	•	Very Low	•	0	•	Moderate
Ryu 2010	Hypertension	0	0	0	0	•	Very Low	•	0	•	Moderate
Mraovic 2010	Hypertension	0	0	0	0	•	Very Low	0	0	•	Moderate
Guijarro 2011	Lung Disease	•	•	0	0	•	Low	•	0	•	Moderate
Leizorovicz 2007	Lung Disease	•	•	0	0	•	Low	•	0	0	Moderate
Guijarro 2011	Obesity	•	•	0	0	•	Low	•	0	•	Moderate
Fujita 2000	Obesity	•	•	0	0	•	Low	•	0	0	Moderate
Joseph 2005	Obesity	•	•	0	0	•	Low	•	0	0	Moderate

•: Domain free of flaws

		Prospective	Power	Analysis	Model	Investigator Bias		Patients	Analysis	Outcomes	
Study	Prognostic		P	A	2	Ē	Quality		A	0	Applicability
Warwick 2007	Obesity	•	•	0	0	•	Low	0	0	•	Moderate
Leizorovicz 2007	Obesity	•	•	0	0	•	Low	•	0	0	Moderate
Fujita 2000	Operating Time	•	•	0	0	•	Low	•	0	0	Moderate
Joseph 2005	Operating Time	•	•	0	0	•	Low	•	0	0	Moderate
Leizorovicz 2007	Operating Time	•	•	0	0	•	Low	•	0	0	Moderate
Lemos 1992	Peripheral Vascular Disease	0	0	0	0	•	Very Low	0	0	•	Moderate
SooHoo 2010	Peripheral Vascular Disease	0	•	0	0	•	Very Low	•	0	•	Moderate
Mahomed 2003	Race	0	•	0	0	•	Very Low	•	0	•	Moderate
Mahomed 2005	Race	0	•	0	0	•	Very Low	•	0	•	Moderate

•: Domain free of flaws

		Prospective	ver	Analysis	Model	Investigator Bias		Patients	Analysis	Outcomes	
Study	Prognostic	\Pr	Power	Ans	Mo	Inv	Quality	Pat	Ans	Out	Applicability
Memtsoudis 2009	Race	0	•	0	0	•	Very Low	•	0	•	Moderate
SooHoo 2006	Race	0	•	0	0	•	Very Low	•	0	•	Moderate
Keeney 2006	Race	0	0	0	0	•	Very Low	•	0	0	Moderate
White 1998	Race	0	•	0	0	•	Very Low	•	0	•	Moderate
SooHoo 2010	Race	0	•	0	0	•	Very Low	•	0	•	Moderate
Joseph 2005	Recent Surgery	•	•	0	0	•	Low	•	0	0	Moderate
Joseph 2005	Restricted Mobility	•	•	0	0	•	Low	•	0	0	Moderate
Nathan 2003	Restricted Mobility	•	0	0	0	•	Very Low	0	0	0	Low
Beksac 2006	Smoking	•	0	0	0	•	Very Low	•	0	•	Moderate

•: Domain free of flaws

		Prospective	Power	Analysis	Model	Investigator Bias		Patients	Analysis	Outcomes	
Study	Prognostic		P	A	2	Ē	Quality	4	A	0	Applicability
Eriksson 1991	Smoking	•	0	0	0	0	Very Low	•	0	0	Moderate
Lowe 1999	Smoking	•	•	0	0	•	Low	0	0	0	Low
Leizorovicz 2007	Smoking	•	•	0	0	•	Low	•	0	0	Moderate
Won 2011	Smoking	•	0	0	0	0	Very Low	•	0	•	Moderate
Eriksson 1991	Varicose Veins	•	0	0	0	0	Very Low	•	0	0	Moderate
Lowe 1999	Varicose Veins	•	•	0	0	•	Low	0	0	0	Low
Leizorovicz 2007	Varicose Veins	•	•	0	0	•	Low	•	0	0	Moderate
Warwick 2007	History of Venous Stasis	•	•	0	0	•	Low	0	0	•	Moderate
Pearse 2007	Venous Stasis	0	0	0	0	•	Very Low	•	0	0	Moderate

•: Domain free of flaws

Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bias	Quality	Patients	Analysis	Outcomes	Applicability
Hatef 2008	Screening Instrument	0	•	0	0	•	Very Low	0	0	0	Low
Hatel 2008		0	•	0	0		very Low	0	0	0	LOW
Kosir 1996	Screening Instrument	0	0	0	0	•	Very Low	0	0	0	Low
Bahl 2010	Screening Instrument	0	•	0	0	•	Very Low	0	0	0	Low
Bahl 2010	Inflammatory Bowel Disease	0	0	0	0	•	Very Low	0	0	0	Low
Bahl 2010	Central Venous Access	0	0	0	0	•	Very Low	0	0	0	Low
Frizzelli 2008	Central Venous Catheter	•	0	0	0	•	Very Low	0	0	•	Moderate

RISK FACTORS FOR BLEEDING

Table 50. Quality and Applicability of Prognostic Studies for Risk Factors for Bleeding

•: Domain free of flaws

	-	c)				r Bia s					
Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bia s	Quality	Patients	Analysis	Outcomes	Applicability
Shih 2004	Cirrhosis	0	•	0	0	•	Very Low	0	0	•	Moderate
Sikkema 2010	Hemophilia	0	•	0	0	•	Very Low	0	0	•	Moderate
Innocenti 2007	Hemophilia	•	0	0	0	•	Very Low	0	0	•	Moderate
Kim 2000	Aplastic Anemia	•	0	0	0	•	Very Low	0	0	•	Moderate
Gravlee 1994	Platelet Count	•	•	0	0	•	Low	0	0	•	Moderate
Dorman 1993	Platelet Count	•	•	0	0	•	Low	0	0	•	Moderate
Despotis 1982	Platelet Count	•	•	0	0	•	Low	0	0	•	Moderate
ElMalik 2000	Platelet Count	•	•	0	0	•	Low	0	0	•	Moderate

Table 50. Quality and Applicability of Prognostic Studies for Risk Factors for Bleeding

•: Domain free of flaws

o: Domain flaws present

•. Domain nuw	- Freedom					as					
Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bia	Quality	Patients	Analysis	Outcomes	Applicability
Gerlach 2002	Platelet Count	•	•	0	0	•	Low	0	0	•	Moderate
Karlsson 2008	Platelet Count	•	•	0	0	•	Low	0	0	•	Moderate
Gravlee 1994	РТ	•	•	0	0	•	Low	0	0	•	Moderate
Dorman 1993	РТ	•	•	0	0	•	Low	0	0	•	Moderate
Despotis 1982	РТ	•	•	0	0	•	Low	0	0	•	Moderate
ElMalik 2000	РТ	•	•	0	0	•	Low	0	0	•	Moderate
Gerlach 2002	РТ	•	•	0	0	•	Low	0	0	•	Moderate
Karlsson 2008	РТ	•	•	0	0	•	Low	0	0	•	Moderate
Dorman 1993	Fibrinogen	•	•	0	0	•	Low	0	0	•	Moderate

Table 50. Quality and Applicability of Prognostic Studies for Risk Factors for Bleeding

•: Domain free of flaws

o: Domain flaws present

	- process					S					
Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bia	Quality	Patients	Analysis	Outcomes	Applicability
Gerlach 2002	Fibrinogen	•	•	0	0	•	Low	0	0	•	Moderate
Karlsson 2008	Fibrinogen	•	•	0	0	•	Low	0	0	•	Moderate
Gravlee 1994	aPTT	•	•	0	0	•	Low	0	0	•	Moderate
Dorman 1993	aPTT	•	•	0	0	•	Low	0	0	•	Moderate
Despotis 1982	aPTT	•	•	0	0	•	Low	0	0	•	Moderate
ElMalik 2000	aPTT	•	•	0	0	•	Low	0	0	•	Moderate
Karlsson 2008	aPTT	•	•	0	0	•	Low	0	0	•	Moderate
Dorman 1993	Bleeding Time	•	•	0	0	•	Low	0	0	•	Moderate
Despotis 1982	Bleeding Time	•	•	0	0	•	Low	0	0	•	Moderate

Table 50. Quality and Applicability of Prognostic Studies for Risk Factors for Bleeding

•: Domain free of flaws

o: Domain flaws present

Study	Prognostic	Prospective	Power	Analysis	Model	Investigator Bia s	Quality	Patients	Analysis	Outcomes	Applicability
Gerlach 2002	PTT	•	•	0	0	•	Low	0	0	•	Moderate
Gravlee 1994	Earlobe Bleeding Time	•	•	0	0	•	Low	0	0	•	Moderate
Chan 1989	Thrombocytopenia	0	•	0	0	•	Very Low	0	0	•	Moderate
Della Ratta 1993	History of GI bleeding	0	•	0	0	•	Very Low	0	0	•	Moderate
Nuttall 2006	History of Bleeding with prior surgery	0	0	0	0	•	Very Low	0	0	•	Moderate
Woods 2008	Epistaxis	0	•	0	0	•	Very Low	0	0	•	Moderate
Woods 2008	History of bleeding after dental extraction	0	•	0	0	•	Very Low	0	0	•	Moderate

RISK FACTORS FOR HEMORRHAGE-ASSOCIATED COMPLICATIONS

Table 51. Quality and Applicability of Prognostic Studies for Risk Factors for Hemorrhage-AssociatedComplications

•: Domain free of f •: Domain flaws pr		ive				Investigator Bias				S	
Study	Prognostic	Prospective	Power	Analysis	Model	Investige	Quality	Patients	Analysis	Outcomes	Applicability
Borghi 2000	Revision	•	•	0	0	•	Low	•	0	•	Moderate
Rashiq 2004	Revision	0	•	0	0	•	Very Low	•	0	•	Moderate
Saleh 2007	Revision	0	•	0	0	•	Very Low	•	0	•	Moderate
Larocque 1997	Revision	0	•	0	0	•	Very Low	•	0	•	Moderate
Marx 2001	Revision	0	•	0	0	•	Very Low	•	0	•	Moderate
White 1990	Inflammatory Arthritis	0	•	0	0	•	Very Low	•	0	•	Moderate
Bong 2004	Inflammatory Arthritis	0	•	0	0	•	Very Low	•	0	•	Moderate
Walsh 2007	Inflammatory Arthritis	0	•	0	0	•	Very Low	•	0	•	Moderate
Marx 2001	Inflammatory Arthritis	0	•	0	0	•	Very Low	•	0	•	Moderate
SooHoo 2010	Inflammatory Arthritis	0	•	0	0	•	Very Low	•	0	•	Moderate
Moran 2005	Obesity	•	0	0	0	•	Very Low	•	0	ullet	Moderate
Aderinto 2004	Obesity	•	•	0	0	•	Low	•	0	•	Moderate
Mesa-Ramos 2008	Obesity	•	0	0	0	•	Very Low	0	0	•	Moderate
Amin 2006	Obesity		0	0	0	•	Very Low	0	0	•	Moderate

Table 51. Quality and Applicability of Prognostic Studies for Risk Factors for Hemorrhage-AssociatedComplications

•: Domain free of t •: Domain flaws pr		ective	•	sis	_	Investigator Bias		its	sis	mes	
Study	Prognostic	Prospective	Power	Analysis	Model	Invest	Quality	Patients	Analysis	Outcomes	Applicability
Chee 2010	Obesity	•	0	0	0	•	Very Low	0	0	•	Moderate
Guerin 2007	Hemoglobin	•	•	0	0	•	Low	•	0	•	Moderate
Aderinto 2004	Hemoglobin	•	\bullet	0	0	ullet	Low	•	0	•	Moderate
Mesa-Ramos 2008	Hemoglobin	•	0	0	0	•	Very Low	0	0	•	Moderate
Borghi 2000	Hemoglobin	•	\bullet	0	0	•	Low	•	0	•	Moderate
Marchant 2009	Diabetes	0	\bullet	0	0	ullet	Very Low	•	0	•	Moderate
SooHoo 2010	Diabetes	0	۲	0	0	۲	Very Low	•	0	•	Moderate
Sikkema 2010	Hemophilia	0	0	0	0	•	Very Low	0	0	•	Moderate

PREOPERATIVE ANTIPLATELET USE

 Table 52. Quality and Applicability of Treatment Studies for Preoperative Antiplatelet Use

•: Domain free •: Domain flaw	vs present	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias		Participants	Intervention and Expertise	Compliance and Adherence	Analysis	
Study	Outcome	<u> </u>			<u> </u>	<u> </u>			Ι	Quality		Η	<u> </u>	V.	Applicability
Kallis 1994	Reoperation for bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Ghaffarinejad 2007	Reoperation for bleeding	•	•	0	0	•	•	•	•	Moderate	0	0	•	•	Moderate
Firanescu 2009	Reoperation for bleeding	•	0	0	0	•	•	•	•	Moderate	0	0	•	•	Moderate
Kallis 1994	Blood Loss	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Ghaffarinejad 2007	Blood Loss	•	•	0	0	•	•	•	•	Moderate	0	0	•	•	Moderate
Firanescu 2009	Blood Loss	•	•	0	0	•	•	•	•	Moderate	0	0	•	•	Moderate

PROPHYLAXIS

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Agnelli 2007	Bleeding events (major and minor)	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Agnelli 2007	Major Bleeding	•	•	0	●	•	●	●	•	High	0	0	•	•	Moderate
Avikainen 1995	Postoperative Transfusions	•	•	0	۲	•	۲	٠	•	High	0	0	•	•	Moderate
Avikainen 1995	Revisions due to wound hematomas	•	•	0	●	•	•	●	•	High	0	0	•	•	Moderate
Avikainen 1995	Wound Infection	•	•	0	٠	•	•	٠	•	High	0	0	•	•	Moderate
Bailey 1991	Clinically important bleeding	•	•	0	●	0	•	●	•	Moderate	0	0	•	•	Moderate
Barber 1977	Deep wound infection	•	Ð	0	•	0	•	•	0	Moderate	0	0	•	•	Moderate
Barber 1977	Wound Hematoma	•	●	0	●	0	٠	•	0	Moderate	0	0	•	•	Moderate
Barrellier 2010	All Cause Mortality	•	•	•	0	•	٠	•	•	High	0	0	0	•	Moderate
Barrellier 2010	Fatal Bleeding	•	•	•	0	•		•	•	High	0	0	0	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
	Heparin-associated														
Barrellier 2010	Thrombocytopenia	•	•	•	0	•	•	•	•	High	0	0	0	•	Moderate
Barrellier 2010	Major Bleeding	•	ullet	•	0	•	•	•	\bullet	High	0	0	0	•	Moderate
Barrellier 2010	New Asymptomatic DVT (none at day7)	•	•	•	0	•	•	0	•	Moderate	0	0	0	•	Moderate
Barrellier 2010	Proximal DVT	•	•	•	0	•	•	0	•	Moderate	0	0	0	•	Moderate
Barrellier 2010	Symptomatic DVT	•	٠	•	0	•	•	•	•	High	0	0	0	•	Moderate
Barrellier 2010	Symptomatic PE	•	•	•	0	•	•	•	•	High	0	0	0	•	Moderate
Bauer 2001	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bauer 2001	Any DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Bauer 2001	Bleeding leading to reoperation	•	٠	•	٠	•	•	•	۲	High	0	0	•	•	Moderate
Bauer 2001	Distal DVT only	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Bauer 2001	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Bauer 2001	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bauer 2001	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bauer 2001	Other Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bauer 2001	Postoperative Transfusions	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bauer 2001	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Bauer 2001	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bauer 2001	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Bergqvist 1996	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Bergqvist 1996	Distal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Bergqvist 1996	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Bergqvist 1996	Hemoglobin decrease of 2g/dL	•	•	0	•	•	●	•	●	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Bergqvist 1996	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Bergqvist 1996	Proximal DVT	•	•	0	•	●	•	0	●	Moderate	0	0	•	0	Moderate
Bergqvist 1996	Rehospitalization due to DVT	•	٠	0	•	•	•	•	•	High	0	0	•	•	Moderate
Bergqvist 1996	Symptomatic DVT	•	•	0	•	۲	•	•	•	High	0	0	•	0	Moderate
Bergqvist 1996	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Bergqvist 1996	Venographic DVT	•	•	0	•	\bullet		0	•	Moderate	0	0	•	0	Moderate
Berkowitz 2003	Major Bleeding	•	Ð	0	•	•	•	•	•	High	0	0	0	•	Moderate
Berkowitz 2003	Minor Bleeding	•	Ð	0	•	•	•	•	•	High	0	0	0	•	Moderate
Berkowitz 2003	Patients receiving 2+ transfusions	•	O	0	•	•	•	•	•	High	0	0	0	•	Moderate
Berkowitz 2003	Patients receiving any postop transfusions	•	O	0		•		•	•	High	0	0	0	•	Moderate
Bonneux 2006	Postoperative Transfusions	•	O	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Bonneux 2006	Wound Problems	•	0	0	•	•	•	•	•	High	0	0	•	•	Moderate
Chin 2009	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Chin 2009	Distal DVT	٠	•	0	•	•	٠	0	•	Moderate	0	0	0	•	Moderate
Chin 2009	DVT (ultrasound)	•	•	0	•	•	•	0	•	Moderate	0	0	0	•	Moderate
Chin 2009	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Chin 2009	Major Bleeding necessitating intervention	●	•	0	•	●	•	•	•	High	0	0	0	•	Moderate
Chin 2009	Proximal DVT	۲	•	0	•	•	•	0	•	Moderate	0	0	0	•	Moderate
Chin 2009	Superficial wound infections	۲	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Chin 2009	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Cohen 2007	All Cause Mortality	٠	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Cohen 2007	Asymptomatic proximal DVT	•	•	•	•	•	•	0	•	High	0	0	0	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Cohen 2007	Clinically significant minor bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Cohen 2007	Fatal PE	•	•	•	●	•	●	•	•	High	0	0	0	•	Moderate
Cohen 2007	Hemoglobin decreased	•	•	•	●	•	●	•	•	High	0	0	0	•	Moderate
Cohen 2007	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Cohen 2007	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Cohen 2007	Need for transfusion	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Colwell 1994	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1994	Distal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	•	Moderate
Colwell 1994	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1994	Heparin-associated Thrombocytopenia	•	•	0	●	•	●	•	•	High	0	0	•	•	Moderate
Colwell 1994	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Colwell 1994	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1994	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	•	Moderate
Colwell 1994	Rehospitalization due to VTE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1994	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1994	Venographic DVT	•	•	0	lacksquare	0	•	0	•	Moderate	0	0	•	•	Moderate
Colwell 1995	Bleeding at nonoperative site	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1995	Bleeding at operative site	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1995	Distal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	•	Moderate
Colwell 1995	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1995	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1995	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Colwell 1995	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 1995	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	•	Moderate
Colwell 1999	All Cause Mortality	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 1999	Both Major and Minor Bleeding	•	•	0	●	•	●	•	•	High	•	0	0	•	Moderate
Colwell 1999	Fatal PE	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 1999	Heparin-induced Thrombocytopenia	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 1999	Major Bleeding	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 1999	Minor Bleeding	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 1999	Symptomatic PE	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 1999	Transfusions for replacement of operative blood loss	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
	Transfusions for									2					- II
Colwell 1999	replacement of postoperative blood loss	•	•	0	•	•	•	•	•	High	•	0	0	•	Moderate
Colwell 2006	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 2006	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 2006	Major Bleeding	•	•	•	•	•	•	٠	•	High	0	0	•	•	Moderate
Colwell 2006	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 2006	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 2006	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 2006	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Colwell 2010	Anemia requiring prolonged hospitalization	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate
Colwell 2010	Anemia with hypotension requiring intervention	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Colwell 2010	Distal DVT	•	•	0	•	0	0	0	•	Low	0	0	0	•	Moderate
Colwell 2010	Hematoma requiring prolonged hospitalization	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate
Colwell 2010	Hematoma requiring rehospitalization	•	•	0	●	0	0	•	●	Moderate	0	0	0	•	Moderate
Colwell 2010	Major Bleeding	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate
Colwell 2010	Minor Bleeding	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate
Colwell 2010	Proximal DVT	•	•	0	•	0	0	0	•	Low	0	0	0	•	Moderate
Colwell 2010	Symptomatic PE	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate
Colwell 2010	Ultrasound DVT	•	•	0	•	0	0	0	•	Low	0	0	0	•	Moderate
Colwell 2010	Urinary bleeding requiring rehospitalization	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate
Colwell 2010	Wound drainage requiring rehospitalization	•	•	0	•	0	0	•	•	Moderate	0	0	0	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Comp 2001	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Comp 2001	Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Comp 2001	Distal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	0	•	Moderate
Comp 2001	Ecchymosis	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Comp 2001	Injection-site Hemorrhage	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Comp 2001	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Comp 2001	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	0	•	Moderate
Comp 2001	Symptomatic PE	•	•	0	•	•	•	●	•	High	0	0	0	•	Moderate
Comp 2001	Venographic DVT	•	•	0	•	•		0	•	Moderate	0	0	0	•	Moderate
Dahl 1997	Adverse Events	•	•	0	•	•		۲	•	High	0	0	•	0	Moderate
Dahl 1997	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Dahl 1997	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dahl 1997	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dahl 1997	Proximal DVT	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dahl 1997	Serious Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dahl 1997	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dahl 1997	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dahl 1997	Venographic DVT	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dechavanne 1989	Bleeding Complications	•	Ð	0	•	•	•	•	•	High	0	0	•	•	Moderate
Dechavanne 1989	Superficial wound infections	•	O	0	•	•	•	•	•	High	0	0	•	•	Moderate
Dechavanne 1989	Thrombocytopenia	•	O	0	•	•	•	•	•	High	0	0	•	•	Moderate
Dechavanne 1989	Wound Hematoma	•	Ð	0	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Edwards 2008	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Edwards 2008	DVT (ultrasound)	•	•	0	•	•	•	0	•	Moderate	0	0	0	0	Low
Edwards 2008	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Edwards 2008	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Edwards 2008	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Eriksson 1991	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1991	Evacuation of hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1991	Excessive bleeding (>3000 ml)	•	•	0	٠	•	٠	•	•	High	0	0	•	•	Moderate
Eriksson 1991	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1991	Reoperation due to Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1991	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 1996	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1996	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	٠	•	Moderate
Eriksson 1996	Dehiscence	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1996	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1996	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1996	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 1996	Reoperation due to Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1996	Reoperation due to Infection	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1996	Surgical bleeding complications	•	•	0	•	•	•	●	•	High	0	0	●	•	Moderate
Eriksson 1996	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Eriksson 1996	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study	-	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 1996	Wound Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	All Cause Mortality	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Eriksson 1997	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	Deep Infection	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	Fatal PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Eriksson 1997	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 1997	Reoperation due to Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	Serious Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997	Severe Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 1997	Symptomatic DVT	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Eriksson 1997	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Eriksson 1997	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 1997	Wound Rupture	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997b	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Eriksson 1997b	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997b	Deep wound infection	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997b	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997b	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Eriksson 1997b	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997b	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 1997b	Serious Bleeding	•		0	٠	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 1997b	Symptomatic DVT	•	•	0	•	•	•	●	•	High	0	0	•	0	Moderate
Eriksson 1997b	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Eriksson 1997b	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 1997b	Wound Dehiscence	•	۲	0	•	۲	•	۲	•	High	0	0	٠	•	Moderate
Eriksson 1997b	Wound Hematoma	•	•	0	•	•		•	•	High	0	0	•	•	Moderate
Eriksson 2005	Clinically relevant thrombocytopenia	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2005	Clinically significant bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2005	Composite major or clinically significant bleeding	•		•	•	•	•		•	High	0	0	•	•	Moderate
Eriksson 2005	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2005	Fatal PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2005	Major Bleeding	•	•	•	•	•	•	•	●	High	0	0	●	•	Moderate
Eriksson 2005	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2005	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2005	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2005	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	•	Moderate
Eriksson 2005	Symptomatic PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2005	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2006	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006	Clinically relevant nonmajor bleeding	●	•	0	•	●	•	●	•	High	0	0	●	•	Moderate
Eriksson 2006	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2006	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2006	Reoperation due to Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2006b	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Clinically relevant nonmajor bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Distal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2006b	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2006b	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2006b	Reoperation due to Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Symptomatic DVT	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2006b	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007	Clinically relevant nonmajor bleeding	۲	•	0	٠	•	٠	●	●	High	0	0	•	•	Moderate
Eriksson 2007	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007b	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2007b	Asymptomatic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007b	Clinically relevant nonmajor bleeding	●	•	•	•	•	•	●	●	High	0	0	•	•	Moderate
Eriksson 2007b	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007b	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007b	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007b	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007b	Proximal DVT	٠	•	•	•	0	•	0	۲	Moderate	0	0	•	0	Moderate
Eriksson 2007b	Reoperation due to Bleeding	٠	•	•	•	•	•	۲	۲	High	0	0	•	•	Moderate
Eriksson 2007b	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2007b	Symptomatic PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2007b	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate

•: Domain free of flav o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2007c	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007c	Asymptomatic DVT	•	•	•	•	0		0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007c	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007c	Distal DVT	•	•	•	•	0		0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007c	Fatal Bleeding	•	•	•	•				•	High	0	0	•	•	Moderate
Eriksson 2007c	Major Bleeding	•	•	•	•	•		•	•	High	0	0	•	•	Moderate
Eriksson 2007c	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007c	Proximal DVT	•	•	•	•	0		0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007c	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007c	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2007c	Symptomatic PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2007c	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2007d	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007d	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2007d	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Any Bleeding	۲	•	•	•	•	•	•	۲	High	0	0	•	•	Moderate
Eriksson 2008	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2008	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2008	Nonmajor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2008	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2008	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2008	Wound Infection	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	Any Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	Any DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2010	Clinically relevant nonmajor bleeding	•	●	•	•	•	•	•	•	High	0	0	●	•	Moderate
Eriksson 2010	Distal DVT only	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2010	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	Major Bleeding	•	•	•		•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	Major or clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Eriksson 2010	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2010	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2010	Symptomatic PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Eriksson 2010	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Eriksson 2011	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Eriksson 2011	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Eriksson 2011	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Eriksson 2011	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Eriksson 2011	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Eriksson 2011	Symptomatic PE	•	•	•	•	•	●	•	•	High	0	0	0	•	Moderate
Eriksson 2011	Total DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Eriksson 2011	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Fauno 1994	Wound Hematoma	•	٠	0	•	•	•	•	•	High	0	0	•	0	Moderate
Fauno 1994	Wound Infection	•	•	0	٠	•	۲	•	•	High	0	0	•	0	Moderate
Feller 1992	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Feller 1992	Distal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Feller 1992	PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Feller 1992	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Feller 1992	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Fitzgerald 2001	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Fitzgerald 2001	Any Clinically Important Bleeding	•	●	•	•	•	•	●	•	High	0	0	●	•	Moderate
Fitzgerald 2001	Any DVT	•	•	•	•	0	•	0	•	High	0	0	•	•	Moderate
Fitzgerald 2001	Distal DVT	•	•	•	•	0	•	0	•	High	0	0	•	•	Moderate
Fitzgerald 2001	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Fitzgerald 2001	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Fitzgerald 2001	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	٠	•	Moderate
Fitzgerald 2001	Proximal DVT	•	٠	•	•	0	•	0	•	High	0	0	٠	•	Moderate
Fitzgerald 2001	Symptomatic PE	•		•	•	•			•	High	0	0		•	Moderate
Fitzgerald 2001	Thrombocytopenia	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Fordyce 1991	Wound Complications	•	•	•	•	•	•	•	•	High	•	0	•	•	Moderate
Fordyce 1991	Wound Hematoma	•	•	•	•	•	•	•	•	High	•	0	•	•	Moderate
Fordyce 1991	Wound Sepsis	•	•	•	•	•	•	•	•	High	•	0	•	•	Moderate
Fordyce 1992	Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Fordyce 1992	Serious Bleeding Complications	•	0	0	•	•	•	•	•	High	0	0	•	0	Moderate
Francis 1992	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Francis 1992	Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Francis 1992	Bleeding Complications	•	•	0	٠	•	۲	٠	•	High	0	0	•	•	Moderate
Francis 1992	Distal DVT only	•	•	0	٠	•	۲	0	•	Moderate	0	0	•	0	Moderate
Francis 1992	Proximal DVT	•	•	0		•		0	•	Moderate	0	0	•	0	Moderate
Francis 1992	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate

 Domain free of flaw Domain flaws preset Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Francis 1996	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Francis 1996	Distal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Francis 1996	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Francis 1996	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Francis 1996	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Francis 1996	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Francis 1996	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Francis 1997	Bleeding Complications	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Francis 1997	Distal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Francis 1997	Major Bleeding	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Francis 1997	Operative-site Bleeding	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate

 Domain free of flaws Domain flaws present Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Francis 1997	Other Bleeding complications	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Francis 1997	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Francis 1997	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Francis 1997	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Fuji 2008	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2008	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2008	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Fuji 2008	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Fuji 2008b	Any Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2008b	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2008b	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Fuji 2010	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Any Bleeding	٠	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Asymptomatic DVT	•	۲	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Fuji 2010	Bleeding leading to reoperation	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Clinically relevant bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Fuji 2010	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Fuji 2010	Symptomatic DVT	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Fuji 2010	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Gelfer 2002	Adverse Events	•	•	•	•	•	•	•	•	High	0	0	•	0	Moderate
Ginsberg 2009	All Cause Mortality	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Ginsberg 2009	Any DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Ginsberg 2009	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Ginsberg 2009	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Ginsberg 2009	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Ginsberg 2009	Fatal PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Ginsberg 2009	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Ginsberg 2009	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Ginsberg 2009	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Ginsberg 2009	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Ginsberg 2009	Symptomatic PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Ginsberg 2009	Venographic DVT	•	٠	•	•	0	٠	0	•	Moderate	0	0	•	0	Moderate
Haas 1990	Adverse Events	•	٠	0	•	0	٠	•	•	Moderate	●	0	0	0	Moderate
Haas 1990	GI Bleeding	•	•	0	•	0	•	•	•	Moderate	•	0	0	0	Moderate
Haas 1990	Wound Complications	•	•	0	•	0	•	•	•	Moderate	•	0	0	0	Moderate
Hampson 1974	Bleeding	•	●	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Harris 1974	Bleeding Complications	•	●	0	•	•	•	•	•	High	0	0	•	•	Moderate
Harris 1977	Bleeding Complications	•	●	0	•	•	۲	٠	•	High	0	0	•	0	Moderate
Harris 1977	Major Bleeding Complication		O	0	•	•		•	•	High	0	0	•	0	Moderate
Harris 1977	Wound Hematoma	•	●	0	•	•		•	•	High	0	0	•	0	Moderate

•: Domain free of flaws •: Domain flaws presen •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Harris 1982	Bleeding Complications	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Harris 1985	Bleeding Complications	•	0	0	•	•	•	•	•	High	0	0	•	0	Moderate
Harris 1985	Major Bleeding Complication	•	0	0	•	•	•	•	•	High	0	0	•	0	Moderate
Hull 1990	All Cause Mortality	•	•	0	0	•	•	•	۲	Moderate	0	0	0	•	Moderate
Hull 1990	Fatal PE	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Hull 1990	Proximal DVT	•	•	0	0	•	•	0	•	Moderate	0	0	0	•	Moderate
Hull 1990	Symptomatic DVT	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Hull 1990	Symptomatic PE	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Hull 1990	Venographic DVT	•	•	0	0	•	•	0	•	Moderate	0	0	0	•	Moderate
Hull 1993	All Cause Mortality	•	•	0	●	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Complicated wound hematoma	•	•	0	●	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flaws Domain flaws preser Moderate power 		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Hull 1993	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Hull 1993	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 1993	Uncomplicated wound hematoma	•	•	0	٠	•	٠	•	•	High	0	0	•	•	Moderate
Hull 1993	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Hull 1993	Wound Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws presen •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Hull 2000	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Hull 2000	Symptomatic DVT	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Trivial Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Hull 2000	Wound Hematoma, complicated	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000	Wound Hematoma, uncomplicated	•	●	0	•	•	•	•	●	High	0	0	•	•	Moderate

•: Domain free of flaws o: Domain flaws preser •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Hull 2000b	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000b	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000b	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000b	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000b	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Hull 2000b	Symptomatic DVT	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Hull 2000b	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Hull 2000b	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000b	Trivial Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hull 2000b	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Hull 2000b	Wound Hematoma, complicated	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Hull 2000b	Wound Hematoma, uncomplicated	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hume 1973	Wound Hematoma	•	•	0	0	0	●	•	•	Moderate	0	0	•	•	Moderate
Kakkar 2008	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Kakkar 2008	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Kakkar 2008	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Kakkar 2008	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Kakkar 2008	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	0	Moderate
Kakkar 2008	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Kakkar 2008	Nonmajor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Kakkar 2008	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Kakkar 2008	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Kakkar 2008	Symptomatic PE	•	•	•	•	•	٠	•	•	High	0	0	•	0	Moderate
Kakkar 2008	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Kakkar 2008	Wound Infection	•	•	•	•	•	٠	•	•	High	0	0	•	•	Moderate
Kim 1998	Bleeding Complications	•	•	0	0	•	•	•	•	Moderate	•	0	•	•	Moderate
Kim 1998	Major Bleeding Complication	•	•	0	0	•	•	•	•	Moderate	●	0	•	●	Moderate
Kim 1998	Wound Hematoma	•	•	0	0	•	•	•	•	Moderate	•	0	•	•	Moderate
Lachiewicz 2004	All Cause Mortality	•	•	0	•	•	•	•	•	High	•	0	•	0	Moderate
Lachiewicz 2004	Complications	•	•	0	•	•	•	•	•	High	•	0	•	0	Moderate
Lachiewicz 2004	Fatal Bleeding	•	•	0	•	•	•	•	•	High	•	0	•	0	Moderate
Lachiewicz 2004	Symptomatic DVT	•	•	0	•	•	•	•	•	High	•	0	•	0	Moderate
Lachiewicz 2004	Symptomatic PE	•	•	0	•	•	•	•	•	High	•	0	•	0	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lachiewicz 2004	Ultrasound DVT		•	0	•	•	•	0	•	Moderate	•	0	•	0	Moderate
Lassen 1991	All Cause Mortality	•	•	0	•	•	0	•	•	Moderate	0	0	•	0	Moderate
Lassen 1991	Bleeding Complications	•	•	0	•	•	0	•	•	Moderate	0	0	•	•	Moderate
Lassen 1991	Fatal PE	•	•	0	•	•	0	•	•	Moderate	0	0	•	0	Moderate
Lassen 1991	Injection-site Hematoma	•	•	0	•	•	0	•	•	Moderate	0	0	•	•	Moderate
Lassen 1991	Symptomatic PE	•	•	0	•	•	0	•	•	Moderate	0	0	•	0	Moderate
Lassen 1991	Venographic DVT	•	•	0	•	•	0	0	•	Moderate	0	0	•	0	Moderate
Lassen 1998	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 1998	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 1998	Proximal DVT	•	•	0	•	0	•	•	•	Moderate	0	0	0	0	Low
Lassen 1998	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	0	0	Low

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2000	Heparin-associated Thrombocytopenia	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Lassen 2000	Unusual Wound Evolution	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Lassen 2000	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2002	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Any DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2002	Bleeding leading to reoperation	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Distal DVT only	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2002	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2002	Other Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Postoperative Transfusions	•	•	•	•	•	•	•	•	High	0	0	●	•	Moderate
Lassen 2002	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2002	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2002	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	All Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	Asymptomatic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2007	Bleeding with surgical intervention	•	•	0	•	•	•	●	•	High	0	0	•	•	Moderate
Lassen 2007	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	Fatal PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate

 Domain free of flav Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2007	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	Potentially significant non- overt bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2007	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2007	Symptomatic DVT	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Lassen 2007	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Lassen 2007	Venographic DVT	۲	•	0	•	0	•	0	•	Moderate	0	0	٠	0	Moderate
Lassen 2007	Wound-related Infections	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	All Cause Mortality	•	•	•	•	•	•	●	•	High	0	0	•	•	Moderate
Lassen 2008	Any Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2008	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2008	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	Nonmajor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2008	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2008	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2008	Wound Infection	•	•	•	•	•	٠	•	•	High	0	0	•	•	Moderate
Lassen 2009	All Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2009	All Cause Mortality	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2009	All DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Lassen 2009	Clinically relevant nonmajor bleeding	•	●	•	•	•	٠	●	●	High	0	0	●	•	Moderate
Lassen 2009	Fatal Bleeding	•	•	•	•	•	٠	•	•	High	0	0	•	•	Moderate
Lassen 2009	Fatal PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Lassen 2009	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2009	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2009	Proximal DVT	•	۲	•	•	0	•	0	۲	Moderate	0	0	٠	0	Moderate
Lassen 2009	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Lassen 2009	Symptomatic PE	•	•	•	•	0	•	•	•	High	0	0	●	0	Moderate
Lassen 2009	Thrombocytopenia	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Lassen 2010	All Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2010	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010	All DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Lassen 2010	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Lassen 2010	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010	Symptomatic PE	•	•	•	•	•	•	٠	•	High	0	0	0	•	Moderate
Lassen 2010	Thrombocytopenia	•	•	•	•	•	•		•	High	0	0	0	•	Moderate
Lassen 2010	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2010b	All Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	Fatal PE	•	•	•	•			•	•	High	0	0	0	•	Moderate
Lassen 2010b	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Lassen 2010b	Reoperation due to Bleeding	•	٠	•	•	•	•	٠	٠	High	0	0	0	•	Moderate
Lassen 2010b	Symptomatic DVT	•		•	•	•	•		•	High	0	0	0	•	Moderate
Lassen 2010b	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lassen 2010b	Thrombocytopenia	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Lassen 2010b	Venographic DVT	•	●	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Leclerc 1996	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Leclerc 1996	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Leclerc 1996	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	Transfusions after recovery room	•	•	•	•	•	•	●	●	High	0	0	•	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Leclerc 1996	Transfusions during surgery or in recovery room	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Leclerc 1996	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Levine 1991	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Levine 1991	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Levine 1991	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Levine 1991	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Levine 1991	Minor Bleeding	•	•	0	۲	•	•	۲	•	High	0	0	•	•	Moderate
Levine 1991	Symptomatic PE	•	•	0	۲	•	•	۲	•	High	0	0	•	•	Moderate
Levine 1991	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Leyvraz 1983	Wound Hematoma	•	•	•	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lieberman 1994	Any DVT	•	•	0	•	•		0	•	Moderate	0	0	•	0	Moderate
Lieberman 1994	Complications	•	•	0	●	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	Distal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Lieberman 1994	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	GI Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	Major Complications	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Lieberman 1994	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Lieberman 1994	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study	. –	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Lotke 1996	Asymptomatic PE	•	•	0	•	0	•	0	•	Moderate	•	0	•	0	Moderate
Lotke 1996	Bleeding Complications	•	•	0	•	0	•	•	•	Moderate	•	0	•	0	Moderate
Lotke 1996	Distal DVT	•	•	0	•	0	•	0	•	Moderate	•	0	•	0	Moderate
Lotke 1996	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	•	0	•	0	Moderate
Lotke 1996	Transfusion after 48h	•	•	0	•	0	•	•	•	Moderate	●	0	•	0	Moderate
Lotke 1996	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	•	0	•	0	Moderate
Manganelli 1998	Bleeding Complications	•	Ð	0	0	0	•	•	•	Moderate	0	0	•	0	Moderate
Manganelli 1998	Major Bleeding	•	Ð	0	0	0	•	•	•	Moderate	0	0	•	0	Moderate
Mannucci 1976	Bleeding Complications	•	•	0	0	•	•	•	•	Moderate	•	0	•	•	Moderate
Mannucci 1976	Excessive operative bleeding	•	•	0	0	•	•	•	•	Moderate	•	0	•	•	Moderate
Mannucci 1976	Severe Postoperative Bleeding	•	•	0	0	•	•	•	•	Moderate	•	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Mannucci 1976	Wound Hematoma	•	•	0	0	•	•	•	•	Moderate	•	0	•	•	Moderate
McKenna 1980	Active Bleeding	•	•	0	•	•	•	•	0	Moderate	0	0	٠	0	Moderate
McKenna 1980	Bleeding	●	٠	0	•	•	•	•	0	Moderate	0	0	●	0	Moderate
Moskovitz 1978	Bleeding Complications	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Moskovitz 1978	Wound Infection	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Paiement 1987	Bleeding	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Paiement 1987	Major bleeding	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Paiement 1987	Minor Bleeding	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
PEP 2000	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Bleed requiring transfusion: hematemesis or melena	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Bleed requiring transfusion: other bleed	•		•	•	•	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
PEP 2000	Bleed requiring transfusion: wound bleed >=4 days	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Evacuation of hematoma	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
PEP 2000	Wound Infection with frank pus	•	●	•	•	•	●	•	●	High	0	0	•	•	Moderate
Planes 1988	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1988	Distal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Planes 1988	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1988	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1988	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Planes 1988	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1988	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Planes 1988	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1988	Venographic DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	0	Moderate
Planes 1991	Bleeding Complications	•	Ð	0	•	•	•	•	•	High	0	0	•	0	Moderate
Planes 1991	Major bleeding	•	Ð	0	•	•	•	•	•	High	0	0	•	0	Moderate
Planes 1991	Minor Bleeding	•	Ð	0	•	•	•	•	•	High	0	0	•	0	Moderate
Planes 1991	Thrombocytopenia	•	O	0	•	•	•	•	•	High	0	0	•	0	Moderate
Planes 1991	Wound Hematoma	•	Ð	0	•	•	•	•	•	High	0	0	•	0	Moderate
Planes 1991	Wound Hematoma requiring reoperation	•	●	0	•	•	•	•		High	0	0	•	0	Moderate
Planes 1991	Wound Infection	•	O	0	•	•	•	•	•	High	0	0	•	0	Moderate

•: Domain free of flaws o: Domain flaws presen •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Planes 1996	Hematemesis	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Planes 1996	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Planes 1996	Wound Hematoma	•	•	0	•	•	•	•	•	High	0	0	0	•	Moderate
Planes 1999	All Cause Mortality	•	۲	•	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1999	Heparin-induced Thrombocytopenia	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1999	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1999	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1999	Proximal DVT	•	•	•	•	•	•	0	•	High	0	0	•	•	Moderate
Planes 1999	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Planes 1999	Symptomatic PE	•	•	•	•		•		•	High	0	0	•	•	Moderate
Planes 1999	Venographic DVT	•	•	•	•	•	•	0	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study	. =	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Poller 1995	Bleeding Complications	•	O	0	•	•	•	•	•	High	0	0	•	•	Moderate
Poller 1995	Other Major Bleeding	•	Ð	0	•	•	•	•	•	High	0	0	•	•	Moderate
Poller 1995	Patients requiring at least 3 units of red cells during surgery	•	O	0	•	•	•	•	•	High	0	0	•	•	Moderate
Prandoni 2002	All Cause Mortality	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Prandoni 2002	Fatal Bleeding	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Prandoni 2002	Major Bleeding	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Prandoni 2002	Symptomatic PE	•	•	0	0	•	•	•	•	Moderate	0	0	0	•	Moderate
Prandoni 2002	Ultrasound DVT	•	•	0	0	•	•	0	•	Moderate	0	0	0	•	Moderate
Rader 1998	DVT (ultrasound with venography confirmation)	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Rader 1998	Fatal PE	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Rader 1998	Reoperation for hematoma	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Rader 1998	Surgical intervention due to hematoma or infection	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Rader 1998	Symptomatic PE	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Salzman 1971	Bleeding Complications	•	●	0	•	•	•	•	•	High	0	0	•	•	Moderate
Samama 1997	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Samama 1997	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Santori 1994	Bleeding Problems	•	•	•		•		0	0	Moderate	0	0	0	•	Moderate
Senaran 2006	Heparin-induced Thrombocytopenia	•	•	0	•	•	•	•	•	High	•	0	•	•	Moderate
Senaran 2006	Major Bleeding	•	•	0	•	•	•	•	•	High	•	0	•	•	Moderate
Senaran 2006	Minor Bleeding Complications	•	•	0	•	•	•	•	•	High	•	0	•	•	Moderate

 Domain free of flaw Domain flaws preset Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Sharrock 1990	Bleeding Complications	•	Ð	0	•	•	٠	•	•	High	•	0	•	0	Moderate
Sharrock 1990	Deep Hematoma	•	Ð	0	•	•	•	•	•	High	•	0	•	0	Moderate
Sharrock 1990	Superficial wound hematoma	•	O	0	•	•	•	•	•	High	•	0	•	0	Moderate
Sharrock 1990	Thrombocytopenia	•	Ð	0	•	•	•	•	•	High	•	0	•	0	Moderate
Spiro 1994	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Spiro 1994	Any DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Spiro 1994	Distal DVT	•	•	0	•	•	۲	0	•	Moderate	0	0	•	•	Moderate
Spiro 1994	DVT	•	۲	0	•	٠	۲	0	•	Moderate	0	0	•	•	Moderate
Spiro 1994	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Spiro 1994	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Spiro 1994	PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Spiro 1994	Proximal DVT	•	•	0	•	•	•	0	•	Moderate	0	0	•	•	Moderate
Stone 1996	Transfusion of at least 2 units	•	•	0	•	0	•	●	•	Moderate	0	0	•	•	Moderate
Stone 1996	Wound Complications	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Stone 1996	Wound Problems	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Torholm 1991	Bleeding Complications	•	●	0	•	•	•	•	•	High	0	0	•	0	Moderate
Torholm 1991	Injection-site Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Torholm 1991	Severe wound hematoma	•	●	0	•	•	•	•	•	High	0	0	•	0	Moderate
Torholm 1991	Wound Infection	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Torholm 1991	Wound Rupture	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Turpie 1986	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 1986	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

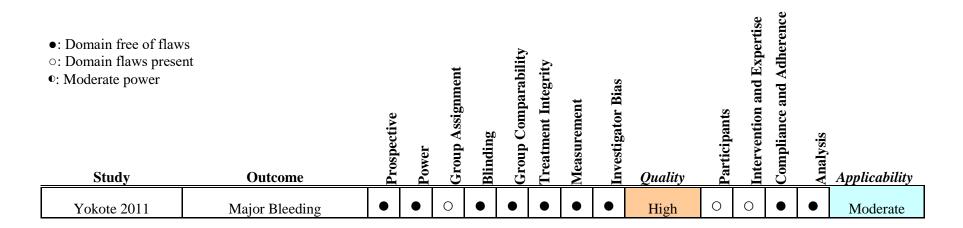
•: Domain free of flaws o: Domain flaws presen •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Turpie 2001	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2001	Distal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2001	Fatal PE	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2001	Major Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2001	Minor Bleeding	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2001	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2001	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	•	Moderate
Turpie 2001	Thrombocytopenia	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2001	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2002	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Any DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Turpie 2002	Bleeding leading to reoperation	•	•	•	•	•	•		•	High	0	0	•		Moderate
Turpie 2002	Distal DVT only	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2002	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Other Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Postoperative Transfusions	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2002	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2002	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	All Cause Mortality	•	•	•	•	0	•	•	•	High	0	0	•	•	Moderate

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Ouality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Turpie 2005	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•		High	0	0	•		Moderate
Turpie 2005	Clinically relevant thrombocytopenia	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Distal DVT	●	•	•	•	0	●	0	•	Moderate	0	0	•	0	Moderate
Turpie 2005	Fatal Bleeding	٠	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Fatal PE	•	•	•	•	0	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Minor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2005	Reoperation due to Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	•	Moderate
Turpie 2005	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate

 Domain free of flaw Domain flaws prese Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Turpie 2005	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2009	All Cause Mortality	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Turpie 2009	Any Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2009	Asymptomatic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2009	Clinically relevant nonmajor bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2009	Distal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2009	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2009	Fatal PE	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Turpie 2009	Major Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2009	Nonmajor Bleeding	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Turpie 2009	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate

•: Domain free of flav •: Domain flaws prese •: Moderate power	ent	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias		Participants	Intervention and Expertise	Compliance and Adherence	Analysis	
Study	Outcome			<u>U</u>	<u> </u>		<u> </u>		<u> </u>						
Turpie 2009	Reoperation due to Bleeding	•	•	•	•	•	-	-		High			-	•	Moderate
Turpie 2009	Symptomatic DVT	•	•	•	•	0	•	•	•	High	0	0	•	0	Moderate
Turpie 2009	Symptomatic PE	●	•	●	٠	0	\bullet	●	●	High	0	0	•	0	Moderate
Turpie 2009	Venographic DVT	•	•	•	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Turpie 2009	Wound Infection	•	•	•	•	•	•	•	•	High	0	0	•	•	Moderate
Vives 2001	All Cause Mortality	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Vives 2001	Fatal Bleeding	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Vives 2001	Hematoma	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Vives 2001	Major Bleeding	•	•	0	•	•	•	٠	•	High	0	0	0	0	Low
Vives 2001	Symptomatic DVT	•	•	0	•	•	•	•	•	High	0	0	0	0	Low
Vives 2001	Symptomatic PE	•	•	0	•	•	•	•	•	High	0	0	0	0	Low


•: Domain free of flaw o: Domain flaws prese •: Moderate power Study	-	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
VTCSG 1975	Wound Hematoma	•	Ð	0	0	0	•	•	•	Moderate	•	0	•	0	Moderate
Warwick 1995	Discharge from drain sites which persisted beyond the 6th postop day	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Warwick 1995	Wound Hematoma	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Warwick 1998	All Cause Mortality	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 1998	Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 1998	Distal DVT	•	•	•	•	•	•	0	•	High	0	0	0	0	Low
Warwick 1998	Fatal Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 1998	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 1998	Hematoma necessitating treatment	•	•	•	•	•	•	●	•	High	0	0	0	•	Moderate
Warwick 1998	Proximal DVT	•	•	•	•	•	•	0	•	High	0	0	0	0	Low

•: Domain free of flaws •: Domain flaws presen •: Moderate power	ıt	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias		Participants	Intervention and Expertise	Compliance and Adherence	Analysis	
Study	Outcome		<u> </u>	ট	BI	Ū	Ē	<u> </u>	In	Quality	\mathbf{P}_{2}	<u> </u>	<u> </u>	Ā	Applicability
Warwick 1998	Symptomatic DVT	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 1998	Symptomatic PE	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 1998	Venographic DVT	•	•	•	•	•	•	0	•	High	0	0	0	0	Low
Warwick 2002	Bleeding	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 2002	Bleeding Complications	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 2002	Distal DVT	•	•	•	•	0	۲	0	•	Moderate	0	0	0	0	Low
Warwick 2002	Fatal PE	•	•	•	•	•	•	•	•	High	0	0	0	•	Moderate
Warwick 2002	Proximal DVT	•	•	•	•	0	•	0	•	Moderate	0	0	0	0	Low
Warwick 2002	Symptomatic PE	•		•	•	•		•	•	High	0	0	0	•	Moderate
Warwick 2002	Venographic DVT	•	•	•	•	0		0	•	Moderate	0	0	0	0	Low
Westrich 2005	Bleeding Complications	•	•	0	0	•	•	•	•	Moderate	0	0	•	0	Moderate

.

•: Domain free of flaw o: Domain flaws prese •: Moderate power Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Westrich 2006	Bleeding Complications	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Westrich 2006	Distal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Westrich 2006	Internal Bleeding Complication	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Westrich 2006	Proximal DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Westrich 2006	Symptomatic PE	•	•	0	•	0	•	•	•	Moderate	0	0	•	0	Moderate
Westrich 2006	Ultrasound DVT	•	•	0	•	0	•	0	•	Moderate	0	0	•	0	Moderate
Wilson 1994	Bleeding Complications	•	●	0	•	•	•	۲	•	High	0	0	۲	0	Moderate
Wilson 1994	Major Bleeding	۲	●	0	•	•	•	٠	•	High	0	0	٠	0	Moderate
Wilson 1994	Minor Bleeding	۲	●	0	•	•	•	٠	•	High	0	0	٠	0	Moderate
Windisch 2010	Reoperation due to Bleeding	•	●	0	•	0	•	●	•	Moderate	0	0	0	•	Moderate
Woolson 1991	Wound Hematoma	•	•	0	•	0	•	•	0	Moderate	0	0	•	•	Moderate

Table 53. Quality and Applicability of Treatment Studies for Prophylaxis

Table 53. Quality and Applicability of Treatment Studies for Prophylaxis

EARLY MOBILIZATION

 Table 54. Quality and Applicability of Treatment Studies for Early Mobilization

•: Domain free 0: Domain flav Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Husted 2010	All-Cause Mortality	•	•	0	0	0	•	•	•	Moderate	•	0	•	•	Moderate
Kelsey 1976	DVT	0	•	0	0	0	●	0	•	Low	•	•	●	0	Moderate
Husted 2010	DVT Re-admission	•	•	0	0	0	•	•	•	Moderate	•	0	•	•	Moderate
Johnson 1977	Fatal PE	0	•	0	0	0	0	•	•	Low	•	•	●	0	Moderate
Pearse 2007	Minor wound problems	•	•	0	0	0	●	•	•	Moderate	•	0	●	•	Moderate
Kelsey 1976	PE	0	•	0	0	0	•	0	•	Low	•	•	•	0	Moderate
Johnson 1977	PE	0	•	0	0	0	0	•	•	Low	•	•	•	0	Moderate
Husted 2010	PE Re-admission	•	•	0	0	0	•	•	•	Moderate	•	0	•	•	Moderate

•: Domain free •: Domain flav Study		Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Samama	Outcome									Quany					Applicability
2007	Symptomatic VTE	•	•	0	0	0	0	•	•	Low	•	•	•	0	Moderate
Kelsey 1976	VTE	0	•	0	0	0	•	0	•	Low	•	●	•	0	Moderate
Leizorovicz 2007	VTE	•	•	0	0	0	0	0	•	Low	0	•	•	0	Moderate
White 2000	VTE Re-admission	0	•	0	0	0	٠	•	•	Low	0	•	•	0	Moderate

Table 54. Quality and Applicability of Treatment Studies for Early Mobilization

ANESTHESIA

Table 55. Quality and Applicability of Treatment Studies for Anesthesia

 Domain free Domain flav Moderate po Study	vs present	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias	Quality	Participants	Intervention and Expertise	Compliance and Adherence	Analysis	Applicability
Maurer 2007	Symptomatic VTE		•	0	•	0	•	•	•	Moderate	•	0	•	•	Moderate
Warwick 2007	Symptomatic VTE	•	•	0	•	0	0	•	•	Moderate	•	•	•	0	Moderate
Williams- Russo 1996	Venographic DVT	•	•	0	•	0	•	0	•	Moderate	•	0	•	0	Moderate
Williams- Russo 1996	Lung Perfusion Defects	•	٠	0	•	0	•	0	•	Moderate	•	0	•	0	Moderate
Williams- Russo 1996	All-Cause Mortality	•	٠	0	•	•	•	•	•	High	•	0	•	0	Moderate
Eroglu 2005	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Hole 1980	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Modig 1986	Blood Loss		•	0	•	•		•		High	0	0		0	Moderate

 Domain free of Domain flaws Moderate power 	s present ver	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias		Participants	Intervention and Expertise	Compliance and Adherence	Analysis	
Study	Outcome		_	<u> </u>				F 4		Quality	_		<u> </u>	ł	Applicability
Modig 1987	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Modig 1983	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate
Borghi 2005	Blood Loss	•	•	0	•	•	•	●	•	High	0	0	•	●	Moderate
Jorgensen 1991	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
Dauphin 1997	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	0	Moderate
D'Ambrosio 1999	Blood Loss	•	•	0	•	•	٠	•	•	High	0	0	•	•	Moderate
Borghi 2002	Blood Loss	•	•	0	•	•	•	●	•	High	0	0	•	•	Moderate
Stevens 2000	Blood loss	•	•	0	•	•	•	●	•	High	0	0	•	0	Moderate
Chu 2006	Blood loss	•	●	0	•	•	•	●	•	High	0	0	•	•	Moderate

Table 55. Quality and Applicability of Treatment Studies for Anesthesia

 Domain free Domain flaw Moderate por 	vs present wer	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias		Participants	Intervention and Expertise	Compliance and Adherence	Analysis	
Study	Outcome						r .	-	_	Quality			<u> </u>	7	Applicability
Niemi 2000	Blood loss	•	•	0	•	•	•	•	•	High	•	0	•	•	Moderate
Twyman 1990	Blood loss	•	•	0	•	•	•	•	•	High	•	0	•	•	Moderate
Juelsgaard 2001	Blood Loss	•	•	0	•	•	•	•	•	High	0	0	•	•	Moderate

Table 55. Quality and Applicability of Treatment Studies for Anesthesia

IVC FILTERS

 Table 56. Quality and Applicability of Treatment Studies for IVC Filters

•: Domain free •: Domain flav •: Moderate po	vs present ower	Prospective	Power	Group Assignment	Blinding	Group Comparability	Treatment Integrity	Measurement	Investigator Bias		Participants	Intervention and Expertise	Compliance and Adherence	Analysis	
Study	Outcome	Р	Р	9	В	G	Γ	Z	I	Quality	Р	I	0	V	Applicability
Khansarinia 1995	PE	•	•	0	0	0	0	•	•	Low	0	0	•	•	Moderate
Obeid 2007	PE	0	•	0	0	0	0	•	•	Low	0	0	•	•	Moderate
Obeid 2007	DVT	0	•	0	0	0	0	0	•	Very Low	0	0	•	•	Moderate
Obeid 2007	Death	0	•	0	0	0	0	•	•	Low	0	0	•	•	Moderate
Khansarinia 1995	All-cause Mortality	•	•	0	0	0	0	•	•	Low	0	0	•	•	Moderate
Khansarinia 1995	PE-related Death	•	•	0	0	0	0	•	•	Low	0	0	•	•	Moderate

APPENDIX XIV EXCLUDED STUDIES ROUTINE SCREENING

Author	Title	Reason for Exclusion
Uehara et al. 2009	Comparison of three techniques for evaluation of de novo asymptomatic pulmonary arterial thrombosis following deep vein thrombosis in total knee arthroplasty	Fewer than 100 patients
Yoo et al. 2009	Deep vein thrombosis after total hip arthroplasty in Korean patients and D-dimer as a screening tool	Not best available evidence
Borris et al. 2007	Prothrombin fragment 1+2 in urine as an indicator of sustained coagulation activation after total hip arthroplasty	Does not examine diagnostic test of interest
Schellong et al. 2007	Ultrasound screening for asymptomatic deep vein thrombosis after major orthopaedic surgery: the VENUS study	Not best available evidence
Dhupar et al. 2006	A comparison of discharge and two-week duplex ultrasound screening protocols for deep venous thrombosis detection following primary total joint arthroplasty	Not best available evidence
Iorio et al. 2006	Routine duplex ultrasound screening after TKA is not necessary	Not best available evidence
Kluge et al. 2006	Experience in 207 combined MRI examinations for acute pulmonary embolism and deep vein thrombosis	Not specific to arthroplasty patients
Schwarcz et al. 2004	Surveillance venous duplex is not clinically useful after total joint arthroplasty when effective deep venous thrombosis prophylaxis is used	Not best available evidence
Arnesen et al. 2003	Sustained prothrombotic profile after hip replacement surgery: the influence of prolonged prophylaxis with dalteparin	Insufficient data for diagnostic accuracy
Abraham et al. 2002	Despite imperfect sensitivity, ultrasound thrombosis detection following arthroplasty is useful	Not best available evidence
Cipolle et al. 2002	The role of surveillance duplex scanning in preventing venous thromboembolism in trauma patients	Not specific to elective arthroplasty
Shiota et al. 2002	Changes in LPIA D-dimer levels after total hip or knee arthroplasty relevant to deep-vein thrombosis diagnosed by bilateral ascending venography	Fewer than 100 patients
Berry 2001	Surveillance for venous thromboembolic disease after total knee arthroplasty	Systematic review, bibliography screened
Verlato et al. 2001	The value of ultrasound screening for proximal vein thrombosis after total hip arthroplastya prospective cohort study	Not best available evidence
Eskandari et al. 2000	Is color-flow duplex a good diagnostic test for detection of isolated calf vein thrombosis in high-risk patients?	Fewer than 100 arthroplasty patients

Author	Title	Reason for Exclusion
Peetz et al. 2000	Dose-adjusted thrombosis prophylaxis in trauma surgery according to levels of D-Dimer	Not specific to elective arthroplasty
Bara et al. 1999	Occurrence of thrombosis and haemorrhage, relationship with anti-Xa, anti-IIa activities, and D-dimer plasma levels in patients receiving a low molecular weight heparin, enoxaparin or tinzaparin, to prevent deep vein thrombosis after hip surgery	Insufficient data for diagnostic accuracy
Beuhler et al. 1999	Venous thromboembolic disease after hybrid hip arthroplasty with negative duplex screening	Not best available evidence
Corradi et al. 1999	Preoperative plasma levels of prothrombin fragment 1 + 2 correlate with the risk of venous thrombosis after elective hip replacement	Does not investigate post- operative screening
Kalebo et al. 1999	Central assessment of bilateral phlebograms in a major multicentre thromboprophylactic trial. Reasons for inadequate results	Not diagnostic accuracy study
Anderson et al. 1998	Ultrasonographic screening for deep vein thrombosis following arthroplasty fails to reduce posthospital thromboembolic complications: the Postarthroplasty Screening Study (PASS)	Report of previously published study
Ciccone et al. 1998	Ultrasound surveillance for asymptomatic deep venous thrombosis after total joint replacement	Not best available evidence
Cofrancesco et al. 1998	Clinical utility of prothrombin fragment 1+2, thrombin antithrombin III complexes and D-dimer measurements in the diagnosis of deep vein thrombosis following total hip replacement	Not best available evidence
Comp et al. 1998	A comparison of danaparoid and warfarin for prophylaxis against deep vein thrombosis after total hip replacement: The Danaparoid Hip Arthroplasty Investigators Group	Not best available evidence
Hartford et al. 1998 Kalodiki et al. 1998	Preoperative duplex ultrasonography evaluation for deep vein thrombosis in hip and knee arthroplasty patients How 'gold' is the standard? Interobservers' variation on venograms	Not best available evidence Fewer than 100 patients Systematic
Kearon et al. 1998	Noninvasive diagnosis of deep venous thrombosis. McMaster Diagnostic Imaging Practice Guidelines Initiative	review, bibliography screened
Robinson et al. 1998	Accuracy of screening compression ultrasonography and clinical examination for the diagnosis of deep vein thrombosis after total hip or knee arthroplasty	Not best available evidence
Westrich et al. 1998	Ultrasound screening for deep venous thrombosis after total knee arthroplasty. 2-year reassessment	Not best available evidence
Brothers et al. 1997	Is duplex venous surveillance worthwhile after arthroplasty?	Not best available evidence Does not
Cofrancesco et al. 1997	Coagulation activation markers in the prediction of venous thrombosis after elective hip surgery	investigate post- operative screening

Author	Title	Reason for Exclusion
Crippa et al. 1997	The utility and cost-effectiveness of D-dimer measurements in the diagnosis of deep vein thrombosis	Narrative review, bibliography screened
Kalodiki et al. 1997	Duplex scanning in the postoperative surveillance of patients undergoing total hip arthroplasty	Fewer than 100 patients
Lensing et al. 1997	A comparison of compression ultrasound with color Doppler ultrasound for the diagnosis of symptomless postoperative deep vein thrombosis	Not best available evidence
Westrich et al. 1997	Comparison between color Doppler imaging and ascending venography in the detection of deep venous thrombosis following total joint arthroplasty: a prospective study	Not best available evidence
Ascani et al. 1996	Distribution and occlusiveness of thrombi in patients with surveillance detected deep vein thrombosis after hip surgery	Not specific to elective arthroplasty patients
Garino et al. 1996	Deep venous thrombosis after total joint arthroplasty. The role of compression ultrasonography and the importance of the experience of the technician	Not best available evidence
Kalebo et al. 1996	Percentage of inadequate phlebograms and observer agreement in thromboprophylactic multicenter trials using standardized methodology and central assessment	Not diagnostic accuracy, observer reliability study
Magnusson et al. 1996	Is colour Doppler ultrasound a sensitive screening method in diagnosing deep vein thrombosis after hip surgery?	Not specific to elective arthroplasty
Pellegrini et al. 1996	Natural history of thromboembolic disease after total hip arthroplasty	Patients reported in a more recent publication
Bombardini et al. 1995	Proximal deep vein thrombosis: the use of the echoDoppler for diagnosis and therapeutic indications	Not best available evidence
Dahl et al. 1995	Increased activation of coagulation and formation of late deep venous thrombosis following discontinuation of thromboprophylaxis after hip replacement surgery	Fewer than 100 patients
Wells et al. 1995	Accuracy of ultrasound for the diagnosis of deep venous thrombosis in asymptomatic patients after orthopedic surgery. A meta-analysis	Systematic review, bibliography screened
Bongard et al. 1994	D-dimer plasma measurement in patients undergoing major hip surgery: use in the prediction and diagnosis of postoperative proximal vein thrombosis	Not specific to elective arthroplasty patients
Grady- Benson et al. 1994	Postoperative surveillance for deep venous thrombosis with duplex ultrasonography after total knee arthroplasty	Not best available evidence
Grady- Benson et al. 1994	Routine postoperative duplex ultrasonography screening and monitoring for the detection of deep vein thrombosis. A survey of 110 total hip arthroplasties	Not best available evidence

Author	Title	Reason for Exclusion
Oishi et al. 1994	The clinical course of distal deep venous thrombosis after total hip and total knee arthroplasty, as determined with duplex ultrasonography	Not diagnostic accuracy study
Walker 1994	Secondary prevention of venous thromboembolism in joint replacement using duplex ultrasonography	Not best available evidence
Wicky et al. 1994	Screening for proximal deep venous thrombosis using B-mode venous ultrasonography following major hip surgery: implications for clinical management	Not specific to elective arthroplasty
Elliott et al. 1993	Duplex ultrasonography for the detection of deep vein thrombi after total hip or knee arthroplasty	Not best available evidence
Kraay et al. 1993	Vascular ultrasonography for deep venous thrombosis after total knee arthroplasty	Not best available evidence
Agnelli et al. 1992	Detection of asymptomatic deep vein thrombosis by real-time B- mode ultrasonography in hip surgery patients	Not specific to elective arthroplasty
Davidson et al. 1992	Low accuracy of color Doppler ultrasound in the detection of proximal leg vein thrombosis in asymptomatic high-risk patients. The RD Heparin Arthroplasty Group	Not best available evidence
Mattos et al. 1992	Color-flow duplex scanning for the surveillance and diagnosis of acute deep venous thrombosis	Fewer than 100 arthroplasty patients
Wille- Jorgensen et al. 1992	Phlebography as the gold standard in thromboprophylactic studies? A multicenter interobserver variation study	Not diagnostic accuracy, observer reliability study
Wille- Jorgensen et al. 1992	Potential influence of observer variation in thromboprophylactic trials	Not diagnostic accuracy, observer reliability study
Barnes et al. 1991	Duplex scanning versus venography as a screening examination in total hip arthroplasty patients	Not best available evidence
Ginsberg et al. 1991	Venous thrombosis in patients who have undergone major hip or knee surgery: detection with compression US and impedance plethysmography	Not specific to elective arthroplasty
Comerota et al. 1990	Venous duplex imaging: should it replace hemodynamic tests for deep venous thrombosis?	Fewer than 100 arthroplasty patients
Lensing et al. 1990	Lower extremity venography with iohexol: results and complications	Not specific to elective arthroplasty
Woolson et al. 1990	B-mode ultrasound scanning in the detection of proximal venous thrombosis after total hip replacement	Not best available evidence

RISK FACTORS FOR VTED

Author	Title	Reason for Exclusion
Chung et al. 2011	Deep vein thrombosis after total knee arthroplasty in asian patients without prophylactic anticoagulation	Not best available evidence
Bedair et al. 2011	Hematologic genetic testing in high-risk patients before knee arthroplasty: a pilot study	Fewer than 100 patients Systematic
Caprini 2010	Risk assessment as a guide for the prevention of the many faces of venous thromboembolism	review, bibliography screened
Caprini 2010	Risk assessment as a guide to thrombosis prophylaxis	Narrative review, bibliography screened
Cha et al. 2010	Venous thromboembolism in Korean patients undergoing major orthopedic surgery: a prospective observational study using computed tomographic (CT) pulmonary angiography and indirect CT venography	Not specific to elective arthroplasty
Chee et al. 2010 Healy et al. 2010	Total hip replacement in morbidly obese patients with osteoarthritis: Results of a prospectively matched study Venous thromboembolism following prolonged cast immobilisation for injury to the tendo Achillis	Not best available evidence Not specific to surgical patients
Kapoor et al. 2010	Risk of venous thromboembolism after total hip and knee replacement in older adults with comorbidity and co-occurring comorbidities in the Nationwide Inpatient Sample (2003-2006)	Not best available evidence
Kerr et al. 2010	High incidence of in-hospital pulmonary embolism following joint arthroplasty with dalteparin prophylaxis	Not best available evidence
Mouravas et al. 2010	Homocysteine and its relationship to deep venous thrombosis in patients undergoing total knee or hip arthroplasty	Not best available evidence
Niki et al. 2010	Rheumatoid arthritis: a risk factor for deep venous thrombosis after total knee arthroplasty? Comparative study with osteoarthritis	Does not examine risk factor of interest
Novis et al. 2010	Prevention of thromboembolic events in surgical patients through the creation and implementation of a computerized risk assessment program	Insufficient Data
Paffrath et al. 2010	Venous thromboembolism after severe trauma: incidence, risk factors and outcome	Does not investigate risk factor of interest
Zarowitz et al. 2010	Thrombotic risk and immobility in residents of long-term care facilities	Not specific to surgical patients
Awidi et al. 2009	Risk stratification for venous thromboembolism in hospitalized patients in a developing country: A prospective study	Does not report VTE
Caruana et al. 2009	The pulmonary embolism risk score system reduces the incidence and mortality of pulmonary embolism after gastric bypass	Insufficient Data
Felcher et al. 2009	Incidence and risk factors for venous thromboembolic disease in podiatric surgery	Not specific to elective arthroplasty

Author	Title	Reason for Exclusion
Galanaud et al. 2009	Comparative study on risk factors and early outcome of symptomatic distal versus proximal deep vein thrombosis: results from the OPTIMEV study	Not specific to surgical patients
Khan et al. 2009	The complication rate and medium-term functional outcome after total hip replacement in smokers	Does not report VTE
Lutsey et al. 2009	Correlates and Consequences of Venous Thromboembolism: The Iowa Women's Health Study	Not best available evidence (not specific to elective arthroplasty)
Marchant et al. 2009	The impact of glycemic control and diabetes mellitus on perioperative outcomes after total joint arthroplasty	Not best available evidence
Nokes et al. 2009	Thromboprophylaxis in patients with lower limb immobilisation - review of current status	Narrative review, bibliography screened
Obalum et al. 2009	Deep vein thrombosis: risk factors and prevention in surgical patients	Narrative review, bibliography screened
Ringwald et al. 2009	Genetic polymorphisms in venous thrombosis and pulmonary embolism after total hip arthroplasty: a pilot study	Not best available evidence
Severinse n et al. 2009	Anthropometry, body fat, and venous thromboembolism: a Danish follow-up study	Not specific to surgical patients
Szucs et al. 2009	Assessment of thrombotic risk factors predisposing to thromboembolic complications in prosthetic orthopedic surgery	Fewer than 100 patients
Wilasrus mee et al. 2009	Deep venous thrombosis in surgical intensive care unit: prevalence and risk factors	Not specific to elective arthroplasty
Yasunaga et al. 2009	High-volume surgeons in regard to reductions in operating time, blood loss, and postoperative complications for total hip arthroplasty	Not specific to VTE
Yasunaga et al. 2009	Analysis of factors affecting operating time, postoperative complications, and length of stay for total knee arthroplasty: Nationwide web-based survey	Insufficient data
Basilico et al. 2008	Risk factors for cardiovascular complications following total joint replacement surgery	Not specific to VTE
Bolognesi et al. 2008	The impact of diabetes on perioperative patient outcomes after total hip and total knee arthroplasty in the United States	Not most recent publication of these data
Buchan et al. 2008 Busato et al. 2008	Incidence of venous thromboembolism and thromboprophylaxis after total hip or knee arthroplasty Influence of high BMI on functional outcome after total hip arthroplasty	Not best available evidence Not relevant - no relevant outcome
Gerkens et al. 2008	Assessing the quality of pharmacological treatments from administrative databases: the case of low-molecular-weight heparin after major orthopaedic surgery	Not specific to elective arthroplasty
Kable et al. 2008	Predictors of adverse events in surgical admissions in Australia	Insufficient data

A with one	T:41a	Reason for
Author Kim et al. 2008	Title The use of spiral computed tomography scans for the detection of	Exclusion Not best available evidence
Monreal	pulmonary embolism	Not best available evidence (not
et al. 2008	Limited diagnostic workup for deep vein thrombosis after major joint surgery: findings from a prospective, multicentre, cohort study	specific to elective arthroplasty)
Otero- Fernandez et al. 2008	Evaluation of the effectiveness and safety of bemiparin in a large population of orthopedic patients in a normal clinical practice	Not best available evidence (not specific to elective arthroplasty)
Patel et al. 2008	Relationship of body mass index to early complications in knee replacement surgery	Insufficient data
Seruya et al. 2008	Efficacy and safety of venous thromboembolism prophylaxis in highest risk plastic surgery patients	Does not address question of interest
Vu et al. 2008	Determination of risk factors for deep venous thrombosis in hospitalized children	Not specific to surgical patients
Ansari et al. 2007	Risk stratification and utilisation of thrombo-embolism prophylaxis in a medical-surgical ICU: a hospital-based study	Does not address question of interest
Bowler et al. 2007	Factor V Leiden: prevalence and thromboembolic complications after total hip replacement in Ireland	Not best available evidence
Burnett et al. 2007	Failure of the American College of Chest Physicians-1A protocol for lovenox in clinical outcomes for thromboembolic prophylaxis	Not best available evidence
Chotanap huti et al. 2007	The prevalence of thrombophilia and venous thromboembolism in total knee arthroplasty	Not best available evidence
Chotanap huti et al. 2007	Risk factors of deep vein thrombosis (DVT) after total knee arthroplasty (TKA) at Phramongkutklao Hospital	Not best available evidence
Dorr et al. 2007	Multimodal thromboprophylaxis for total hip and knee arthroplasty based on risk assessment	Not best available evidence
Gangired dy et al. 2007	Risk factors and clinical impact of postoperative symptomatic venous thromboembolism	Not best available evidence (not specific to elective arthroplasty)
Kahan et al. 2007	High incidence of venous thromboembolic events in lung transplant recipients	Not specific to elective arthroplasty
Kim et al. 2007	Factors leading to decreased rates of deep vein thrombosis and pulmonary embolism after total knee arthroplasty	Not best available evidence
Kim et al. 2007	The 2007 John Charnley Award. Factors leading to low prevalence of DVT and pulmonary embolism after THA: analysis of genetic and prothrombotic factors	Not best available evidence
Kiyoshige et al. 2007	Inherited risk factors for deep venous thrombosis following total hip arthroplasty in Japanese patients: matched control study	Not best available evidence

Author Parvizi et al. 2007 Samama et al. 2007	Title The rise in the incidence of pulmonary embolus after joint arthroplasty: is modern imaging to blame? Epidemiology of venous thromboembolism after lower limb arthroplasty: the FOTO study	Reason for Exclusion Not best available evidence Not best available evidence
Seddighza deh et al. 2007	Venous thromboembolism in patients undergoing surgery: low rates of prophylaxis and high rates of filter insertion	Does not investigate relevant comparison
Yegen et al. 2007 Zhan et	Risk factors for venous thromboembolism after lung transplantation Incidence and short-term outcomes of primary and revision hip	Fewer than 100 patients Not best available
al. 2007 Agnelli et	replacement in the United States A clinical outcome-based prospective study on venous	evidence Not best available evidence (not
al. 2006 Amin et	thromboembolism after cancer surgery: the @RISTOS project Does obesity influence the clinical outcome at five years following	specific to elective arthroplasty) Not best available
al. 2006	total knee replacement for osteoarthritis?	evidence Not best available
Bagaria et al. 2006	Incidence and risk factors for development of venous thromboembolism in Indian patients undergoing major orthopaedic surgery: results of a prospective study	evidence (not specific to elective arthroplasty)
Biau et al. 2006	Is anyone too old for a total knee replacement?	Not best available evidence
Gonzalez et al. 2006 Hernande	Venous thromboembolism is rare with a multimodal prophylaxis protocol after total hip arthroplasty	Not best available evidence
z- Vaquero et al. 2006	Total Knee Arthroplasty in the Elderly. Is There an Age Limit?	Does not report VTE
Lachiewic z et al. 2006	Multimodal prophylaxis for THA with mechanical compression	Not best available evidence
Lyman et al. 2006	Prevalence and risk factors for symptomatic thromboembolic events after shoulder arthroplasty	Not best available evidence
McLaughl in et al. 2006	The outcome of total hip replacement in obese and non-obese patients at 10- to 18-years	Not best available evidence
Sadr et al. 2006	The impact of tobacco use and body mass index on the length of stay in hospital and the risk of post-operative complications among patients undergoing total hip replacement	Does not examine VTE
Sakon et al. 2006	Incidence of venous thromboembolism following major abdominal surgery: a multi-center, prospective epidemiological study in Japan	Not specific to elective arthroplasty
Solomon et al. 2006	Development of a preliminary index that predicts adverse events after total knee replacement	Not specific to VTE

Author	Title	Reason for Exclusion
Soohoo et al. 2006	Primary total knee arthroplasty in California 1991 to 2001: does hospital volume affect outcomes?	Insufficient data
Soohoo et al. 2006	Factors predicting complication rates following total knee replacement	Patients reported in a more recent publication
Crowther et al. 2005	Deep venous thrombosis: clinically silent in the intensive care unit	Not specific to surgical patients
Dahl et al. 2005	Postoperative Melagatran/Ximelagatran for the Prevention of Venous Thromboembolism following Major Elective Orthopaedic Surgery : Effects of Timing of First Dose and Risk Factors for Thromboembolism and Bleeding Complications on Efficacy and Safety	Not best available evidence
Gray et al. 2005	Outcome of hip arthroplasty in octogenarians compared with younger patients	Not best available evidence
Gregory et al. 2005 Jaffer et al. 2005	Prevalence of venous thromboembolism in hip and knee arthroplasty patients admitted for comprehensive inpatient rehabilitation Duration of anesthesia and venous thromboembolism after hip and knee arthroplasty	Not best available evidence Not best available evidence
Kreder et al. 2005	Arthroplasty in the octogenarian: Quantifying the risks	Does not report VTE
Leizorovi cz et al. 2005	Epidemiology of venous thromboembolism in Asian patients undergoing major orthopedic surgery without thromboprophylaxis. The SMART study	Not best available evidence (not specific to elective arthroplasty)
Piovella et al. 2005	Deep-vein thrombosis rates after major orthopedic surgery in Asia. An epidemiological study based on postoperative screening with centrally adjudicated bilateral venography	Not best available evidence (not specific to elective arthroplasty)
Salvati et al. 2005	The John Charnley Award: heritable thrombophilia and development of thromboembolic disease after total hip arthroplasty	Not best available evidence Not best available
Schiff et al. 2005	Identifying orthopedic patients at high risk for venous thromboembolism despite thromboprophylaxis	evidence (not specific to elective arthroplasty)
Syed et al. 2005	Lower-limb deep-vein thrombosis in a general hospital: risk factors, outcomes and the contribution of intravenous drug use	Not specific to surgical patients Systematic
Edmonds et al. 2004	Evidence-based risk factors for postoperative deep vein thrombosis	review, bibliography screened
Hilton et al. 2004	The octogenarian total knee arthroplasty	Not best available evidence
Mont et al. 2004	Risk factors for pulmonary emboli after total hip or knee arthroplasty	Not best available evidence

Author	Title	Reason for Exclusion
Pookarnja namorako t et al. 2004	The incidence of deep vein thrombosis and pulmonary embolism after total knee arthroplasty: the screening study by radionuclide venography	Not best available evidence
Weill- Engerer et al. 2004	Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study	Not specific to surgical patients
White et al. 2004	Effect of age on the incidence of venous thromboembolism after major surgery	Not best available evidence (not specific to elective arthroplasty)
Clarke- Pearson et al. 2003	Venous thromboembolism prophylaxis: patients at high risk to fail intermittent pneumatic compression	Not specific to elective arthroplasty
Czerwins ki et al. 2003	Thromboembolic complications after total hip arthroplasty and prevention of thrombosis: own experience	Cannot locate publication
Dowling et al. 2003 Kim et al. 2003 Kinkel et al. 2003 Lawton et al. 2003	The epidemiology of venous thromboembolism in Caucasians and African-Americans: the GATE Study Incidence and natural history of deep-vein thrombosis after total hip arthroplasty. A prospective and randomised clinical study Revision total hip arthroplasty: the influence of gender and age on the perioperative complication rate Validity of index of suspicion for pulmonary embolism after hip arthroplasty	Not specific to surgical patients Not best available evidence Not best available evidence Not best available evidence
Mantilla et al. 2003	Risk factors for clinically relevant pulmonary embolism and deep venous thrombosis in patients undergoing primary hip or knee arthroplasty	Not best available evidence
Moller et al. 2003	Effect of smoking on early complications after elective orthopaedic surgery	Does not report VTE
Samama et al. 2003	Quantification of risk factors for venous thromboembolism: a preliminary study for the development of a risk assessment tool	Systematic review, bibliography screened
White et al. 2003	Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures	Not best available evidence (not specific to elective arthroplasty)
Wurtz et al. 2003	Elective primary total hip arthroplasty in octogenarians	Fewer than 100 patients
Bergqvist et al. 2002	Venous thromboembolism in patients undergoing laparoscopic and arthroscopic surgery and in leg casts	Narrative review, bibliography screened
Kim et al. 2002	Incidence and natural history of deep-vein thrombosis after total knee arthroplasty. A prospective, randomised study	Not best available evidence

Author	Title	Reason for Exclusion
Mantilla et al. 2002	Frequency of myocardial infarction, pulmonary embolism, deep venous thrombosis, and death following primary hip or knee arthroplasty	Not best available evidence
Solis et al. 2002	Incidence of DVT following surgery of the foot and ankle	Not specific to elective arthroplasty Not best available
Ting et al. 2002	Perioperative deep vein thrombosis in Chinese patients undergoing craniotomy	evidence (not specific to elective arthroplasty)
Wahlande r et al. 2002	Factor V Leiden (G1691A) and prothrombin gene G20210A mutations as potential risk factors for venous thromboembolism after total hip or total knee replacement surgery	Not best available evidence
Westrich et al. 2002	Correlation of thrombophilia and hypofibrinolysis with pulmonary embolism following total hip arthroplasty: an analysis of genetic factors	Not best available evidence
Caprini et al. 2001	Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease	Narrative review, bibliography screened
Della et al. 2001	The relationship of the factor V Leiden mutation or the deletion- deletion polymorphism of the angiotensin converting enzyme to postoperative thromboembolic events following total joint arthroplasty	Not best available evidence
Larson et al. 2001 Nguyen et	Thromboembolism after total knee arthroplasty: intermittent pneumatic compression and aspirin prophylaxis Systemic coagulation and fibrinolysis after laparoscopic and open	Not best available evidence Fewer than 100
al. 2001 Tveit et al. 2001	gastric bypass Risk factors for hospitalizations resulting from pulmonary embolism after renal transplantation in the United States	patients Not best available evidence
Della et al. 2000	Anticoagulant treatment of thromboembolism with intravenous heparin therapy in the early postoperative period following total joint arthroplasty	Not best available evidence
Hansson et al. 2000 Joynt et al. 2000	Recurrent venous thromboembolism after deep vein thrombosis: incidence and risk factors Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients	Not specific to surgical patients Not specific to surgical patients
Perka et al. 2000 Perka et	Influencing factors on perioperative morbidity in knee arthroplasty The influence of obesity on perioperative morbidity and mortality in	Data not specific to VTE Not best available
al. 2000 Ruban et al. 2000	Deep vein thrombosis after total knee replacement	evidence Not best available evidence
Wang et al. 2000	Deep vein thrombosis after total knee arthroplasty	Not best available evidence

Author	Title	Reason for Exclusion
de Thomasso n et al. 1999	Detection of asymptomatic venous thrombosis following hip replacement surgery: Retrospective evaluation of routine screening by duplex ultrasonography based on 286 cases	Not best available evidence
Hooker et al. 1999	Efficacy of prophylaxis against thromboembolism with intermittent pneumatic compression after primary and revision total hip arthroplasty	Not best available evidence
Lindahl et al. 1999 Messieh 1999	APC-resistance is a risk factor for postoperative thromboembolism in elective replacement of the hip or kneea prospective study Preoperative risk factors associated with symptomatic pulmonary embolism after total knee arthroplasty	Not best available evidence Not best available evidence
Warbel et al. 1999	Venous thromboembolism: risk factors in the craniotomy patient population	Not best available evidence (not specific to elective arthroplasty) Not specific to
Mizel et al. 1998	Thromboembolism after foot and ankle surgery: A multicenter study	elective arthroplasty
Ryan et al. 1998	Relation of factor V Leiden genotype to risk for acute deep venous thrombosis after joint replacement surgery	Not best available evidence
White et al. 1998	Incidence and time course of thromboembolic outcomes following total hip or knee arthroplasty	Not best available evidence
Woolson et al. 1998	Deep venous thrombosis prophylaxis for knee replacement: warfarin and pneumatic compression	Not best available evidence
Woolson et al. 1998	Factor V Leiden and the risk of proximal venous thrombosis after total hip arthroplasty	Not best available evidence
Andersen et al. 1997	Location of postoperative deep vein thrombosis in relation to age and survival	Not best available evidence
Lieberma n et al. 1997	The efficacy of prophylaxis with low-dose warfarin for prevention of pulmonary embolism following total hip arthroplasty	Not best available evidence
Svensson et al. 1997	Female gender and resistance to activated protein C (FV:Q506) as potential risk factors for thrombosis after elective hip arthroplasty	Not best available evidence
Warwick et al. 1997	Symptomatic venous thromboembolism after total knee replacement	Not best available evidence
Woolson 1996	Intermittent pneumatic compression prophylaxis for proximal deep venous thrombosis after total hip replacement	Not best available evidence
Babcock et al. 1994	Venous duplex imaging for surveillance of patients undergoing total joint arthroplasty: A three-year study	Not best available evidence
Lehman et al. 1994	Total hip arthroplasty without cement in obese patients. A minimum two-year clinical and radiographic follow-up study	Not best available evidence
Jiganti et al. 1993	A comparison of the perioperative morbidity in total joint	Not best available evidence
Sharrock	arthroplasty in the obese and nonobese patient Factors affecting deep vein thrombosis rate following total knee	Not best available
et al. 1993	arthroplasty under epidural anesthesia	evidence
Sharrock	Factors influencing deep vein thrombosis following total hip	Not best available
et al. 1993	arthroplasty under epidural anesthesia	evidence

Author Vresilovic et al. 1993	Title Incidence of pulmonary embolism after total knee arthroplasty with low-dose coumadin prophylaxis	Reason for Exclusion Not best available evidence
Clagett et al. 1992	Prevention of venous thromboembolism	Narrative review, bibliography screened
Gillinov et al. 1992	Pulmonary embolism in the cardiac surgical patient	Fewer than 100 patients
Caprini et al. 1991	Clinical assessment of venous thromboembolic risk in surgical patients	Does not address question of interest
Kim et al. 1991	Factors leading to low incidence of deep vein thrombosis after cementless and cemented total knee arthroplasty	Not best available evidence
Kim 1990	The incidence of deep vein thrombosis after cementless and cemented knee replacement	Not best available evidence
Stern et al. 1990	Total knee arthroplasty in obese patients	Not best available evidence
Baldersto n et al. 1989	The prevention of pulmonary embolism in total hip arthroplasty. Evaluation of low-dose warfarin therapy	Not best available evidence
Hu 1989	Prophylaxis of deep-vein thrombosis in total hip surgery	Not best available evidence Not best available
Stringer et al. 1989	Deep vein thrombosis after elective knee surgery. An incidence study in 312 patients	evidence (not specific to elective arthroplasty)
Kim et al. 1988	Low incidence of deep-vein thrombosis after cementless total hip replacement	Insufficient data
Lynch et al. 1988	Deep-vein thrombosis and continuous passive motion after total knee arthroplasty	Not best available evidence
Rocha et al. 1988	Preoperative identification of patients at high risk of deep venous thrombosis despite prophylaxis in total hip replacement	Not best available evidence
Stulberg et al. 1984	Deep-vein thrombosis following total knee replacement. An analysis of six hundred and thirty-eight arthroplasties	Not best available evidence
Suomalai nen et al. 1983	Postoperative thromboembolism and risk factors in elective hip surgery	Not best available evidence
Stulberg et al. 1982	Aspirin prophylaxis for pulmonary embolism following total hip arthroplasty. An incidence study	Not best available evidence
Sikorski et al. 1981	The natural history and aetiology of deep vein thrombosis after total hip replacement	Not best available evidence
Sorensen et al. 1981	Mechanical prophylaxis against deep vein thrombosis in Charnley hip arthroplasty	Not best available evidence
Buchanan et al. 1980	Is there a lower incidence of deep venous thrombosis after joint replacement in rheumatoid arthritis?	Does not report risk factor of interest
Anderson et al. 1979	Risk factor assessment in 101 total hip arthroplasties: a medical perspective	Not best available evidence

Author	Title	Reason for Exclusion
Nillius et al. 1979	Deep vein thrombosis after total hip replacement: a clinical and phlebographic study	Not best available evidence
van et al. 1977	Comparison of postoperative coumarin, dextran 40 and subcutaneous heparin in the prevention of postoperative deep vein thrombosis	Not best available evidence
Kelsey et al. 1976	Prediction of thromboembolism following total hip replacement	Not best available evidence
Smith et al. 1975	Complications of Austin Moore arthroplasty. Their incidence and relationship to potential predisposing factors	Not specific to elective arthroplasty
Ilstrup et al. 1973	Factors influencing the results in 2,012 total hip arthroplasties	Insufficient data

RISK FACTORS FOR BLEEDING

Author Goddard et al. 2010	Title Total knee replacement in patients with end-stage haemophilic arthropathy: 25-year results	Reason for Exclusion Not best available evidence
Karkouti et al. 2010	The influence of perioperative coagulation status on postoperative blood loss in complex cardiac surgery: a prospective observational study	Excludes patients with pre-existing coagulopathy
Thompson et al. 2010	Systemic AL amyloidosis with acquired factor X deficiency: A study of perioperative bleeding risk and treatment outcomes in 60 patients	Not best available evidence (case series)
Tsuji et al. 2010	Risk factors for bleeding after endoscopic submucosal dissection for gastric lesions	Does not investigate risk factor of interest
Cosmi et al. 2009	Assessment of the risk of bleeding in patients undergoing surgery or invasive procedures: Guidelines of the Italian Society for Haemostasis and Thrombosis (SISET)	Clinical guideline
Fuchs et al. 2009	Major bleeding complicating contemporary primary percutaneous coronary interventions-incidence, predictors, and prognostic implications	Does not address question of interest
Kinnaird et al. 2009	Bleeding during percutaneous intervention: Tailoring the approach to minimise risk Predictors and impact of bleeding complications in	Systematic review, bibliography screened
Manoukian 2009	syndromes, and ST-segment elevation myocardial infarction	Narrative review, bibliography screened
Nardell et al. 2009	Risk factors for bleeding in pediatric post-cardiotomy patients requiring ECLS Value of a single preoperative PFA-100 measurement in	Does not investigate risk factor of interest
Ng et al. 2009	assessing the risk of bleeding in patients taking cyclooxygenase inhibitors and undergoing total knee replacement	Does not address question of interest
Solimeno et al. 2009	Factors influencing the long-term outcome of primary total knee replacement in haemophiliacs: a review of 116 procedures at a single institution	Not best available evidence (retrospective case series)
Vieira et al. 2009	A prospective study of conventional and expanded coagulation indices in predicting ulcer bleeding after variceal band ligation	Not best available evidence (coagulation screening)
Witmer et al. 2009	Incidence of bleeding complications in pediatric patients with type 1 von Willebrand disease undergoing adenotonsillar procedures	Not best available evidence
Yasunaga et al. 2009	High-volume surgeons in regard to reductions in operating time, blood loss, and postoperative complications for total hip arthroplasty	Does not examine risk factor of interest
Yoo et al. 2009	The outcome of cementless total hip arthroplasty in haemophilic hip arthropathy	Not best available evidence (retrospective case series)
Blasdale et al. 2008	Perioperative international normalized ratio level is a poor predictor of postoperative bleeding complications in dermatological surgery patients taking warfarin	Not best available evidence (coagulation screening)

Author	Title	Reason for Exclusion
Chee et al. 2008	Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures. British Committee for Standards in Haematology	Systematic review, bibliography screened
Chiang et al. 2008	Total knee arthroplasty for severe haemophilic arthropathy: long-term experience in Taiwan	Insufficient data
Gerber et al. 2008	The incidence of and risk factors for venous thromboembolism (VTE) and bleeding among 1514 patients undergoing hematopoietic stem cell transplantation: implications for VTE prevention	Does not investigate risk factor of interest
Licameli et al. 2008	Use of a preoperative bleeding questionnaire in pediatric patients who undergo adenotonsillectomy	Not best available evidence (coagulation screening)
Miles et al. 2008	The impact of haemophilia on the success of total hip arthroplasty	Not best available evidence (retrospective case series)
Modig et al. 2008	Template bleeding time for preoperative screening in patients having orthognathic surgery	Not best available evidence (coagulation screening)
Beiderlinden et al. 2007	Risk factors associated with bleeding during and after percutaneous dilational tracheostomy	Not best available evidence (coagulation screening)
Feit et al. 2007	Predictors and Impact of Major Hemorrhage on Mortality Following Percutaneous Coronary Intervention from the REPLACE-2 Trial	Does not address question of interest
Habermann et al. 2007	Total hip replacement in patients with severe bleeding disorders. A 30 years single center experience	Not best available evidence (retrospective case series)
Iwata et al. 2007	Factors predicting early postoperative liver cirrhosis-related complications after lung cancer surgery in patients with liver cirrhosis	Not best available evidence (coagulation screening)
Lethagen et al. 2007	von Willebrand factor/factor VIII concentrate (Haemate(registered trademark) P) dosing based on pharmacokinetics: A prospective multicenter trial in elective surgery	Not best available evidence (bleeding disorder)
Rodriguez- Merchan et al. 2007	Total knee replacement in haemophilic arthropathy	Not best available evidence (retrospective case series)
Valerin et al. 2007	Modified Child-Pugh score as a marker for postoperative bleeding from invasive dental procedures	Not best available evidence (coagulation screening)
Welsby et al. 2007	ABO blood group and bleeding after coronary artery bypass graft surgery	Excludes patients with pre-existing coagulopathy
Carroll et al. 2006	Correlation of perioperative platelet function and coagulation tests with bleeding after cardiopulmonary bypass surgery	Not best available evidence (coagulation screening)

Author	Title	Reason for Exclusion
Gerrah et al. 2006	Using cone and plate(let) analyzer to predict bleeding in cardiac surgery	Not best available evidence (coagulation screening)
Giles et al. 2006	Routine coagulation screening in children undergoing gastrointestinal endoscopy does not predict those at risk of bleeding	Not best available evidence (coagulation screening)
Kirtane et al. 2006	Correlates of bleeding events among moderate- to high-risk patients undergoing percutaneous coronary intervention and treated with eptifibatide: observations from the PROTECT-TIMI-30 trial	Not best available evidence (coagulation screening)
Ward et al. 2006	Long-term postoperative bleeding after dentoalveolar surgery in the pretransplant liver failure patient	Not best available evidence (coagulation screening)
Welsby et al. 2006	The kaolin-activated Thrombelastograph predicts bleeding after cardiac surgery	Not best available evidence (coagulation screening)
Bae et al. 2005	Total knee arthroplasty in hemophilic arthropathy of the knee	Not best available evidence (retrospective case series)
Blome et al. 2005	Relationship between factor XIII activity, fibrinogen, haemostasis screening tests and postoperative bleeding in cardiopulmonary bypass surgery	Excludes patients with pre-existing coagulopathy
Farouque et al. 2005	Risk factors for the development of retroperitoneal hematoma after percutaneous coronary intervention in the era of glycoprotein IIb/IIIa inhibitors and vascular closure devices	Not best available evidence (coagulation screening)
Magann et al. 2005	Postpartum hemorrhage after cesarean delivery: an analysis of risk factors	Not best available evidence
Ohta et al. 2005	Analysis of risk factors for massive intraoperative bleeding during laparoscopic splenectomy	Not best available evidence
Segal et al. 2005	Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: An evidence-based review	Systematic review, bibliography screened
Sirichindakul et al. 2005	Risk factors associated with major intraoperative blood loss in hepatic resection for hepatobiliary tumor	Not best available evidence
Villiger et al. 2005	Prevention of bleeding after islet transplantation: lessons learned from a multivariate analysis of 132 cases at a single institution	Not best available evidence (coagulation screening)
Chang et al. 2004	Predicting blood loss and transfusion requirements during radical prostatectomy: the significant negative impact of increasing body mass index	Not best available evidence (not elective arthroplasty)
Ho et al. 2004	Blood loss and transfusion in elective abdominal aortic aneurysm surgery	Not best available evidence (coagulation screening)
Karthik et al. 2004 Kukreja et al. 2004	Reexploration for bleeding after coronary artery bypass surgery: risk factors, outcomes, and the effect of time delay Factors affecting blood loss during percutaneous nephrolithotomy: prospective study	Does not investigate risk factor of interest Does not investigate risk factor of interest

Author	Title	Reason for Exclusion
Castellano et al. 2003	American Society of Anesthesiology classification may predict severe post-tonsillectomy haemorrhage in children	Not best available evidence (coagulation screening)
Fattorutto et al. 2003	Does the platelet function analyser (PFA-100) predict blood loss after cardiopulmonary bypass?	Not best available evidence (coagulation screening)
Herwaldt et al. 2003	Hemorrhage after coronary artery bypass graft procedures	Not best available evidence
Hsieh et al. 2003	Hip arthroplasty in patients with cirrhosis of the liver	Not best available evidence (retrospective case series)
Legroux- Gerot et al. 2003	Total knee arthroplasty in hemophilic arthropathy	Not best available evidence (retrospective case series)
Terjung et al. 2003	Bleeding complications after percutaneous liver biopsy. An analysis of risk factors	Not best available evidence
Winkelmayer et al. 2003	Chronic kidney disease as a risk factor for bleeding complications after coronary artery bypass surgery	Not best available evidence (coagulation screening)
Hall et al. 2002	Hemorrhage related reexploration following open heart surgery: the impact of pre-operative and post-operative coagulation testing	Not best available evidence (coagulation screening)
Isgro et al. 2002	Platelet function test HemoSTATUS 2: tool or toy for an optimized management of hemostasis?	Not best available evidence (coagulation screening)
Ti et al. 2002	Prediction of excessive bleeding after coronary artery bypass graft surgery: the influence of timing and heparinase on thromboelastography	Not best available evidence (coagulation screening)
Asaf et al. 2001	The need for routine pre-operative coagulation screening tests (prothrombin time PT/partial thromboplastin time PTT) for healthy children undergoing elective tonsillectomy and/or adenoidectomy	Not best available evidence (coagulation screening)
Blinder et al. 2001	Dental extractions in patients maintained on oral anticoagulant therapy: comparison of INR value with occurrence of postoperative bleeding	Not best available evidence (coagulation screening)
Ereth et al. 2001	Platelet glass bead retention predicts bleeding after cardiac surgery	Insufficient data
Friedman et al. 2001	Remote cerebellar hemorrhage after supratentorial surgery	Not best available evidence (coagulation screening)
Krishna et al. 2001	Post-tonsillectomy bleeding: a meta-analysis	Systematic review, bibliography screened
Lehman et al. 2001	Discontinuation of the bleeding time test without detectable adverse clinical impact	Not best available evidence
Nevo et al. 2001	Acute bleeding and thrombocytopenia after bone marrow transplantation	Does not address question of interest

Author Title **Reason for Exclusion** Not best available Steib et al. Intraoperative blood losses and transfusion requirements evidence (coagulation 2001 during adult liver transplantation remain difficult to predict screening) The impact of bleeding times on major complication rates Not best available Stiles et al. after percutaneous real-time ultrasound-guided renal evidence (coagulation 2001 biopsies screening) Not best available Christiansen Are patients with Werlhof's disease at increased risk for evidence (coagulation et al. 2000 bleeding complications when undergoing cardiac surgery? screening) Not best available Cohen et al. Orthopaedic outcome of total knee replacement in evidence (retrospective 2000 haemophilia A case series) Relationship between clinical history, coagulation tests, Not best available Gabriel et al. and perioperative bleeding during tonsillectomies in evidence (coagulation 2000 pediatrics screening) Not best available Gerlach et al. Factor XIII deficiency and postoperative hemorrhage after evidence (bleeding neurosurgical procedures 2000 disorder) Boberg et al. Is a prolonged bleeding time associated with an increased Not best available 1999 risk of hemorrhage after liver biopsy? evidence Not best available Abnormal clotting parameters before therapeutic ERCP: do Oren et al. evidence (coagulation 1999 they predict major bleeding? screening) Not best available Haemophilic; arthropathy: Assessment of quality of life Schick et al. evidence (retrospective 1999 after total knee arthroplasty case series) Bronchoscopy with transbronchial biopsies: measurement Bjortuft et al. Not best available of bleeding volume and evaluation of the predictive value 1998 evidence of coagulation tests Reexploration for hemorrhage following coronary artery Dacey et al. Not best available bypass grafting: incidence and risk factors. Northern New 1998 evidence England Cardiovascular Disease Study Group The relation between the platelet-activated clotting test Not best available Ereth et al. (HemoSTATUS) and blood loss after cardiopulmonary evidence (coagulation 1998 screening) bypass Collagen-induced whole blood platelet aggregation in Not best available Kabakibi et patients undergoing surgical procedures associated with evidence (coagulation al. 1998 minimal to moderate blood loss screening) Preoperative values of molecular coagulation markers Not best available Korte et al. identify patients at low risk for intraoperative haemostatic evidence (coagulation 1998 disorders and excessive blood loss screening) Mandak et al. Modifiable risk factors for vascular access site Does not address 1998 complications in the question of interest Not best available Wahba et al. Are in-vitro platelet function tests useful in predicting evidence (coagulation 1998 blood loss following open heart surgery? screening)

Table 59. Excluded Studies Considered for Risk Factors for Bleeding

nucu Studies Considered for Kisk Factors for Diceun	-8
Title	Reason for Exclusion
Does the platelet-activated clotting test (HemoSTATUS) predict blood loss and platelet dysfunction associated with cardiopulmonary bypass?	Not best available evidence (coagulation screening)
Value of preoperative prothrombin time/partial thromboplastin time as a predictor of postoperative hemorrhage in pediatric patients undergoing tonsillectomy	Not best available evidence (coagulation screening)
Coagulation tests predict bleeding after cardiopulmonary bypass	Not best available evidence (coagulation screening)
Evaluation of a new point-of-care test that measures PAF- mediated acceleration of coagulation in cardiac surgical patients	Insufficient data
Changes in blood coagulation during and following cardiopulmonary bypass: lack of correlation with clinical bleeding	Not best available evidence (coagulation screening)
The clinical usefulness of the preoperative bleeding time	Not best available evidence (coagulation screening)
Total hip replacement in patients with hemophilia. 13 hips in 11 patients followed for 1-16 years	Not best available evidence (retrospective case series)
Preoperative platelet count and postoperative blood loss in patients undergoing hip surgery: an inverse correlation Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations	Not best available evidence Not best available evidence
Perioperative blood loss: the effect of valproate	Not best available evidence (coagulation screening)
Preoperative evaluation of primary hemostasis in patients with thrombocytopenia using the Thrombostat 4000	Does not report patient oriented outcomes
Thromboelastography for the prediction of bleeding after transplant renal biopsy	Not best available evidence (coagulation screening)
Predictors of blood loss during total hip replacement surgery	Does not investigate risk factor of interest
bypass: lack of correlation between pre-operative and intra- operative whole blood lumiaggregometry and peri- operative blood loss in patients receiving autologous platelet-rich plasma	Not best available evidence (coagulation screening)
Hip arthroplasty in hemophilic arthropathy	Insufficient data
Intraoperative blood loss in pediatric liver transplantation: analysis of preoperative risk factors	Not best available evidence (coagulation screening)
Bleeding time and bleeding: an analysis of the relationship of the bleeding time test with parameters of surgical bleeding	Excludes patients with pre-existing coagulopathy
	 Title Does the platelet-activated clotting test (HemoSTATUS) predicit blood loss and platelet dysfunction associated with cardiopulmonary bypass? Value of preoperative prothrombin time/partial thromboplastin time as a predictor of postoperative hromrhage in pediatric patients undergoing tonsillectomy Coagulation tests predict bleeding after cardiopulmonary bypass? Evaluation of a new point-of-care test that measures PAF-mediated acceleration of coagulation in cardiac surgical patients Changes in blood coagulation during and following cardiopulmonary bypass: lack of correlation with clinical bleeding The clinical usefulness of the preoperative bleeding time Total hip replacement in patients with hemophilia. 13 hips in 11 patients followed for 1-16 years Preoperative platelet count and postoperative blood loss in patients undergoing hip surgery: an inverse correlation Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations Perioperative blood loss: the effect of valproate Prooperative blood loss during total hip replacement surgery Natelet function, coagulation tests, and cardiopulmonary surgery Patelet function, coagulation tests, and cardiopulmonary surgery Patelet function, coagulation tests, and cardiopulmonary surgery Patelet function tests in patients receiving autologous platelet-rich plasma Hip arthroplasty in hemophilic arthropathy His anthroplasty in pediatric liver transplantation: analysis of preoperative risk factors

Table 59. Excluded Studies Considered for Risk Factors for Bleeding

Author	Title	Reason for Exclusion
Kozak et al. 1994	Do 'screening' coagulation tests predict bleeding in patients undergoing fiberoptic bronchoscopy with biopsy?	Not best available evidence (coagulation screening)
Naef et al. 1994	Prediction of hemorrhage at cesarean delivery	Does not address question of interest
Nelson et al. 1994	Major hemorrhage from endoscopic sphincterotomy: risk factor analysis	Not best available evidence (coagulation screening)
Ray et al. 1994	Relationship of platelet aggregation to bleeding after cardiopulmonary bypass	Not best available evidence (coagulation screening)
Macpherson et al. 1993	Abnormal peri-operative haemorrhage in asymptomatic patients is not predicted by laboratory testing	Not best available evidence (coagulation screening)
Mor et al. 1993	The impact of operative bleeding on outcome in transplantation of the liver	Not best available evidence (coagulation screening)
Teigland et al. 1993	Knee arthroplasty in hemophilia. 5-12 year follow-up of 15 patients	Not best available evidence (retrospectiv case series)
Davenport 1992	Predicting postprocedure bleeding in liver disease	Commentary
Nelson et al. 1992	Total hip arthroplasty for hemophilic arthropathy	Insufficient data
Wang et al. 1992	Thromboelastogram fails to predict postoperative hemorrhage in cardiac patients	Not best available evidence (coagulatior screening)
Lebovics et al. 1991	Upper gastrointestinal bleeding following open heart surgery. Predominant finding of aggressive duodenal ulcer disease	Does not address question of interest
Lind 1991	The bleeding time does not predict surgical bleeding	Systematic review, bibliography screened
Martin et al. 1991	Monitoring of coagulation status using thrombelastography during paediatric open heart surgery	Not best available evidence (coagulatior screening)
Hay et al. 1990	Bleeding complications in thrombocytopenic patients undergoing ophthalmic surgery	Letter
Smith et al. 1990	Predicting bleeding in common ear, nose, and throat procedures: a prospective study	Insufficient data
Figgie et al. 1989	Total knee arthroplasty for the treatment of chronic hemophilic arthropathy	Not best available evidence (retrospectiv case series)
Berman et al. 1988	Blood loss with total knee arthroplasty	Does not investigate risk factor of interest
Halonen et al. 1987	Evaluation of risk factors in intraoperative bleeding tendency	Not best available evidence (coagulation screening)

Author	Title	Reason for Exclusion
Tami et al. 1987	Post-tonsillectomy bleeding: an evaluation of risk factors	Not best available evidence (coagulation screening)
Burns et al. 1986	The preoperative bleeding time as a predictor of postoperative hemorrhage after cardiopulmonary bypass	Not best available evidence (coagulation screening)
Suchman et al. 1986	How well does the activated partial thromboplastin time predict postoperative hemorrhage?	Not best available evidence
Barber et al. 1985	The bleeding time as a preoperative screening test	Insufficient data
Lachiewicz et al. 1985	Total knee arthroplasty in hemophilia	Insufficient data
Sharma et al. 1982	The risk of bleeding after percutaneous liver biopsy: relation to platelet count	Not best available evidence (coagulation screening)
Goldberg et al. 1981	Total knee arthroplasty in classic hemophilia	Not best available evidence (retrospective case series)
McCollough et al. 1979	Synovectomy or total replacement of the knee in hemophilia	Less than 10 arthroplasty patients
D'Ambrosia et al. 1974	Total hip replacement for patients with hemophilia and hemorrhagic diathesis	Case report

Table 59. Excluded Studies Considered for Risk Factors for Bleeding

RISK FACTORS FOR HEMORRHAGE-ASSOCIATED COMPLICATIONS Table 60. Excluded Studies Considered for Risk Factors for Hemorrhage-Associated Complications

Author	Title	Reason for Exclusion
Baker et al.	The effect of surgeon volume on the need for transfusion	Not best available
2011	following primary unilateral hip and knee arthroplasty	evidence
Goddard et	Does the preoperative iron status predict transfusion	Not best available
al. 2010	requirement of orthopedic patients?	evidence
Mahadevan	Revision total hip replacement: predictors of blood loss,	Not best available
et al. 2010	transfusion requirements, and length of hospitalisation	evidence
Fotland et al.	Does the preoperative iron status predict transfusion	Not best available
2009	requirement of orthopedic patients?	evidence
Mourao et al.	An analysis of joint replacement in patients with systemic	Not best available
2009	lupus erythematosus	evidence
Andrew et al. 2008	Obesity in total hip replacement	Not best available evidence
Bolognesi et al. 2008	The impact of diabetes on perioperative patient outcomes after total hip and total knee arthroplasty in the United States	Not most recent publication of these data
Chelly et al. 2008	Throbmoprophylaxis and peripheral nerve blocks in patients undergoing joint arthroplasty	Retrospective case series
Chelly et al. 2008b	International normalized ratio and prothrombin time values before the removal of a lumbar plexus catheter in patients receiving warfarin after total hip replacement	Retrospective case series
Gunningberg et al. 2008	Pre- and postoperative nutritional status and predictors for surgical-wound infections in elective orthopaedic and thoracic patients	Not best available evidence
Habermann et al. 2008	Total joint replacement in HIV positive patients	Not best available evidence
Hamilton et al. 2008	Deep infection in total hip arthroplasty	Not best available evidence
Moon et al. 2008	Factors affecting outcome after total knee arthroplasty in patients with diabetes mellitus	Not best available evidence
Pulido et al. 2008	In hospital complications after total joint arthroplasty	Not best available evidence
Rogers et al. 2008	Identification and treatment of anaemia in patients awaiting hip replacement	Not best available evidence
Burnett et al. 2007	Failure of the American College of Chest Physicians-1A protocol for lovenox in clinical outcomes for thromboembolic prophylaxis	Not best available evidence
Moon et al. 2007	Perioperative risk of hip arthroplasty in patients with cirrhotic liver disease	Not best available evidence
Patel et al. 2007	Factors associated with prolonged wound drainage after primary total hip and knee arthroplasty	Not best available evidence
Prasad et al. 2007	Blood loss in total knee arthroplasty: an analysis of risk factors	Not best available evidence
Wood et al. 2007	Wound oozing after total hip arthroplasty	Not best available evidence

Table 60. Excluded Studies Considered for Risk Factors for Hemorrhage-Associated Complications

		Reason for
Author	Title	Exclusion
Amin et al.	Does obesity influence the clinical outcome at five years	Not best available
2006	following total knee replacement for osteoarthritis?	evidence
McLaughlin	The outcome of total hip replacement in obese and non-obese	Not best available
et al. 2006	patients at 10- to 18-years	evidence
Parvizi et al. 2006	Can epidural anesthesia and warfarin be coadministered	Retrospective case series
Rashiq et al. 2006	The effect of spinal anesthesia on blood transfusion rate in total joint arthroplasty	Data from previously published study
Sadr et al. 2006	The impact of tobacco use and body mass index on the length of stay in hospital and the risk of post-operative complications among patients undergoing total hip replacement	Does not examine hemorrhage- associated complications
Yercan et al. 2006	Stiffness after total knee arthroplasty: Prevalence, management and outcomes	Insufficien data
Powell et al. 2005	Knee and hip arthroplasty infection rates in persons with haemophilia: a 27 year single center experience during the HIV epidemic	Not best available evidence
Al-Mousawi 2004	Complications and failures of hip replacement in sickle cell disease	Not best available evidence
Pola et al. 2004	Clinical factors associated with an increased risk of perioperative blood transfusion in nonanemic patients undergoing total hip arthroplasty	Not best available evidence
Rose et al. 2004	Total knee arthroplasty in Ehlers-Danlos Syndrome	Retrospective case series
Yau et al.	Factors leading to blood transfusion among Chinese patients	Not best available
2004	undergoing total knee replacements: a retrospective study	evidence
Parvizi et al. 2003	Total joint arthroplasty in human immunodeficiency virus- positive patients: An alarming rate of early failure	Not best available evidence
Shrader et al. 2003	Insall Award paper. Primary TKA in patients with lymphedema	Not best available evidence
Al-Mousawi et al. 2002	Total hip replacement in sickle cell disease	Not best available evidence
Ilyas et al.	Simultaneous bilateral total hip arthroplasty in sickle cell	Not best available
2002	disease	evidence
Saleh et al.	Predictors of wound infection in hip and knee joint	Not best available
2002	replacement: results from a 20 year surveillance program	evidence
Salido et al.	Preoperative hemoglobin levels and the need for transfusion	Not best available
2002	after prosthetic hip and knee surgery: analysis of predictive factors	evidence
Hatzidakis et	Preoperative autologous donation for total joint arthroplasty.	Not best available
al. 2000	An analysis of risk factors for allogenic transfusion	evidence
Perka et al.	The influence of obesity on perioperative morbidity and	Not best available
2000	mortality in revision total hip arthroplasty	evidence
Bowditch et	Do obese patients bleed more? A prospective study of blood	Does not report
al. 1999	loss at total hip replacement	outcome of interest

Table 60. Excluded Studies Considered for Risk Factors for Hemorrhage-Associated Complications

- I		D f
Author	Title	Reason for Exclusion
Faris et al. 1999	The predictive power of baseline hemoglobin for transfusion risk in surgery patients	Narrative review, bibliography screened
Nelson et al. 1999	Primary and revision total hip replacement in patients who are Jehovah's Witnesses	Narrative review, bibliography screened
Vichinsky et al. 1999	The perioperative complication rate of orthopedic surgery in sickle cell disease: report of the National Sickle Cell Surgery Study Group	Not best available evidence
Kageyama et al. 1998	Outcomes for patients undergoing one or more total hip and knee arthroplasties	Does not report outcome of interest
Keating et al. 1998	Predictors of transfusion risk in elective knee surgery	Not best available evidence
Larocque et al. 1998	Prospective validation of a point score system for predicting blood transfusion following hip or knee replacement	Insufficient data
Nuttall et al. 1996	The predictors of red cell transfusions in total hip arthroplasties	Not best available evidence
Wu et al. 1996	Oral anticoagulant prophylaxis and epidural catheter removal	Retrospective case series
Deo et al. 1995	Total hip replacement in renal transplant patients	Not best available evidence
Escalante et al. 1995	Risk factors for early wound complications after orthopedic surgery for rheumatoid arthritis	Not specific to hip and knee arthroplasty
Hasley et al. 1995	Variation in the use of red blood cell transfusions. A study of four common medical and surgical conditions	Does not investigate risk factor of interest
McGrory et al. 1995	Total hip arthroplasty in patients who have chronic lymphocytic leukemia	Not best available evidence
Horlocker et al. 1994	Postoperative epidural anesthesia and oral anticoagulant therapy	Retrospective case series
Lehman et al. 1994	Total hip arthroplasty without cement in obese patients. A minimum two-year clinical and radiographic follow-up study	Not best available evidence
Jiganti et al. 1993	A comparison of the perioperative morbidity in total joint arthroplasty in the obese and nonobese patient	Not best available evidence
Moran et al. 1993	Total hip arthroplasty in sickle cell hemoglobinopathy	Not best available evidence
Wittmann et al. 1992	Total hip replacement surgery without blood transfusion in Jehovah's Witnesses	Retrospective case series
Flordal et al. 1991	Blood loss in total hip replacement. A retrospective study	Not best available evidence
England et al. 1990	Total knee arthroplasty in diabetes mellitus	Not best available evidence
Bonnett et al. 1987	Total hip replacement in Jehovah's Witnesses under spinal anesthesia without transfusion	Retrospective case series
Isono et al.	Total joint arthroplasty for steroid-induced osteonecrosis in	Not best available
1987	cardiac transplant patients	evidence

Table 60. Excluded Studies Considered for Risk Factors for Hemorrhage-Associated Complications

Author	Title	Reason for Exclusion
Soballe et al. 1987	Hip replacement in obese patients	Not best available evidence
Nelson et al. 1986	Total hip arthroplasty in Jehovah's Witnesses without blood transfusion	Retrospective case series
Chmell et al. 1983	Total hip replacement in patients with renal transplants	Not best available evidence
Colville et al. 1978	Charnley low-friction arthroplasties of the hip in rheumatoid arthritis. A study of the complications and results of 378 arthroplasties	Not best available evidence
Riley et al. 1978	Geometric total knee replacement for treatment of the rheumatoid knee	Not best available evidence
Salvati et al. 1972	Total hip replacement in rheumatoid arthritis	Not best available evidence

PREOPERATIVE ANTIPLATELET USE

Author	Title	Reason for Exclusion
Badreldin et al. 2010	Effect of clopidogrel on perioperative blood loss and transfusion in coronary artery bypass graft surgery	Not best available evidence (non- randomized study)
Herman et al. 2010	Clopidogrel increases blood transfusion and hemorrhagic complications in patients undergoing cardiac surgery	Not best available evidence (non- randomized study)
Tompkins et al. 2010	Dual antiplatelet therapy and heparin 'bridging' significantly increase the risk of bleeding complications after pacemaker or implantable cardioverter-defibrillator device implantation	Not best available evidence (non- randomized study)
Grujic et al. 2009	Perioperative clopidogrel is seven days enough?	Not best available evidence (non- randomized study)
Gulbins et al. 2009	Preoperative platelet inhibition with ASA does not influence postoperative blood loss following coronary artery bypass grafting	Not best available evidence (non- randomized study)
Jeon et al. 2009	Predictors of immediate bleeding during endoscopic submucosal dissection in gastric lesions	Not best available evidence (non- randomized study)
Napenas et al. 2009	The frequency of bleeding complications after invasive dental treatment in patients receiving single and dual antiplatelet therapy	Not best available evidence (non- randomized study)
Nardell et al. 2009	Risk factors for bleeding in pediatric post-cardiotomy patients requiring ECLS	Does not investigate risk factor of interest
O'Riordan et al. 2009	Antiplatelet agents in the perioperative period	Systematic review, bibliography screened Not best available
Vaccarino et al. 2009	Impact of preoperative clopidogrel in off pump coronary artery bypass surgery: a propensity score analysis	evidence (non- randomized study)
Berger et al. 2008	Impact of clopidogrel in patients with acute coronary syndromes requiring coronary artery bypass surgery: a multicenter analysis	Not best available evidence (non- randomized study)
Filsoufi et al. 2008	Clopidogrel treatment before coronary artery bypass graft surgery increases postoperative morbidity and blood product requirements	Not best available evidence (non- randomized study)
Halliwell et al. 2008	Transrectal ultrasound-guided biopsy of the prostate: aspirin increases the incidence of minor bleeding complications	Not best available evidence (non- randomized study)
Kamran et al. 2008	Effect of aspirin on postoperative bleeding in coronary artery bypass grafting	Not best available evidence (non- randomized study)
Krishnan et al. 2008	Exodontia and antiplatelet therapy	Not best available evidence (non- randomized study)
Law et al. 2008	Hemorrhagic complications from glaucoma surgery in patients on anticoagulation therapy or antiplatelet therapy	Not best available evidence (non- randomized study)

Table 61. Excluded Studies Considered for Preoperative Antiplatelet Use

Author	Title	Reason for Exclusion
Maltais et al. 2008	Effect of clopidogrel on bleeding and transfusions after off- pump coronary artery bypass graft surgery: impact of discontinuation prior to surgery	Not best available evidence (non- randomized study)
Morimoto et al. 2008	Hemostatic management of tooth extractions in patients on oral antithrombotic therapy	Not best available evidence (non- randomized study) Not best available
Ozao-Choy et al. 2008	Clopidogrel and bleeding after general surgery procedures	evidence (non- randomized study) Not best available
Partridge et al. 2008	The effect of platelet-altering medications on bleeding from minor oral surgery procedures	evidence (non- randomized study)
Pinkau et al. 2008	Glycoprotein IIb/IIIa receptor inhibition with abciximab during percutaneous coronary interventions increases the risk of bleeding in patients with impaired renal function Anticoagulant and antiplatelet therapy use in 426 patients	Does not address question of interest
Ruiz-Nodar et al. 2008	with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis	Does not investigate risk factor of interest
Shalom et al. 2008	Lack of complications in minor skin lesion excisions in patients taking aspirin or warfarin products	Not best available evidence (non- randomized study)
Shimizu et al. 2008	Multiple antithrombotic agents increase the risk of postoperative hemorrhage in dermatologic surgery	Not best available evidence (non- randomized study)
Sun et al. 2008	The effect of pre-operative aspirin on bleeding, transfusion, myocardial infarction, and mortality in coronary artery bypass surgery: A systematic review of randomized and observational studies	Systematic review, bibliography screened
Widimsky et al. 2008	Clopidogrel pre-treatment in stable angina: For all patients >6 h before elective coronary angiography or only for angiographically selected patients a few minutes before PCI? A randomized multicentre trial PRAGUE-8	Does not address question of interest
Alghamdi et al. 2007	Does the use of preoperative aspirin increase the risk of bleeding in patients undergoing coronary artery bypass grafting surgery? Systematic review and meta-analysis	Systematic review, bibliography screened
Dixon et al. 2007	Bleeding complications in skin cancer surgery are associated with warfarin but not aspirin therapy	Not best available evidence (non- randomized study)
Mehilli et al. 2007	Sex and effect of abciximab in patients with acute coronary syndromes treated with percutaneous coronary interventions: results from Intracoronary Stenting and Antithrombotic Regimen: Rapid Early Action for Coronary Treatment 2 trial	Does not address question of interest
Ouattara et al. 2007	Impact of aspirin with or without clopidogrel on postoperative bleeding and blood transfusion in coronary surgical patients treated prophylactically with a low-dose of aprotinin	Not best available evidence (non- randomized study)

Table 61. Excluded Studies Considered for Preoperative Antiplatelet Use

Table 61. Excluded Studies Considered for Preoperative Antiplatelet Use

Author	Title	Reason for Exclusion
Picker et al. 2007	Antiplatelet therapy preceding coronary artery surgery: implications for bleeding, transfusion requirements and	Not best available evidence (non-
Pristipino et al. 2007	outcome Comparison of access-related bleeding complications in women versus men undergoing percutaneous coronary catheterization using the radial versus femoral artery	randomized study) Not best available evidence (non- randomized study)
Robinson et al. 2007	Factors associated with deep sternal wound infection and haemorrhage following cardiac surgery in Victoria	Not best available evidence (non- randomized study)
Dhiwakar et al. 2006	Surgical resection of cutaneous head and neck lesions: does aspirin use increase hemorrhagic risk?	Not best available evidence
Ellis et al. 2006	Correlates and outcomes of retroperitoneal hemorrhage complicating percutaneous coronary intervention	Not best available evidence (non- randomized study) Not best available
Foss et al. 2006	Hidden blood loss after surgery for hip fracture	evidence (non- randomized study)
Haydar et al. 2006	Bleeding post coronary artery bypass surgery. Clopidogrel- -cure or culprit?	Not best available evidence (non- randomized study)
Kennedy et al. 2006	The association between aspirin and blood loss in hip fracture patients	Not best available evidence (non- randomized study)
McCaslin et al. 2006	Oral antiplatelet agents and bleeding risk in relation to major cardiovascular surgery	Narrative review, bibliography screened
Zhang et al. 2006	Administrative claims analysis of the relationship between warfarin use and risk of hemorrhage including drug-drug and drug-disease interactions	Not specific to surgical patients
Akowuah et al. 2005	Comparison of two strategies for the management of antiplatelet therapy during urgent surgery	Does not address question of interest
Exaire et al. 2005	Closure devices and vascular complications among percutaneous coronary intervention patients receiving enoxaparin, glycoprotein IIb/IIIa inhibitors, and clopidogrel	Not best available evidence (non- randomized study)
Giger et al. 2005	Hemorrhage risk after quinsy tonsillectomy	Not best available evidence (non- randomized study)
Leong et al. 2005	Clopidogrel and bleeding after coronary artery bypass graft surgery	Not best available evidence (non- randomized study)
McDonald et al. 2005	Preoperative use of enoxaparin increases the risk of postoperative bleeding and re-exploration in cardiac surgery patients	Not best available evidence (non- randomized study)
Morawski et al. 2005	Prediction of the excessive perioperative bleeding in patients undergoing coronary artery bypass grafting: Role of aspirin and platelet glycoprotein IIIa polymorphism	Does not address question of interest
Chen et al. 2004	Clopidogrel and bleeding in patients undergoing elective coronary artery bypass grafting	Not best available evidence (non- randomized study)

Author	Title	Reason for Exclusion
Chu et al. 2004	Does clopidogrel increase blood loss following coronary artery bypass surgery?	Not best available evidence (non- randomized study)
Karabulut et al. 2004	Clopidogrel does not increase bleeding and allogenic blood transfusion in coronary artery surgery	Not best available evidence (non- randomized study)
Pothula et al. 2004	The effect of preoperative antiplatelet/anticoagulant prophylaxis on postoperative blood loss in cardiac surgery	Not best available evidence (non- randomized study)
Cammerer et al. 2003	The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery	Not best available evidence (non- randomized study)
Srinivasan et al. 2003	Effect of preoperative aspirin use in off-pump coronary artery bypass operations	Not best available evidence (non- randomized study)
Blankenship et al. 2002	Reduction in vascular access site bleeding in sequential abciximab coronary intervention trials	Does not address question of interest
Ferraris et al. 2002	Aspirin and postoperative bleeding after coronary artery bypass grafting	Not best available evidence (non- randomized study)
Hongo et al. 2002	The effect of clopidogrel in combination with aspirin when given before coronary artery bypass grafting	Not best available evidence (non- randomized study)
Hui et al. 2002	Does withholding aspirin for one week reduce the risk of post-sphincterotomy bleeding?	Not best available evidence (non- randomized study)
Bizzarri et al. 2001	Perioperative use of tirofiban hydrochloride (Aggrastat) does not increase surgical bleeding after emergency or urgent coronary artery bypass grafting	Not best available evidence (non- randomized study)
Grubitzsch et al. 2001	Emergency coronary artery bypass grafting: does excessive preoperative anticoagulation increase bleeding complications and transfusion requirements?	Not best available evidence (non- randomized study)
Mehta et al. 2001	Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: The PCI-CURE study	Does not address question of interest
Yende et al. 2001	Effect of clopidogrel on bleeding after coronary artery bypass surgery	Not best available evidence (non- randomized study)
Lincoff et al. 2000	Abciximab and bleeding during coronary surgery: results from the EPILOG and EPISTENT trials. Improve Long- term Outcome with abciximab GP IIb/IIIa blockade. Evaluation of Platelet IIb/IIIa Inhibition in STENTing	Does not address question of interest
Van et al. 2000	Abciximab and bleeding during coronary surgery: Results from the EPILOG and	Does not address question of interest
Herget et al. 1999	Transrectal ultrasound-guided biopsy of the prostate: relation between ASA use and bleeding complications	Not best available evidence (non- randomized study)

Table 61. Excluded Studies Considered for Preoperative Antiplatelet Use

Author Assia et al.	Title Effect of aspirin intake on bleeding during cataract surgery	Reason for Exclusion Does not report patient
1998 Gammie et al. 1998	Abciximab and excessive bleeding in patients undergoing emergency cardiac operations	oriented outcomes Not best available evidence (non-
Wierod et al. 1998	Risk of haemorrhage from transurethral prostatectomy in acetylsalicylic acid and NSAID-treated patients	randomized study) Does not address question of interest
Billingsley et al. 1997	Intraoperative and postoperative bleeding problems in patients taking warfarin, aspirin, and nonsteroidal antiinflammatory agents. A prospective study	Not best available evidence (non- randomized study)
Cohen et al. 1997	Risk factors for bleeding in major abdominal surgery using heparin thromboprophylaxis	Not best available evidence (non- randomized study)
Aguirre et al. 1995	Bleeding complications with the chimeric antibody to platelet glycoprotein IIb/IIIa integrin in patients undergoing percutaneous coronary intervention. EPIC Investigators	Does not address question of interest
Lawrence et al. 1994	Effect of aspirin and nonsteroidal antiinflammatory drug therapy on bleeding complications in dermatologic surgical patients	Not best available evidence (non- randomized study)
Shiffman et al. 1994	Risk of bleeding after endoscopic biopsy or polypectomy in patients taking aspirin or other NSAIDS	Not best available evidence (non- randomized study)
Landefeld et al. 1993	Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention	Systematic review, bibliography screened
Thurston et al. 1993	Aspirin and post-prostatectomy haemorrhage	Not best available evidence (non- randomized study)
Ferraris et al.	Preoperative aspirin ingestion increases operative blood	Does not address
1988	loss after coronary artery bypass grafting	question of interest

 Table 61. Excluded Studies Considered for Preoperative Antiplatelet Use

PROPHYLAXIS

Author	Title	Reason for Exclusion
Dranitsaris et al. 2011	Meta regression analysis to indirectly compare dalteparin to enoxaparin for the prevention of venous thromboembolic events following total hip replacement	Systematic review, bibliography screened
Kalyani et al. 2011	Low molecular weight heparin: Current evidence for its application in orthopaedic surgery	Systematic review, bibliography screened
Ma et al. 2011	Dabigatran etexilate versus warfarin as the oral anticoagulant of choice? A review of clinical data	Narrative review, bibliography screened
Papakostidis et al. 2011	The timing of drug administration for thromboprophylaxis following orthopaedic surgery: Evidence and controversies related to treatment initiation and duration	Narrative review, bibliography screened
Borgen et al. 2010	Preoperative versus postoperative initiation of dalteparin thromboprophylaxis in THA	Not best available evidence (retrospective comparative)
Bozic et al. 2010	Does aspirin have a role in venous thromboembolism prophylaxis in total knee arthroplasty patients?	Not best available evidence
Cao et al. 2010	Rivaroxaban versus enoxaparin for thromboprophylaxis after total hip or knee arthroplasty: a meta-analysis of randomized controlled trials	Systematic review, bibliography screened
Diamantopoulos et al. 2010	Cost-effectiveness of rivaroxaban versus enoxaparin for the prevention of postsurgical venous thromboembolism in Canada	Cost-Effectiveness Study
Friedman et al. 2010	Dabigatran versus enoxaparin for prevention of venous thromboembolism after hip or knee arthroplasty: a pooled analysis of three trials	Systematic review, bibliography screened
Haas et al. 2010	Rivaroxaban, a new oral anticoagulant for the prevention of venous thromboembolism after elective hip or knee replacement surgery	Narrative review, bibliography screened
Huisman et al. 2010	Enoxaparin versus dabigatran or rivaroxaban for thromboprophylaxis after hip or knee arthroplasty: Results of separate pooled analyses of phase III multicenter randomized trials	Systematic review, bibliography screened
Jameson et al. 2010	The impact of national guidelines for the prophylaxis of venous thromboembolism on the complications of arthroplasty of the lower limb	Ecological study
Kapoor et al. 2010	Cost effectiveness of venous thromboembolism pharmacological prophylaxis in total hip and knee replacement: a systematic review	Systematic review, bibliography screened
Melillo et al. 2010	Rivaroxaban for thromboprophylaxis in patients undergoing major orthopedic surgery	Systematic review, bibliography screened
Pendleton et al. 2010	A safe, effective, and easy to use warfarin initiation dosing nomogram for post-joint arthroplasty patients	Not best available evidence (case series)

Author	Title	Reason for Exclusion
Salazar et al. 2010	Direct thrombin inhibitors versus vitamin K antagonists or low molecular weight heparins for prevention of venous thromboembolism following total hip or knee replacement	Systematic review, bibliography screened
Tasker et al. 2010	Meta-analysis of low molecular weight heparin versus placebo in patients undergoing total hip replacement and post-operative morbidity and mortality since their introduction	Systematic review, bibliography screened
Trkulja et al. 2010	Rivaroxaban vs dabigatran for thromboprophylaxis after joint-replacement surgery: exploratory indirect comparison based on meta-analysis of pivotal clinical trials	Review, bibliography screened
Turpie et al. 2010	Rivaroxaban for the prevention of venous thromboembolism after hip or knee arthroplasty. Pooled analysis of four studies	Systematic review, bibliography screened
Wilke et al. 2010	Nonadherence in outpatient thromboprophylaxis after major orthopedic surgery: a systematic review	Systematic review, bibliography screened
Agnelli et al. 2009	Safety assessment of new antithrombotic agents: lessons from the EXTEND study on ximelagatran	Does not investigate comparison of interest
Bell et al. 2009	Factors affecting perioperative blood loss and transfusion rates in primary total joint arthroplasty: a prospective analysis of 1642 patients	Not best available evidence (non- randomized) Not best available
Bozic et al. 2009	Does Aspirin Have a Role in Venous Thromboembolism Prophylaxis in Total Knee Arthroplasty Patients?	evidence (retrospective comparative)
Brown 2009	Venous Thromboembolism Prophylaxis After Major Orthopaedic Surgery: A Pooled Analysis of Randomized Controlled Trials	Systematic review, bibliography screened
Cusick et al. 2009	The incidence of fatal pulmonary embolism after primary hip and knee replacement in a consecutive series of 4253 patients	Not best available evidence (retrospective comparative)
Darwish et al. 2009	Total knee replacement in King Abdullah University Hospital, early results	Not best available evidence (case series)
Eriksson et al. 2009	Oral rivaroxaban for the prevention of symptomatic venous thromboembolism after elective hip and knee replacement	Systematic review, bibliography screened
Froimson et al. 2009	Venous thromboembolic disease reduction with a portable pneumatic compression device	Not best available evidence (retrospective comparative)
Hitos et al. 2009	Venous thromboembolism following primari total hip arthroplastydrome	Not best available evidence (retrospective comparative)

Author	Title	Reason for Exclusion
Holmes et al. 2009	Dabigatran etexilate for the prevention of venous thromboembolism in patients undergoing elective hip and knee surgery: a single technology appraisal State-of-the-art review: Assessing the safety profiles of new	Systematic review, bibliography screened Systematic review,
Hull et al. 2009	anticoagulants for major orthopedic surgery thromboprophylaxis	bibliography screened
Kimura et al. 2009	Anticoagulation therapy with heparin and warfarin in total knee arthroplasty for osteoarthritis knee	Not best available evidence (non- randomized)
Lassen et al. 2009	AVE5026, a new hemisynthetic ultra-low-molecular-weight heparin for the prevention of venous thromboembolism in patients after total knee replacement surgeryTREK: a dose- ranging study	Does not investigate comparison of interest
Lassen 2009	Is the preoperative administration of enoxaparin 40 mg necessary to optimally prevent the occurrence of venous thromboembolism after hip surgery? A subanalysis of two pooled randomized trials	Narrative review, bibliography screened
Lazo-Langner et al. 2009	Lessons from ximelagatran: issues for future studies evaluating new oral direct thrombin inhibitors for venous thromboembolism prophylaxis in orthopedic surgery	Systematic review, bibliography screened
Sugano et al. 2009	Clinical efficacy of mechanical thromboprophylaxis without anticoagulant drugs for elective hip surgery in an Asian population	Not best available evidence (case series)
Turpie et al. 2009	Pharmacokinetic and clinical data supporting the use of fondaparinux 1.5 mg once daily in the prevention of venous thromboembolism in renally impaired patients	Systematic review, bibliography screened
Turpie et al. 2009	A randomized evaluation of betrixaban, an oral factor Xa inhibitor, for prevention of thromboembolic events after total knee replacement (EXPERT)	Does not investigate comparison of interest
Van Thiel et al. 2009	Interpretation of benefit-risk of enoxaparin as comparator in the RECORD program: rivaroxaban oral tablets (10 milligrams) for use in prophylaxis in deep vein thrombosis and pulmonary embolism in patients undergoing hip or knee replacement surgery	Commentary
Vavken et al. 2009	A prospective cohort study on the effectiveness of 3500 IU versus 5000 IU bemiparin in the prophylaxis of postoperative thrombotic events in obese patients undergoing orthopedic surgery	Not specific to elective arthroplasty
Wolowacz et al. 2009	Efficacy and safety of dabigatran etexilate for the prevention of venous thromboembolism following total hip or knee arthroplasty. A meta-analysis	Systematic review, bibliography screened
Ares-Rodriguez et al. 2008	Survival curve and factors related to drainage during the first 24 h after total knee arthroplasty	Not best available evidence (retrospective comparative)

Author	Title	Reason for Exclusion
Callaghan et al. 2008	Evaluation of deep venous thrombosis prophylaxis in low- risk patients undergoing total knee arthroplasty	Not best available evidence (retrospective comparative)
Camporese et al. 2008	Low-molecular-weight heparin versus compression stockings for thromboprophylaxis after knee arthroscopy: a randomized trial	Incorrect patient population (arthroscopy patients)
Daniel et al. 2008	Multimodal thromboprophylaxis following primary hip arthroplasty: the role of adjuvant intermittent pneumatic calf compression	Not best available evidence (retrospective comparative)
Happe et al. 2008	Cost and occurrence of thrombocytopenia in patients receiving venous thromboembolism prophylaxis following major orthopaedic surgeries	Less than 80% elective arthroplasty patients
Kakkos et al. 2008	Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism in high-risk patients	Systematic review, bibliography screened
Lassen et al. 2008	SR123781A: a new once-daily synthetic oligosaccharide anticoagulant for thromboprophylaxis after total hip replacement surgery: the DRIVE (Dose Ranging Study in Elective Total Hip Replacement Surgery) study	Does not investigate comparison of interest
Madhusudhan et al. 2008	Gastric protection and gastrointestinal bleeding with aspirin thromboprophylaxis in hip and knee joint replacements	Does not investigate comparison of interest
Maezawa et al. 2008	Changes of D-dimer after total hip arthroplasty in patients with and without intraoperative heparin	Not best available evidence (non- randomized)
Novicoff et al. 2008	Mandated venous thromboembolism prophylaxis: possible adverse outcomes	Not best available evidence (retrospective comparative)
Parry et al. 2008	Ninety-day mortality after elective total hip replacement: 1549 patients using aspirin as a thromboprophylactic agent	Not best available evidence (case series)
Pitto et al. 2008	Foot pumps without graduated compression stockings for prevention of deep-vein thrombosis in total joint replacement: efficacy, safety and patient compliance. A comparative, prospective clinical trial	Not best available evidence (non- randomized)
Rahme et al. 2008	Postdischarge thromboprophylaxis and mortality risk after hip-or knee-replacement surgery	Not best available evidence (retrospective comparative)
Sharrock et al. 2008	Potent anticoagulants are associated with a higher all-cause mortality rate after hip and knee arthroplasty	Systematic review, bibliography screened

Author	Title	Reason for Exclusion
Wolowacz et al. 2008	Cost-effectiveness of venous thromboembolism prophylaxis in total hip and knee replacement surgery: the evolving application of health economic modelling over 20 years	Cost-effectiveness study
Xing et al. 2008	Has the incidence of deep vein thrombosis in patients undergoing total hip/knee arthroplasty changed over time? A systematic review of randomized controlled trials	Systematic review, bibliography screened
Xu et al. 2008	A review of clinical pathway data of 1,663 total knee arthroplasties in a tertiary institution in Singapore	Not best available evidence (case series)
Abad et al. 2007	A prospective observational study on the effectiveness and safety of bemiparin, first dose administered 6 h after knee or hip replacement surgery	Not best available evidence (case series)
Anand et al. 2007	Patient acceptance of a foot pump device used for thromboprophylaxis	Not best available evidence (case series)
Beksac et al. 2007	Symptomatic thromboembolism after one-stage bilateral THA with a multimodal prophylaxis protocol	Not best available evidence (retrospective comparative)
Bern et al. 2007	Low-dose warfarin coupled with lower leg compression is effective prophylaxis against thromboembolic disease after hip arthroplasty	Not best available evidence (case series)
Chan et al. 2007	Compliance and satisfaction with foot compression devices: an orthopaedic perspective	Does not address question of interest
Eisele et al. 2007	Rapid-inflation intermittent pneumatic compression for prevention of deep venous thrombosis	Does not address comparison of interest
Fisher et al. 2007	Rivaroxaban for thromboprophylaxis after orthopaedic surgery: pooled analysis of two studies	Systematic review, bibliography screened
Ivanovic et al. 2007	Thromboprophylaxis in total hip-replacement surgery in Europe: Acenocoumarol, fondaparinux, dabigatran and rivaroxban	Systematic review, bibliography screened
Khan et al. 2007	Fatal pulmonary embolism, death rates and standardised mortality ratios after primary total hip replacement in a joint replacement centre	Not best available evidence (case series)
Lachiewicz et al. 2007	Mechanical calf compression and aspirin prophylaxis for total knee arthroplasty	Not best available evidence (case series)
Lombardi et al. 2007	The incidence and prevention of symptomatic thromboembolic disease following unicompartmental knee arthroplasty	Not best available evidence (retrospective comparative)
Muntz et al. 2007	Factors associated with thromboprophylaxis for orthopedic patients and their impact on outcome	Not best available evidence (retrospective comparative)

Author	Title	Reason for Exclusion
Parvizi et al. 2007	Total joint arthroplasty: When do fatal or near-fatal complications occur?	Not best available evidence (case series)
Prejbeanu et al. 2007	Thromboembolic risk after knee endoprosthesis	Not best available evidence (case series)
Salvati et al. 2007	The 2007 ABJS Nicolas Andry Award: three decades of clinical, basic, and applied research on thromboembolic disease after THA: rationale and clinical results of a multimodal prophylaxis protocol	Narrative review, bibliography screened
Seah et al. 2007	Thirty-day mortality and morbidity after total knee arthroplasty	Not best available evidence (case series)
Shorr et al. 2007	Venous thromboembolism after orthopedic surgery: implications of the choice for prophylaxis	Less than 80% elective arthroplasty patients
Skedgel et al. 2007	The cost-effectiveness of extended-duration antithrombotic prophylaxis after total hip arthroplasty	Systematic review, bibliography screened
Tudor et al. 2007	Overview of current trends and the future of thromboprophylaxis in orthopaedic surgery	Narrative review, bibliography screened
Wang et al. 2007	Clinical significance of muscular deep-vein thrombosis after total knee arthroplasty	Insufficient data
Yen et al. 2007	Results of adjusted-dose heparin for thromboembolism prophylaxis in knee replacement compared to those found for its use in hip fracture surgery and elective hip replacement	Not best available evidence (case series)
Bischof et al. 2006	Cost-effectiveness of extended venous thromboembolism prophylaxis with fondaparinux in hip surgery patients	Cost-effectiveness study
Bjornara et al. 2006	Frequency and timing of clinical venous thromboembolism after major joint surgery	Not best available evidence (case series)
Blom et al. 2006	Early death following primary total hip arthroplasty: 1,727 procedures with mechanical thrombo-prophylaxis	Not best available evidence (case series)
Chan 2006	Role for aspirin after total hip replacement?	Systematic review, bibliography screened
Dahl et al. 2006	Assessment of bleeding after concomitant administration of antiplatelet and anticoagulant agents in lower limb arthroplasty	Not best available evidence (retrospective comparative)
Gomez-Outes et al. 2006	Cost-effecttiveness of bemiparin in the prevention and treatment of venous thromboembolism	Narrative review, bibliography screened

Author	Title	Reason for Exclusion
Haas et al. 2006	Prevention of major venous thromboembolism following total hip or knee replacement: a randomized comparison of low-molecular-weight heparin with unfractionated heparin (ECHOS Trial)	Does not address comparison of interest
Hitos et al. 2006	Venous thromboembolism following primary total knee arthroplasty	Not best available evidence (retrospective comparative)
Lotke et al. 2006	The benefit of aspirin chemoprophylaxis for thromboembolism after total knee arthroplasty	Not best available evidence (case series)
Ottinger 2006	Retrospective evaluation of delayed administration of fondaparinux in providing comparable safety and efficacy outcomes in patients undergoing elective-arthroplasty procedures	Not best available evidence (retrospective comparative)
Shepherd et al. 2006	Fatal pulmonary embolism following hip and knee replacement. A study of 2153 cases using routine mechanical prophylaxis and selective chemoprophylaxis	Not best available evidence (retrospective comparative)
Williams et al. 2006	Above-knee versus below-knee stockings in total knee arthroplasty	Not best available evidence (non- randomized)
Bauersachs et al. 2005	Prophylaxis, diagnosis and therapy of surgery-related complications in orthopedic and trauma surgery: An observational survey (CHANGE)	Not best available evidence (case series)
Colwell et al. 2005	Oral direct thrombin inhibitor ximelagatran compared with warfarin for the prevention of venous thromboembolism after total knee arthroplasty	Does not investigate comparison of interest
Dahl et al. 2005	Postoperative Melagatran/Ximelagatran for the Prevention of Venous Thromboembolism following Major Elective Orthopaedic Surgery : Effects of Timing of First Dose and Risk Factors for Thromboembolism and Bleeding Complications on Efficacy and Safety	Does not investigate comparison of interest Not best available
Enyart et al. 2005	Low-dose warfarin for prevention of symptomatic thromboembolism after orthopedic surgery	evidence (retrospective comparative)
Larson et al. 2005	A feasibility study of continuing dose-reduced warfarin for invasive procedures in patients with high thromboembolic risk	Not best available evidence (case series)
O'Reilly et al. 2005	The prevalence of venous thromboembolism after hip and knee replacement surgery	Not best available evidence (retrospective comparative)

Author	Title	Reason for Exclusion
Walton et al. 2005	Arthrofibrosis following total knee replacement; does therapeutic warfarin make a difference?	Not best available evidence (retrospective comparative)
Ben-Galim et al. 2004	A miniature and mobile intermittent pneumatic compression device for the prevention of deep-vein thrombosis after joint replacement	Fewer than 100 patients and no non- VTE outcomes Not best available
Brotman et al. 2004	Warfarin prophylaxis and venous thromboembolism in the first 5 days following hip and knee arthroplasty	evidence (retrospective comparative)
Dranitsaris et al. 2004	Pharmacoeconomic analysis of fondaparinux versus enoxaparin for the prevention of thromboembolic events in orthopedic surgery patients	Cost-effectiveness study
Eikelboom et al. 2004	Thromboprophylaxis practice patterns in two Western Australian teaching hospitals	Not best available evidence (non- randomized)
Eriksson et al. 2004	Dose escalating safety study of a new oral direct thrombin inhibitor, dabigatran etexilate, in patients undergoing total hip replacement: BISTRO I	Not best available evidence (non- randomized)
Eriksson et al. 2004	Significantly lower need for blood transfusions associated with post-operatively initiated subcutaneous melagatran/oral ximelagatran compared with enoxaparin	Letter
Frosch et al. 2004	Complications after total knee arthroplasty: A comprehensive report	Not best available evidence (case series)
Haentjens et al. 2004	Prolonged enoxaparin therapy to prevent venous thromboembolism after primary hip or knee replacement. A cost-utility analysis	Cost-effectiveness study
Jain et al. 2004	Deep vein thrombosis after total hip arthroplasty in Indian patients with and without enoxaparin	Not best available evidence (non- randomized)
Lobo 2004	Emerging options for thromboprophylaxis after orthopedic surgery: a review of clinical data	Narrative review, bibliography screened
Mismetti et al. 2004	Prevention of venous thromboembolism in orthopedic surgery with vitamin K antagonists: A meta-analysis	Systematic review, bibliography screened
Pitto et al. 2004	Mechanical prophylaxis of deep-vein thrombosis after total hip replacement a randomised clinical trial	Does not address comparison of interest
Silbersack et al. 2004	Prevention of deep-vein thrombosis after total hip and knee replacement. Low-molecular-weight heparin in combination with intermittent pneumatic compression	Fewer than 100 patients per group and no non-VTE outcomes

Author	Title	Reason for Exclusion
Turpie 2004	Venous thromboembolism prophylaxis: role of factor xa inhibition by fondaparinux	Narrative review, bibliography screened
Wang et al. 2004	Prevention of deep-vein thrombosis after total knee arthroplasty in Asian patients. Comparison of low- molecular-weight heparin and indomethacin	Does not address comparison of interest
Wenzl et al. 2004	Prevention of thromboembolism with low-molecular-weight heparin in orthopedic surgery: a 5-year experience	Not best available evidence (case series)
Charalambous et al. 2003	Foot pump prophylaxis for deep venous thrombosis-rate of effective usage following knee and hip arthroplasty Comparison of ximelagatran, an oral direct thrombin	Does not examine outcome of interest
Colwell et al. 2003	inhibitor, with enoxaparin for the prevention of venous thromboembolism following total hip replacement. A randomized, double-blind study	Does not investigate comparison of interest
Dahl et al. 2003	Risk of clinical pulmonary embolism after joint surgery in patients receiving low-molecular-weight heparin prophylaxis in hospital: a 10-year prospective register of 3,954 patients	Not best available evidence (case series)
Dahl et al. 2003	Investment in prolonged thromboprophylaxis with dalteparin improves clinical outcomes after hip replacement	Cost-effectiveness study
Deitelzweig et al. 2003	Venous thromboembolism prevention with LMWHs in medical and orthopedic surgery patients	study
Eriksson et al. 2003	The direct thrombin inhibitor melagatran followed by oral ximelagatran compared with enoxaparin for the prevention of venous thromboembolism after total hip or knee replacement: the EXPRESS study	Does not investigate comparison of interest
Eriksson et al. 2003	Direct thrombin inhibitor melagatran followed by oral ximelagatran in comparison with enoxaparin for prevention of venous thromboembolism after total hip or knee replacement	Does not investigate comparison of interest
Francis et al. 2003	Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement	Does not investigate comparison of interest
Fujisawa et al. 2003	Effect of calf-thigh intermittent pneumatic compression device after total hip arthroplasty: comparative analysis with plantar compression on the effectiveness of reducing thrombogenesis and leg swelling	Fewer than 100 patients per group and no non-VTE outcomes
Keays et al. 2003	The effect of anticoagulation on the restoration of range of motion after total knee arthroplasty: enoxaparin versus aspirin	Not best available evidence (retrospective comparative)
Kolb et al. 2003	Reduction of venous thromboembolism following prolonged prophylaxis with the low molecular weight heparin Certoparin after endoprothetic joint replacement or osteosynthesis of the lower limb in elderly patients	Fewer than 80% arthroplasty patients

Author	Title	Reason for Exclusion
Navarro-Quilis et al. 2003	Efficacy and safety of bemiparin compared with enoxaparin in the prevention of venous thromboembolism after total knee arthroplasty: a randomized, double-blind clinical trial	Does not address comparison of interest
Nunley et al. 2003	Mortality after total hip and knee arthroplasty in a medium- volume university practice	Not best available evidence (case series)
O'Donnell et al. 2003	Reduction of out-of-hospital symptomatic venous thromboembolism by extended thromboprophylaxis with low-molecular-weight heparin following elective hip arthroplasty: a systematic review	Systematic review, bibliography screened
Ragucci et al. 2003	Comprehensive deep venous thrombosis prevention strategy after total-knee arthroplasty	Not best available evidence (case series)
Reitman et al. 2003	A multimodality regimen for deep venous thrombosis prophylaxis in total knee arthroplasty	Not best available evidence (case series)
Sachs et al. 2003	Does anticoagulation do more harm than good?: A comparison of patients treated without prophylaxis and patients treated with low-dose warfarin after total knee arthroplasty	Not best available evidence (retrospective comparative)
Tran et al. 2003	Fondaparinux for prevention of venous thromboembolism in major orthopedic surgery	Systematic review, bibliography screened
Westrich et al. 2003	Compliance in using a pneumatic compression device after total knee arthroplasty	Does not report patient oriented outcomes
Zufferey et al. 2003	Optimal low-molecular-weight heparin regimen in major orthopaedic surgery: A meta-analysis of randomised trials	Systematic review, bibliography screened
Anderson et al. 2002	Comparison of a nomogram and physician-adjusted dosage of warfarin for prophylaxis against deep-vein thrombosis after arthroplasty	Not best available evidence (retrospective comparative)
Bern et al. 2002	Very low dose warfarin as prophylaxis against ultrasound detected deep vein thrombosis following primary hip replacement	Fewer than 100 patients and no non- VTE outcomes
Borghi et al. 2002	Thromboembolic complications after total hip replacement	Not best available evidence (retrospective comparative)
Cheng 2002	Fondaparinux: a new antithrombotic agent	Systematic review, bibliography screened
Douketis et al. 2002	Short-duration prophylaxis against venous thromboembolism after total hip or knee replacement: a meta-analysis of prospective studies investigating symptomatic outcomes	Systematic review, bibliography screened

Author	Title	Reason for Exclusion
Douketis et al. 2002	Anticoagulant effect at the time of epidural catheter removal in patients receiving twice-daily or once-daily low- molecular-weight heparin and continuous epidural analgesia after orthopedic surgery	Does not report patient oriented outcomes
Eriksson et al. 2002	Ximelagatran and melagatran compared with dalteparin for prevention of venous thromboembolism after total hip or knee replacement: the METHRO II randomised trial A dose-ranging study of the oral direct thrombin inhibitor,	Does not investigate comparison of interest
Eriksson et al. 2002	ximelagatran, and its subcutaneous form, melagatran, compared with dalteparin in the prophylaxis of thromboembolism after hip or knee replacement: METHRO I. MElagatran for THRombin inhibition in	Does not investigate comparison of interest
Francis et al. 2002	Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty. A randomized, double-blind trial	Does not investigate comparison of interest
Khan et al. 2002	Standardized mortality ratios and fatal pulmonary embolism rates following total knee replacement: a cohort of 936 consecutive cases	Not best available evidence (case series)
Kwong et al. 2002	Thromboprophylaxis dosing: the relationship between timing of first administration, efficacy, and safety	Narrative review, bibliography screened
Leali et al. 2002	Prevention of thromboembolic disease after non-cemented hip arthroplasty. A multimodal approach	Not best available evidence (case series)
Macdonald et al. 2002	Computerized management of oral anticoagulant therapy: experience in major joint arthroplasty	Not best available evidence (case series)
Moretti et al. 2002	Combined pharmacological and mechanical prophylaxis for DVT following hip and knee arthroplasty	Does not address comparison of interest
Nerurkar et al. 2002	Cost/death averted with venous thromboembolism prophylaxis in patients undergoing total knee replacement or knee arthroplasty	Systematic review, bibliography screened
Ryan et al. 2002	Effect of mechanical compression on the prevalence of proximal deep venous thrombosis as assessed by magnetic resonance venography	Fewer than 100 patients per group and no non-VTE outcomes
Samama et al. 2002	Extended venous thromboembolism prophylaxis after total hip replacement: a comparison of low-molecular-weight heparin with oral anticoagulant	Does not investigate comparison of interest
Sculco et al. 2002	Prophylaxis against venous thromboembolic disease in patients having a total hip or knee arthroplasty	Narrative review, bibliography screened
Strebel et al. 2002	Preoperative or postoperative start of prophylaxis for venous thromboembolism with low-molecular-weight heparin in elective hip surgery?	Systematic review, bibliography screened

Author	Title	Reason for Exclusion
Turpie et al. 2002	A meta-analysis of fondaparinux versus enoxaparin in the prevention of venous thromboembolism after major orthopaedic surgery	Systematic review, bibliography screened
Turpie et al. 2002	Fondaparinux vs enoxaparin for the prevention of venous thromboembolism in major orthopedic surgery: a meta- analysis of 4 randomized double-blind studies	Systematic review, bibliography screened
Asano et al. 2001	Prevention of pulmonary embolism by a foot sole pump	Not specific to elective arthroplasty
Benko et al. 2001	Graduated compression stockings: Knee length or thigh length	Does not report outcome of interest
Brookenthal et al. 2001	A meta-analysis of thromboembolic prophylaxis in total knee arthroplasty	Systematic review, bibliography screened
Cohen et al. 2001	Extended thromboprophylaxis with low molecular weight heparin reduces symptomatic venous thromboembolism following lower limb arthroplastya meta-analysis	Letter
Eikelboom et al. 2001	Extended-duration prophylaxis against venous thromboembolism after total hip or knee replacement: a meta-analysis of the randomised trials	Systematic review, bibliography screened
Finsen 2001	Duration of thrombosis prophylaxis in orthopaedic surgery	Not best available evidence (case series)
Goldstein et al. 2001	Safety of a clinical surveillance protocol with 3- and 6-week warfarin prophylaxis after total joint arthroplasty	Not best available evidence (retrospective comparative)
Haddad et al. 2001	Unanticipated variations between expected and delivered pneumatic compression therapy after elective hip surgery: a possible source of variation in reported patient outcomes	Does not address question of interes
Heit et al. 2001	Comparison of the oral direct thrombin inhibitor ximelagatran with enoxaparin as prophylaxis against venous thromboembolism after total knee replacement: a phase 2 dose-finding study	Does not investigat comparison of interest
Heit 2001	Low-molecular-weight heparin: the optimal duration of prophylaxis against postoperative venous thromboembolism after total hip or knee replacement	Narrative review, bibliography screened
Hull et al. 2001	Extended out-of-hospital low-molecular-weight heparin prophylaxis against deep venous thrombosis in patients after elective hip arthroplasty: a systematic review	Systematic review bibliography screened
Hull et al. 2001	Timing of initial administration of low-molecular-weight heparin prophylaxis against deep vein thrombosis in patients following elective hip arthroplasty: a systematic review	Systematic review bibliography screened
Hull et al. 2001	Low-molecular-weight heparin prophylaxis: preoperative versus postoperative initiation in patients undergoing elective hip surgery	Systematic review. bibliography screened

Author	Title	Reason for Exclusion
Krotenberg et al. 2001	Dalteparin vs. enoxaparin as prophylaxis for deep-vein thrombosis after total hip or knee arthroplasty: a retrospective analysis	Not best available evidence (retrospective comparative)
van Heereveld et al. 2001	Prevention of symptomatic thrombosis with short term (low molecular weight) heparin in patients with rheumatoid arthritis after hip or knee replacement	Not best available evidence (case series)
Amaragiri et al. 2000	Elastic compression stockings for prevention of deep vein thrombosis (Cochrane Review) [with con sumer summary]	Systematic review, bibliography screened
Best et al. 2000	Graded compression stockings in elective orthopaedic surgery. An assessment of the in vivo performance of commercially available stockings in patients having hip and knee arthroplasty	Not best available evidence (non- randomized)
DiGiovanni et al. 2000	The safety and efficacy of intraoperative heparin in total hip arthroplasty	Not best available evidence (case series)
Fong et al. 2000	Use of low molecular weight heparin for prevention of deep vein thrombosis in total knee arthroplastya study of its efficacy in an Asian population	Not best available evidence (non- randomized)
Freedman et al. 2000	A meta-analysis of thromboembolic prophylaxis following elective total hip arthroplasty	Systematic review, bibliography screened
Heit et al. 2000	Ardeparin sodium for extended out-of-hospital prophylaxis against venous thromboembolism after total hip or knee replacement. A randomized, double-blind, placebo- controlled trial	Does not address comparison of interest
Kakkar et al. 2000	A comparative double-blind, randomised trial of a new second generation LMWH (bemiparin) and UFH in the prevention of post-operative venous thromboembolism. The Bemiparin Assessment group	Does not address comparison of interest
Mant et al. 2000	Intraoperative heparin in addition to postoperative low- molecular-weight heparin for thromboprophylaxis in total knee replacement	Not best available evidence (case series)
McEvoy et al. 2000	Noncompliance in the inpatient administration of enoxaparin in conjunction with epidural or spinal anesthesia	Does not report patient oriented outcomes
Nassif et al. 2000	The effect of intraoperative intravenous fixed-dose heparin during total joint arthroplasty on the incidence of fatal pulmonary emboli	Not best available evidence (case series)
Planes 2000	An equivalence study of two low-molecular-weight heparins in the prevention and treatment of deep-vein thrombosis after total hip replacement	Report of previously published study
Robertson et al. 2000	Patient compliance and satisfaction with mechanical devices for preventing deep venous thrombosis after joint replacement	Does not report VTE outcomes

Author	Title	Reason for Exclusion
Stern et al. 2000	Evaluation of the safety and efficacy of enoxaparin and warfarin for prevention of deep vein thrombosis after total knee arthroplasty	Not best available evidence (retrospective comparative)
Westrich et al. 2000	Meta-analysis of thromboembolic prophylaxis after total knee arthroplasty	Systematic review, bibliography screened
Adolf et al. 1999	Comparison of 3,000 IU aXa of the low molecular weight heparin certoparin with 5,000 IU aXa in prevention of deep vein thrombosis after total hip replacement. German Thrombosis Study Group	Does not address comparison of interest
Agu et al. 1999	Graduated compression stockings in the prevention of venous thromboembolism	Systematic review, bibliography screened
Blanchard et al. 1999	Prevention of deep-vein thrombosis after total knee replacement. Randomised comparison between a low- molecular-weight heparin (nadroparin) and mechanical prophylaxis with a foot-pump system	Does not address comparison of interest
Bounameaux 1999	Integrating pharmacologic and mechanical prophylaxis of venous thromboembolism	Narrative review, bibliography screened
Dahl et al. 1999	Combined administration of dextran 70 and dalteparin does not increase perioperative blood loss compared to dextran 70 alone in major orthopedic surgery	Not best available evidence (non- randomized)
Hull et al. 1999	Preoperative vs postoperative initiation of low-molecular- weight heparin prophylaxis against venous thromboembolism in patients undergoing elective hip replacement	Systematic review, bibliography screened
Lawton et al. 1999	The use of heparin in patients in whom a pulmonary embolism is suspected after total hip arthroplasty	Not best available evidence (retrospective comparative)
Marchetti et al. 1999	Long-term cost-effectiveness of low molecular weight heparin versus unfractionated heparin for the prophylaxis of venous thromboembolism in elective hip replacement	Cost-effectiveness study
Messieh et al. 1999	Warfarin responses in total joint and hip fracture patients	Not best available evidence (case series)
Pineo et al. 1999	Prophylaxis of venous thromboembolism following orthopedic surgery: Mechanical and pharmacological approaches and the need for extended prophylaxis	Narrative review, bibliography screened
Shaieb et al. 1999	Bleeding complications with enoxaparin for deep venous thrombosis prophylaxis	Not best available evidence (retrospective
Sharrock et al. 1999	Dose response of intravenous heparin on markers of thrombosis during primary total hip replacement	comparative) Not best available evidence (quality)

Author	Title	Reason for Exclusion
Tamir et al. 1999	Sequential foot compression reduces lower limb swelling and pain after total knee arthroplasty	Does not report critical outcome of interest
Wade 1999	Cost effectiveness of danaparoid compared with enoxaparin as deep vein thrombosis prophylaxis after hip replacement surgery	Systematic review, bibliography screened
Ward et al. 1999	Simple, hybrid deep venous thrombosis/pulmonary embolus prophylaxis after total hip arthroplasty	Not best available evidence (case series)
Westrich et al. 1999	Thromboembolic disease prophylaxis in total knee arthroplasty using intraoperative heparin and postoperative pneumatic foot compression	Not best available evidence (non- randomized)
Westrich et al. 1999	The incidence of venous thromboembolism after total hip arthroplasty: a specific hypotensive epidural anesthesia protocol	Not best available evidence (case series)
Comp et al. 1998	A comparison of danaparoid and warfarin for prophylaxis against deep vein thrombosis after total hip replacement: The Danaparoid Hip Arthroplasty Investigators Group	Does not investigate comparison of interest
Davidson 1998	Out-of-hospital prophylaxis with low-molecular-weight heparin in hip surgery: the Swedish study	Commentary
Dearborn et al. 1998	Postoperative mortality after total hip arthroplasty. An analysis of deaths after two thousand seven hundred and thirty-six procedures	Not best available evidence (case series)
Howard et al. 1998	Low molecular weight heparin decreases proximal and distal deep venous thrombosis following total knee arthroplasty. A meta-analysis of randomized trials	Systematic review, bibliography screened
Kalodiki et al. 1998	How 'gold' is the standard? Interobservers' variation on venograms	Fewer than 100 patients
LaRusso et al. 1998	Sonographic incidence of deep venous thrombosis contralateral to hip or knee replacement surgery	Not best available evidence (case series)
Leclerc et al. 1998	The incidence of symptomatic venous thromboembolism after enoxaparin prophylaxis in lower extremity arthroplasty: a cohort study of 1,984 patients. Canadian Collaborative Group	Report of previously published study
Leclerc et al. 1998	The incidence of symptomatic venous thromboembolism during and after prophylaxis with enoxaparin: a multi- institutional cohort study of patients who underwent hip or knee arthroplasty. Canadian Collaborative Group	Not best available evidence (case series)
Montebugnoli et al. 1998	Thromboembolic complications and pharmacological prophylaxis in orthopaedic surgery	Not best available evidence (retrospective comparative)
Norgren et al. 1998	Prevention of deep vein thrombosis in knee arthroplasty. Preliminary results from a randomized controlled study of low molecular weight heparin vs foot pump compression	Not best available evidence

Author	Title	Reason for Exclusion
Planes et al. 1998	Comparison of two low-molecular-weight heparins for the prevention of postoperative venous thromboembolism after elective hip surgery. Reviparin Study Group	Does not address comparison of interest
Planes et al. 1998	Out-of-hospital prophylaxis with low-molecular-weight heparin in hip surgery: the French studyvenographic outcome at 35 days	Report of previously published study
Vanek 1998	Meta-analysis of effectiveness of intermittent pneumatic compression devices with a comparison of thigh-high to knee-high sleeves	Systematic review, bibliography screened
Anderson et al. 1997	Cost effectiveness of the prevention and treatment of deep vein thrombosis and pulmonary embolism	Cost-effectiveness study
Ansari et al. 1997	Incidence of fatal pulmonary embolism after 1,390 knee arthroplasties without routine prophylactic anticoagulation, except in high-risk cases	Not best available evidence (retrospective comparative)
Clarke et al. 1997	Screening for deep-venous thrombosis after hip and knee replacement without prophylaxis	Not best available evidence (case series)
Fender et al. 1997	Mortality and fatal pulmonary embolism after primary total hip replacement. Results from a regional hip register	Not best available evidence (retrospective comparative) Not best available
Gallay et al. 1997	A short course of low-molecular-weight heparin to prevent deep venous thrombosis after elective total hip replacement	evidence (retrospective comparative)
Heit et al. 1997	Efficacy and safety of low molecular weight heparin (ardeparin sodium) compared to warfarin for the prevention of venous thromboembolism after total knee replacement surgery: a double-blind, dose-ranging study. Ardeparin Arthroplasty Study Group	Does not address comparison of interest
Howard 1997	Dalteparin: a low-molecular-weight heparin	Systematic review, bibliography screened
Kim et al. 1997	Deep vein thrombosis after uncemented total hip replacement	Does not investigate comparison of interest
Knelles et al. 1997	Prevention of heterotopic ossification after total hip replacement. A prospective, randomised study using acetylsalicylic acid, indomethacin and fractional or single- dose irradiation	Not relevant - does not investigate VTE
Lieberman et al. 1997	Low-dose warfarin prophylaxis to prevent symptomatic pulmonary embolism after total knee arthroplasty	Not best available evidence (case series)
Nilsson et al. 1997	The post-discharge prophylactic management of the orthopedic patient with low-molecular-weight heparin: enoxaparin	Summary of previously published study

Author	Title	Reason for Exclusion
Planes et al. 1997	The post-hospital discharge venous thrombosis risk of the orthopedic patient	Report of previously published study
Skoutakis 1997	Danaparoid in the prevention of thromboembolic complications	Systematic review, bibliography screened
Yoo et al. 1997	A prospective randomized study on the use of nadroparin calcium in the prophylaxis of thromboembolism in Korean patients undergoing elective total hip replacement	Does not address comparison of interest
Andersen et al. 1996	Survival in patients undergoing total hip arthroplasty in relation to thromboprophylaxis with low molecular weight heparin: A long-term follow-up study	Systematic review, bibliography screened
Horbach et al. 1996	A fixed-dose combination of low molecular weight heparin with dihydroergotamine versus adjusted-dose unfractionated heparin in the prevention of deep-vein thrombosis after total hip replacement	Does not investigate comparison of interest
Hui et al. 1996	Graded compression stockings for prevention of deep-vein thrombosis after hip and knee replacement	Fewer than 100 patients per group and no non-VTE outcomes
Kalodiki et al. 1996	Deep venous thrombosis prophylaxis with low molecular weight heparin and elastic compression in patients having total hip replacement. A randomised controlled trial	Fewer than 100 patients and insufficient data
Lachiewicz et al. 1996	Pneumatic compression or aspirin prophylaxis against thromboembolism in total hip arthroplasty	Not best available evidence (non- randomized)
Levine et al. 1996	Ardeparin (low-molecular-weight heparin) vs graduated compression stockings for the prevention of venous thromboembolism. A randomized trial in patients undergoing knee surgery	Does not address comparison of interest
Mcgrath et al. 1996	Death rate from pulmonary embolism following joint replacement surgery	Not best available evidence (case series)
Murray et al. 1996	Thromboprophylaxis and death after total hip replacement	Systematic review, bibliography screened
Norgren et al. 1996	Low incidence of deep vein thrombosis after total hip replacement: An interim analysis of patients on low molecular weight heparin vs sequential gradient compression prophylaxis	Fewer than 100 patients per group and no non-VTE outcomes
Perhoniemi et al. 1996	The effect of enoxaparin in prevention of deep venous thrombosis in hip and knee surgerya comparison with the dihydroergotamine-heparin combination	Does not investigate comparison of interest
Planes et al. 1996	Efficacy and safety of postdischarge administration of enoxaparin in the prevention of deep venous thrombosis after total hip replacement. A prospective randomised double-blind placebo-controlled trial	Report of previously published study

Author	Title	Reason for Exclusion
Sarasin et al. 1996	Antithrombotic strategy after total hip replacement. A cost- effectiveness analysis comparing prolonged oral anticoagulants with screening for deep vein thrombosis	Systematic review, bibliography screened
Stannard et al. 1996	Prophylaxis of deep venous thrombosis after total hip arthroplasty by using intermittent compression of the plantar venous plexus	Fewer than 100 patients and no non- VTE outcomes
Suomalainen et al. 1996	Prevention of fatal pulmonary embolism with warfarin after total hip replacement	Not best available evidence (case series)
Vresilovic et al. 1996	Comparative risk of early postoperative pulmonary embolism after cemented total knee versus total hip arthroplasty with low-dose warfarin prophylaxis	Not best available evidence (case series)
Westrich et al. 1996	Prophylaxis against deep venous thrombosis after total knee arthroplasty. Pneumatic plantar compression and aspirin compared with aspirin alone	Fewer than 100 patients and no non- VTE outcomes
Agnelli et al. 1995	Clinical outcome of orthopaedic patients with negative lower limb venography at discharge	Not best available evidence (case series)
Colwell et al. 1995	Efficacy and safety of enoxaparin to prevent deep vein thrombosis after hip arthroplasty	Report of previously published studies
Hamulyak et al. 1995	Subcutaneous low-molecular weight heparin or oral anticoagulants for the prevention of deep-vein thrombosis in elective hip and knee replacement? Fraxiparine Oral Anticoagulant Study Group	Does not investigate comparison of interest
Kalodiki et al. 1995	V/Q defects and deep venous thrombosis following total hip replacement	Fewer than 100 patients and no non- VTE outcomes
Menzin et al. 1995	Cost-effectiveness of enoxaparin vs low-dose warfarin in the prevention of deep-vein thrombosis after total hip replacement surgery	Cost-effectiveness study
Monreal et al. 1995	Platelet count, antiplatelet therapy and pulmonary embolism- -a prospective study in patients with hip surgery	Not specific to elective arthroplasty
Tremaine et al. 1995	Duplex ultrasound evaluation for acute deep venous thrombosis in 962 total joint arthroplasty patients	Not best available evidence (case series)
Warwick et al. 1995	Death and thromboembolic disease after total hip replacement. A series of 1162 cases with no routine chemical prophylaxis	Not best available evidence (case series)
Antiplatelet Trialists' Collaboration 1994	Collaborative overview of randomised trials of antiplatelet therapyIII: Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients.	Systematic review, bibliography screened
Borris et al. 1994	Perioperative thrombosis prophylaxis with low molecular weight heparins in elective hip surgery. Clinical and economic considerations	Systematic review, bibliography screened

Author	Title	Reason for Exclusion
Eriksson et al. 1994	Direct thrombin inhibition with Rec-hirudin CGP 39393 as prophylaxis of thromboembolic complications after total hip replacement	Not best available evidence (case series)
Friedman et al. 1994	RD heparin compared with warfarin for prevention of venous thromboembolic disease following total hip or knee arthroplasty. RD Heparin Arthroplasty Group	Does not address comparison of interest
Ginsberg et al. 1994	Use of Hirulog in the prevention of venous thrombosis after major hip or knee surgery	Fewer than 80% elective arthroplasty patients
Imperiale et al. 1994	A meta-analysis of methods to prevent venous thromboembolism following total hip replacement	Systematic review, bibliography screened
Lieberman et al. 1994	Prevention of venous thromboembolism after total hip and knee arthroplasty	Narrative review, bibliography screened
Menzin et al. 1994	Prevention of deep-vein thrombosis following total hip replacement surgery with enoxaparin versus unfractionated heparin: a pharmacoeconomic evaluation	Economic evaluation
O'Brien et al. 1994	Cost-effectiveness of enoxaparin versus warfarin prophylaxis against deep-vein thrombosis after total hip replacement	Systematic review, bibliography screened
Anderson et al. 1993	Efficacy and cost of low-molecular-weight heparin compared with standard heparin for the prevention of deep vein thrombosis after total hip arthroplasty	Systematic review, bibliography screened
Bradley et al. 1993	The effectiveness of intermittent plantar venous compression in prevention of deep venous thrombosis after total hip arthroplasty	Fewer than 100 patients and no non- VTE outcomes
Carter et al. 1993	Enoxaparin: The low-molecular-weight heparin for prevention of postoperative thromboembolic complications	Systematic review, bibliography screened
Khaw et al. 1993	The incidence of fatal pulmonary embolism after knee replacement with no prophylactic anticoagulation	Not best available evidence (case series)
Mohr et al. 1993	Prophylactic agents for venous thrombosis in elective hip surgery. Meta-analysis of studies using venographic assessment	Systematic review, bibliography screened
Paiement et al. 1993	Routine use of adjusted low-dose warfarin to prevent venous thromboembolism after total hip replacement	Not best available evidence (case series)
Planes 1993	Comparison of antithrombotic efficacy and haemorrhagic side-effects of Clivarin versus enoxaparin in patients undergoing total hip replacement surgery	Abstract
Breyer et al. 1992	Prevention of deep vein thrombosis with low molecular- weight heparin in patients undergoing total hip replacement. A randomized trial. The German Hip Arthroplasty Trial (GHAT) Group	Does not address comparison of interest

Author	Title	Reason for Exclusion
Clagett et al. 1992	Prevention of venous thromboembolism	Narrative review, bibliography screened
Gallus et al. 1992	Apparent lack of synergism between heparin and dihydroergotamine in prevention of deep vein thrombosis after elective hip replacement: a randomised double-blind trial reported in conjunction with an overview of previous results	Does not investigate comparison of interest
Hoek et al. 1992	Prevention of deep vein thrombosis following total hip replacement by low molecular weight heparinoid	Does not investigate comparison of interest
Huo et al. 1992	Intraoperative heparin thromboembolic prophylaxis in primary total hip arthroplasty. A prospective, randomized, controlled, clinical trial	Report of previously published data
Laguardia et al. 1992	Prevention of deep vein thrombosis in orthopaedic surgery. Comparison of two different treatment protocols with low molecular weight heparin ('Fluxum')	Does not address comparison of interest
Leclerc et al. 1992	Prevention of deep vein thrombosis after major knee surgerya randomized, double-blind trial comparing a low molecular weight heparin fragment (enoxaparin) to placebo	Not specific to elective arthroplasty
Leizorovicz et al. 1992	Low molecular weight heparin in prevention of perioperative thrombosis	Systematic review, bibliography screened
Leyvraz et al. 1992	Thromboembolic prophylaxis in total hip replacement: a comparison between the low molecular weight heparinoid Lomoparan and heparin-dihydroergotamine	Does not investigate comparison of interest
Mohr et al. 1992	Venous thromboembolism associated with hip and knee arthroplasty: current prophylactic practices and outcomes	Not best available evidence (retrospective comparative)
Nurmohamed et al. 1992	Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis	Systematic review, bibliography screened
Ofosu et al. 1992	The low molecular weight heparin Enoxaparin inhibits the consumption of factor VII and prothrombin activation in vivo associated with elective knee replacement surgery	Does not report patient oriented outcomes
Paiement et al. 1992	Influence of prophylaxis on proximal venous thrombus formation after total hip arthroplasty	Narrative review, bibliography screened
Pidala et al. 1992	A prospective study on intermittent pneumatic compression in the prevention of deep vein thrombosis in patients undergoing total hip or total knee replacement	Not best available evidence (case series)
Solis et al. 1992	Is anticoagulation indicated for asymptomatic postoperative calf vein thrombosis?	Not best available evidence (case series)

Author	Title	Reason for Exclusion
Wilson et al. 1992	Thrombo-embolic prophylaxis in total knee replacement. Evaluation of the A-V Impulse System	Fewer than 100 patients and no-non VTE outcomes
Wolf et al. 1992	Pulmonary embolism. Incidence in primary cemented and uncemented total hip arthroplasty using low-dose sodium warfarin prophylaxis	Not best available evidence (case series)
Borris et al. 1991	Low-molecular-weight heparin (enoxaparin) vs dextran 70. The prevention of postoperative deep vein thrombosis after total hip replacement. The Danish Enoxaparin Study Group	Does not investigate comparison of interest
Borris et al. 1991	Components of coagulation and fibrinolysis during thrombosis prophylaxis with a low molecular weight heparin (Enoxaparin) versus Dextran 70 in hip arthroplasty	Does not investigate comparison of interest
Dale et al. 1991	Prevention of venous thrombosis with minidose warfarin after joint replacement	Not best available evidence (retrospective) Fewer than 100
Eriksson et al. 1991	Impaired fibrinolysis and postoperative thromboembolism in orthopedic patients	patients per group and no non-VTE outcomes
Freick et al. 1991	Prevention of deep vein thrombosis by low-molecular- weight heparin and dihydroergotamine in patients undergoing total hip replacement	Does not investigate comparison of interest
Hodge 1991	Prevention of deep vein thrombosis after total knee arthroplasty. Coumadin versus pneumatic calf compression	Not best available evidence (non- randomized)
Kaempffe et al. 1991	Intermittent pneumatic compression versus coumadin. Prevention of deep vein thrombosis in lower-extremity total joint arthroplasty	Fewer than 100 patients per group and no non-VTE outcomes
Leyvraz et al. 1991	Prevention of deep vein thrombosis after hip replacement: randomised comparison between unfractionated heparin and low molecular weight heparin	Does not address comparison of interest
Matzsch et al. 1991	Comparison of the thromboprophylactic effect of a low molecular weight heparin versus dextran in total hip replacement	Does not investigate comparison of interest
Planes et al. 1991	Efficacy and safety of a perioperative enoxaparin regimen in total hip replacement under various anesthesias	Narrative review, bibliography screened
Putz et al. 1991	Triflusal versus acetylsalicylic acid: a double-blind study for the prophylaxis of deep vein thrombosis after hip surgery	Does not investigate comparison of interest
Turpie 1991	Efficacy of a postoperative regimen of enoxaparin in deep vein thrombosis prophylaxis	Report of previously published RCT
Francis et al. 1990	Prevention of venous thrombosis after total knee arthroplasty. Comparison of antithrombin III and low-dose heparin with dextran	Does not investigate comparison of interest

Author	Title	Reason for Exclusion
	Combined treatment with indomethacin and low-dose	Not relevant
Kristensen et al.	heparin after total hip replacement. A double-blind placebo-	treatment
1990	controlled clinical trial	comparison
	controlled enhied that	Not best available
Lynch et al.	Mechanical measures in the prophylaxis of postoperative	evidence
1990	thromboembolism in total knee arthroplasty	(retrospective
1770	unoniboenibonsin in total kiee artinoplasty	comparative)
		Does not investigat
Matzsch et al.	Low molecular weight heparin compared with dextran as	comparison of
1990	prophylaxis against thrombosis after total hip replacement	interest
		Not best available
Planes et al.	Total hip replacement and deep vein thrombosis. A	evidence (case
1990	venographic and necropsy study	series)
	Once-daily dosing of enoxaparin (a low molecular weight	501105)
Planes et al.	heparin) in prevention of deep vein thrombosis after total hip	Commentary
1990	replacement	Commentary
	Levels of thrombinantithrombin-III complex and factor	Fewer than 100
Sorensen et al.	VIII activity in relation to post-operative deep vein	patients per group
1990	thrombosis and influence of prophylaxis with a low-	and no non-VTE
1770	molecular-weight heparin	outcomes
	Association between plasma levels of tissue plasminogen	Fewer than 100
Sorensen et al.	activator and postoperative deep vein thrombosisinfluence	patients per group
1990	of prophylaxis with a low molecular weight heparin. The	and no non-VTE
1770	Venous Thrombosis Group	outcomes
		Report of
Turpie 1990	Enoxaparin prophylaxis in elective hip surgery	previously
	Enoxuparin propriytaxis in elective inp surgery	published RCT
1		Not best available
Amstutz et al.	Warfarin prophylaxis to prevent mortality from pulmonary	evidence (case
1989	embolism after total hip replacement	series)
01		Does not investigat
Christensen et	Prevention of deep venous thrombosis following total hip	comparison of
al. 1989	replacement, using epidural analgesia	interest
Francis et al.	Antithrombin III prophylaxis of venous thromboembolic	Insufficient data
1989	disease after total hip or total knee replacement	insumcient data
Francis et al.	Prevention of venous thrombosis after total hip arthroplasty.	Does not investigat
1989	Antithrombin III and low-dose heparin compared with	comparison of
1707	dextran 40	interest
Fredin et al.	Thromboprophylaxis in hip arthroplasty. Dextran with	Does not investigat
1989	graded compression or preoperative dextran compared in	comparison of
1707	150 patients	interest
	The relationship between anti-factor Xa level and clinical	Not best available
Levine et al.	outcome in patients receiving enoxaparine low molecular	evidence (case
1989	weight heparin to prevent deep vein thrombosis after hip	series)
	replacement	

Author	Title	Reason for Exclusion
Patterson et al. 1989	Complications of heparin therapy after total joint arthroplasty	Not relevant - treatment, not prevention of VTE
Stulberg et al. 1989	Antithrombin III/low-dose heparin in the prevention of deep- vein thrombosis after total knee arthroplasty. A preliminary report	Does not investigate comparison of interest Fewer than 100
Taberner et al. 1989	Randomized study of adjusted versus fixed low dose heparin prophylaxis of deep vein thrombosis in hip surgery	patients per group and insufficient data on bleeding outcomes
Beisaw et al. 1988	Dihydroergotamine/heparin in the prevention of deep-vein thrombosis after total hip replacement. A controlled, prospective, randomized multicenter trial	Does not investigate comparison of interest
Chiapuzzo et al. 1988	The use of low molecular weight heparins for postsurgical deep vein thrombosis prevention in orthopaedic patients	Not specific to elective arthroplasty
Eriksson et al. 1988	Thrombosis prophylaxis with low molecular weight heparin in total hip replacement	Does not investigate comparison of interest
Lassen et al. 1988	Heparin/dihydroergotamine for venous thrombosis prophylaxis: comparison of low-dose heparin and low molecular weight heparin in hip surgery	Does not investigate comparison of interest
Leyvraz et al. 1988	Adjusted subcutaneous heparin versus heparin plus dihydroergotamine in prevention of deep vein thrombosis after total hip arthroplasty	Does not investigate comparison of interest
Matzsch et al. 1988	Safety and efficacy of a low molecular weight heparin (Logiparin) versus dextran as prophylaxis against thrombosis after total hip replacement	Does not investigate comparison of interest
Swierstra et al. 1988	Prevention of thrombosis after hip arthroplasty. A prospective study of preoperative oral anticoagulants	Does not investigate comparison of interest
Christensen et al. 1987	Bleeding after hip arthroplasty not increased by heparin plus dihydroergotamine	Does not investigate comparison of interest
Clayton et al. 1987	Activity, air boots, and aspirin as thromboembolism prophylaxis in knee arthroplasty. A multiple regimen approach	Not best available evidence (case series)
Haas et al. 1987	Prophylaxis of deep vein thrombosis in high risk patients undergoing total hip replacement with low molecular weight heparin plus dihydroergotamine	Does not investigate comparison of interest
Josefsson et al. 1987	Prevention of thromboembolism in total hip replacement. Aspirin versus dihydroergotamine-heparin	Does not investigate comparison of interest
Alfaro et al. 1986	Prophylaxis of thromboembolic disease and platelet-related changes following total hip replacement: a comparative study of aspirin and heparin-dihydroergotamine	Fewer than 100 patients per group and no non-VTE outcomes

Author	Title	Reason for Exclusion
	Low molecular weight heparin once daily compared with	
Bergqvist et al.	conventional low-dose heparin twice daily. A prospective	Not specific to
1986	double-blind multicentre trial on prevention of postoperative thrombosis	elective arthroplasty
Planes et al.	Enoxaparine low molecular weight heparin: its use in the	Not best available
1986	prevention of deep venous thrombosis following total hip replacement	evidence (non- randomized)
Bergqvist et al. 1985	Does thromboprophylaxis increase the risk for infectious complications after total hip replacement?	Subgroup of study previously published
Kakkar et al. 1985	Heparin and dihydroergotamine prophylaxis against thrombo-embolism after hip arthroplasty	Not best available evidence (case series)
Fredin et al. 1984	Hypotensive anesthesia, thromboprophylaxis and postoperative thromboembolism in total hip arthroplasty	Does not investigate comparison of interest
Fredin et al. 1984	On thrombo-embolism after total hip replacement in epidural analgesia: a controlled study of dextran 70 and low-dose heparin combined with dihydroergotamine	Does not investigate comparison of interest
Eyb et al. 1983	The effect of prophylaxis for thrombosis on heterotopic	Does not report
Eyb et al. 1985	ossification following total hip joint replacement	outcome of interest
		Not best available
Figus et al.	Thromboembolism in total hip replacement	evidence
1983	in one of the internet in the second se	(retrospective
		comparative)
Francis et al.	Two-step warfarin therapy. Prevention of postoperative	Does not investigate
1983	venous thrombosis without excessive bleeding	comparison of
		interest
Fredin et al.	Pre- and postoperative levels of antithrombin III with special	Does not investigate
1983	reference to thromboembolism after total hip replacement	comparison of interest
		Fewer than 100
Gallus et al.	Venous thrombosis after elective hip replacementthe	patients per group
1983	influence of preventive intermittent calf compression and of	and no non-VTE
1705	surgical technique	outcomes
		Fewer than 100
Ohlund et al.	Calf compression for prevention of thromboembolism	patients and no non-
1983	following hip surgery	VTE outcomes
G 1		Does not investigate
Sautter et al.	Aspirin-sulfinpyrazone in prophylaxis of deep venous	comparison of
1983	thrombosis in total hip replacement	interest
Eradin at al		Not best available
Fredin et al.	Fatal pulmonary embolism after total hip replacement	evidence (case
1982		series)
Guyer et al.	The detection and prevention of pulmonary embolism in	Not best available
1982	total hip replacement. A study comparing aspirin and low-	evidence (non-
1702	dose warfarin	randomized)

Author	Title	Reason for Exclusion
Hartman et al. 1982	Cyclic sequential compression of the lower limb in prevention of deep venous thrombosis	Fewer than 100 patients and no non- VTE outcomes
Welin-Berger et al. 1982	Deep vein thrombosis following hip surgery. Relation to activated factor X inhibitor activity: effect of heparin and dextran	Fewer than 100 patients and no non- VTE outcomes Not best available
Amrein et al. 1981	Aspirin-induced prolongation of bleeding time and perioperative blood loss	evidence (retrospective comparative)
Ishak et al. 1981	Deep venous thrombosis after total hip arthroplasty: a prospective controlled study to determine the prophylactic effect of graded pressure stockings	Does not address comparison of interest
Morris et al. 1981	The effect of dihydroergotamine and heparin on the incidence of thromboembolic complications following total hip replacement: a randomized controlled clinical trial	Does not investigate comparison of interest
Sheppeard et al. 1981	A clinico-pathological study of fatal pulmonary embolism in a specialist orthopaedic hospital	Not best available evidence (case series)
Westermann et al. 1981	Thromboembolism after hip surgery	Not best available evidence (non- randomized)
Gnudi et al. 1980	Thrombo-embolism as a complication of prosthetic replacement operations of the hip: prophylaxis with heparin at low doses	Not best available evidence (retrospective comparative)
Schondorf et al. 1980	Prevention of deep vein thrombosis in orthopedic surgery with the combination of low dose heparin plus either dihydroergotamine or dextran	Does not investigate comparison of interest
Bergzvist et al. 1979	Thromboembolism after elective and post-traumatic hip surgerya controlled prophylactic trial with dextran 70 and low-dose heparin	Not best available evidence
Goss et al. 1979	The efficacy of low-dose heparinwarfarin anticoagulation prophylaxis after total hip replacement arthroplasty	Not best available evidence (case series)
Hull et al. 1979	Effectiveness of intermittent pulsatile elastic stockings for the prevention of calf and thigh vein thrombosis in patients undergoing elective knee surgery	Fewer than 100 patients per group and no non-VTE outcomes
Kakkar et al. 1979	Prophylaxis for postoperative deep-vein thrombosis. Synergistic effect of heparin and dihydroergotamine	Does not investigate comparison of interest
Barnes et al. 1978	Efficacy of graded-compression antiembolism stockings in patients undergoing total hip arthroplasty	Less than 10 patients per group
Rogers et al. 1978	Controlled trial of low-dose heparin and sulfinpyrazone to prevent venous thromboembolism after operation on the hip	Does not investigate comparison of interest

Author	Title	Reason for Exclusion
Silvergleid et al. 1978	ASA-dipyridamole prophylaxis in elective total hip replacement	Does not investigate comparison of interest
Stamatakis et al. 1978	Failure of aspirin to prevent postoperative deep vein thrombosis in patients undergoing total hip replacement	Not best available evidence (case series)
Williams et al. 1978	Failure of low dose heparin to prevent pulmonary embolism after hip surgery or above the knee amputation	Not specific to elective arthroplasty
Flicoteaux et al. 1977	Comparision of low dose heparin and low dose heparin combined with aspirin in prevention of deep vein thrombosis after total hip replacement	Not best available evidence (low power)
Hume et al. 1977	Prevention of postoperative thrombosis by aspirin	Fewer than 100 patients and no non- VTE outcomes
Johnson et al. 1977	Pulmonary embolism and its prophylaxis following the Charnley total hip replacement	Not best available evidence (retrospective comparative)
Pedegana et al. 1977	Prevention of thromboembolic disease by external pneumatic compression in patients undergoing total hip arthroplasty	Fewer than 100 patients per group and no non-VTE outcomes
van Geloven et al. 1977	Comparison of postoperative coumarin, dextran 40 and subcutaneous heparin in the prevention of postoperative deep vein thrombosis	Not specific to arthoplasty
Jennings et al. 1976	A clinical evaluation of aspirin prophylaxis of thromboembolic disease after total hip arthroplasty	Not best available evidence (case series)
Sagar et al. 1976	Efficacy of low-dose heparin in prevention of extensive deep-vein thrombosis in patients undergoing total-hip replacement	Does not investigate comparison of interest
Sakai et al. 1976	Prevention of thromboembolic phenomena	Not best available evidence (case series)
Salvati et al. 1976	Thromboembolism following total hip-replacement arthroplasty. The efficicy of dextran-aspirin and dextran- warfarin in prophylaxis	Not best available evidence (retrospective comparative)
Gruber 1975	Dextran and the prevention of postoperative thromboembolic complications	Narrative review, bibliography screened
Ritter et al. 1975	A comparative analysis of warfarin and low-dose heparin as thromboembolism prophylaxis in total hip replacement patinets	Not best available evidence (non- randomized)
Soreff et al. 1975	Acetylsalicylic acid in a trial to diminish thromboembolic complications after elective hip surgery	Not specific to elective arthroplasty

Author	Title	Reason for Exclusion
Morris et al. 1974	Prevention of deep-vein thrombosis by low-dose heparin in patients undergoing total hip replacement	Does not investigate comparison of interest
Coventry et al. 1973	'Delayed' prophylactic anticoagulation: a study of results and complications in 2,012 total hip arthroplasties	Not best available evidence (retrospective comparative)
Evarts et al. 1973	Thromboembolism after total hip reconstruction. Failure of low doses of heparin in prevention	Not best available evidence (case series)
Gallus et al. 1973	Small subcutaneous doses of heparin in prevention of venous thrombosis	Not specific to elective arthroplasty
Daniel et al. 1972	Pulmonary complications after total hip arthroplasty with Charnley prosthesis as revealed by chest roentgenograms	Not best available evidence (case series)
Harris et al. 1972	Prevention of venous thromboembolism following total hip replacement. Warfarin vs dextran 40	Does not investigate comparison of interest
	Effect of aspirin on postoperative venous thrombosis. Report of the Steering Committee of a trial sponsored by the Medical Research Council	Does not report critical outcome (DVT diagnosed by 1251-fibrinogen)
Evarts et al. 1971	Prevention of thromboembolic disease after elective surgery of the hip	Not best available evidence (non- randomized)
Pinto 1970	Controlled trial of an anticoagulant (warfarin sodium) in the prevention of venous thrombosis following hip surgery	Not specific to elective arthroplasty
Harris et al. 1967	The prevention of thromboembolic disease by prophylactic anticoagulation. A controlled study in elective hip surgery	Not best available evidence (non- randomized)

EARLY MOBILIZATION

Author	Title	Reason for Exclusion
Chandrasek- aran et al. 2009	Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis	Fewer than 100 patients and no non-VTE outcomes
Thien et al. 2007	Immediate weight bearing after uncemented total hip arthroplasty with an anteverted stem: A prospective randomized comparison using radiostereometry	No relevant outcomes
Buehler et al.	Late deep venous thrombosis and delayed weightbearing after	Fewer than 100
1999	total hip arthroplasty	patients per group
Wasilewski et al. 1990	Value of continuous passive motion in total knee arthroplasty	Does not address question of interest
Vince et al. 1987	Continuous passive motion after total knee arthroplasty	Does not address question of interest
Stulberg et	Aspirin prophylaxis for pulmonary embolism following total hip	Not best available
al. 1982	arthroplasty. An incidence study	evidence
Nillius et al.	Deep vein thrombosis after total hip replacement: a clinical and	Not best available
1979	phlebographic study	evidence

Table 63. Excluded Studies Considered for Early Mobilization

ANESTHESIA

		Reason for
Author	Title	Exclusion
Kerr et al. 2010	High incidence of in-hospital pulmonary embolism following joint arthroplasty with dalteparin prophylaxis	Not best available evidence
Duarte et al. 2009	Posterior lumbar plexus block in postoperative analgesia for total hip arthroplasty: a comparative study between 0.5% Bupivacaine with Epinephrine and 0.5% Ropivacaine	Does not address question of interest
Duarte et al. 2009	Epidural lumbar block or lumbar plexus block combined with general anesthesia: efficacy and hemodynamic effects on total hip arthroplasty	Not best available evidence
Frassanito et al. 2009	Anaesthesia for total knee arthroplasty: Efficacy of single- injection or continuous lumbar plexus associated with sciatic nerve blocks - A randomized controlled study	Does not report critical outcome of interest Systematic
Hu et al. 2009	A comparison of regional and general anaesthesia for total replacement of the hip or knee: a meta-analysis	review, bibliography screened
Ilfeld et al. 2009	Health-related quality of life after hip arthroplasty with and without an extended-duration continuous posterior lumbar plexus nerve block: A prospective, 1-year follow-up of a randomized, triple-masked, placebo-controlled study	Does not address question of interest
Krenzel et al. 2009	Posterior Capsular Injections of Ropivacaine During Total Knee Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Study	Does not address question of interest Systematic
Macfarlane et al. 2009	Does regional anaesthesia improve outcome after total hip arthroplasty? A systematic review	review, bibliography screened Systematic
Macfarlane et al. 2009	Does regional anesthesia improve outcome after total knee arthroplasty?	review, bibliography screened
Ilfeld et al. 2008	Ambulatory continuous posterior lumbar plexus nerve blocks after hip arthroplasty: A dual-center, randomized, triple-masked, placebo-controlled trial	Does not address question of interest
Bowler et al. 2007	Factor V Leiden: prevalence and thromboembolic complications after total hip replacement in Ireland	Not best available evidence
Brooks et al. 2007	Thromboembolism in patients undergoing total knee arthroplasty with epidural analgesia	Not best available evidence
Donatelli et al. 2007	Epidural anesthesia and analgesia decrease the postoperative incidence of insulin resistance in preoperative insulin-resistant subjects only	Not best available evidence
Kardash et al. 2007	Obturator versus femoral nerve block for analgesia after total knee arthroplasty	Does not address question of interest
Kita et al. 2007	Caudal epidural anesthesia administered intraoperatively provides for effective postoperative analgesia after total hip arthroplasty	Does not address question of interest

Author	Title	Reason for Exclusion Systematic
Rosencher et al. 2007	Selected new antithrombotic agents and neuraxial anaesthesia for major orthopaedic surgery: management strategies	review, bibliography screened
Samama et al. 2007	Epidemiology of venous thromboembolism after lower limb arthroplasty: the FOTO study	Not best available evidence
Siddiqui et al. 2007	Continuous lumbar plexus block provides improved analgesia with fewer side effects compared with systemic opioids after hip arthroplasty: a randomized controlled trial	Does not address question of interest
Stevens et al. 2007	A modified fascia iliaca compartment block has significant morphine-sparing effect	Does not address question of interest
Guay 2006	The effect of neuraxial blocks on surgical blood loss and blood transfusion requirements: a meta-analysis	Systematic review, bibliography screened Systematic
Mauermann	A comparison of neuraxial block versus general anesthesia for	review,
et al. 2006	elective total hip replacement: a meta-analysis	bibliography screened
Peters et al. 2006	The Effect of a New Multimodal Perioperative Anesthetic Regimen on Postoperative Pain, Side Effects, Rehabilitation, and Length of Hospital Stay After Total Joint Arthroplasty	Not best available evidence
Axelsson et al. 2005	Postoperative extradural analgesia with morphine and ropivacaine. A double-blind comparison between placebo and ropivacaine 10 mg/h or 16 mg/h	Does not address question of interest
Dahl et al. 2005	Postoperative Melagatran/Ximelagatran for the Prevention of Venous Thromboembolism following Major Elective Orthopaedic Surgery : Effects of Timing of First Dose and Risk Factors for Thromboembolism and Bleeding Complications on Efficacy and Safety	Not best available evidence
Farag et al. 2005	Epidural analgesia improves early rehabilitation after total knee replacement	Does not address question of interest
Hebl et al. 2005 Jaffer et al. 2005	A comprehensive anesthesia protocol that emphasizes peripheral nerve blockade for total knee and total hip arthroplasty Duration of anesthesia and venous thromboembolism after hip and knee arthroplasty	Not best available evidence Not best available evidence
Sarmiento et al. 2005	Thromboembolic disease prophylaxis in total hip arthroplasty	Not best available evidence
Singelyn et al. 2005	Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous femoral nerve sheath block on rehabilitation after unilateral total-hip arthroplasty	Does not address question of interest
Kudoh et al. 2004	A comparison of anesthetic quality in propofol-spinal anesthesia and propofol-fentanyl anesthesia for total knee arthroplasty in elderly patients	Does not address question of interest

Author	Title	Reason for Exclusion
Macalou et al. 2004	Postoperative analgesia after total knee replacement: the effect of an obturator nerve block added to the femoral 3-in-1 nerve block	Does not address question of interest
Brueckner et al. 2004	Comparison of general and spinal anesthesia and their influence on hemostatic markers in patients undergoing total hip arthroplasty	Does not report critical outcome of interest
Horlocker et al. 2003	Regional anesthesia in the anticoagulated patient: defining the risks (the second ASRA Consensus Conference on Neuraxial Anesthesia and Anticoagulation)	Narrative review, bibliography screened
Mantilla et al. 2003	Risk factors for clinically relevant pulmonary embolism and deep venous thrombosis in patients undergoing primary hip or knee arthroplasty	Not best available evidence
Buckenmaier et al. 2002	Lumbar plexus block with perineural catheter and sciatic nerve block for total hip arthroplasty	Not best available evidence
Westrich et al. 2002	Correlation of thrombophilia and hypofibrinolysis with pulmonary embolism following total hip arthroplasty: an analysis of genetic factors	Not best available evidence
Chelly et al. 2001	Continuous femoral blocks improve recovery and outcome of patients undergoing total knee arthroplasty The relationship of the factor V Leiden mutation or the deletion-	Not best available evidence
Della Valle et al. 2001	deletion polymorphism of the angiotensin converting enzyme to postoperative thromboembolic events following total joint arthroplasty	Not best available evidence
DeWeese et al. 2001	Pain control after knee arthroplasty: Intraarticular versus epidural anesthesia	Not best available evidence
Della Valle et al. 2000	Anticoagulant treatment of thromboembolism with intravenous heparin therapy in the early postoperative period following total joint arthroplasty	Not best available evidence
Wang et al. 2000	Deep vein thrombosis after total knee arthroplasty	Not best available evidence
Capdevila et al. 1999	Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery	Does not address question of interest
Caprini et al. 1999	The influence of oral anticoagulation therapy on deep vein thrombosis rates four weeks after total hip replacement	Not best available evidence
Ganapathy et al. 1999	Modified continuous femoral three-in-one block for postoperative pain after total knee arthroplasty	Does not address question of interest
Hooker et al. 1999	Efficacy of prophylaxis against thromboembolism with intermittent pneumatic compression after primary and revision total hip arthroplasty	Not best available evidence
Sarmiento et al. 1999	Thromboembolic prophylaxis with use of aspirin, exercise, and graded elastic stockings or intermittent compression devices in patients managed with total hip arthroplasty	Not best available evidence

Author	Title	Reason for Exclusion
Wulf et al. 1999	Ropivacaine epidural anesthesia and analgesia versus general anesthesia and intravenous patient-controlled analgesia with morphine in the perioperative management of hip replacement. Ropivacaine Hip Replacement Multicenter Study Group	Does not report critical outcome of interest
Allen et al. 1998	Peripheral nerve blocks improve analgesia after total knee replacement surgery	Does not address question of interest
Lau et al. 1998	Regional nerve block for total knee arthroplasty	Not best available evidence
Singelyn et al 1998	Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous three-in-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty	Does not address question of interest
Woolson et al. 1998	Deep venous thrombosis prophylaxis for knee replacement: warfarin and pneumatic compression	Not best available evidence
Woolson et al. 1998	Factor V Leiden and the risk of proximal venous thrombosis after total hip arthroplasty	Not best available evidence
Brinker et al. 1997	Comparison of general and epidural anesthesia in patients undergoing primary unilateral THR	Not best available evidence
Babcock et al. 1994	Venous duplex imaging for surveillance of patients undergoing total joint arthroplasty: A three-year study	Not best available evidence
Dalldorf et al. 1994	Deep venous thrombosis following total hip arthroplasty. Effects of prolonged postoperative epidural anesthesia	Not best available evidence Fewer than 100
Haas 1994	Effects of epidural anesthesia on incidence of venous thromboembolism following joint replacement	patients per group and no non-VTE outcome
M°iniche et al. 1994	The effect of balanced analgesia on early convalescence after major orthopaedic surgery	Does not report critical outcomes of interest
Vresilovic et al. 1993	Incidence of pulmonary embolism after total knee arthroplasty with low-dose coumadin prophylaxis	Not best available evidence
Lemos et al. 1992	Pulmonary embolism in total hip and knee arthroplasty. Risk factors in patients on warfarin prophylaxis and analysis of the prothrombin time as an indicator of warfarin's prophylactic effect	Not best available evidence
McQueen et al. 1992	A comparison of epidural and non-epidural anesthesia and analgesia in total hip or knee arthroplasty patients	Not best available evidence
Uhrbrand et al. 1992	Perioperative analgesia by 3-in-one block in total hip arthroplasty. Prospective randomized blind study	Does not address question of interest
Hoek et al. 1991	The effect of different anaesthetic techniques on the incidence of thrombosis following total hip replacement	Not best available evidence
Mitchell et al. 1991	Prevention of thromboembolic disease following total knee arthroplasty. Epidural versus general anesthesia	Insufficient data
Sharrock et al. 1991	Effects of epidural anesthesia on the incidence of deep-vein thrombosis after total knee arthroplasty	Not best available evidence

A 4 b	T:41	Reason for
Author McCardel et al. 1990	Title Aspirin prophylaxis and surveillance of pulmonary embolism and	Exclusion Not best available
	deep vein thrombosis in total hip arthroplasty Cognitive and functional competence after anaesthesia in patients	evidence
Jones et al. 1990	aged over 60: Controlled trial of general and regional anaesthesia for elective hip or knee replacement	Does not report critical outcome
Nielsen et al. 1990	Long-term cognitive and social sequelae of general versus regional anesthesia during arthroplasty in the elderly	Does not address critical outcome of interest
Nielsen et al. 1990	Lower thrombosis risk with epidural blockade in knee arthroplasty	Not best available evidence
Prins et al. 1990	A comparison of general anesthesia and regional anesthesia as a risk factor for deep vein thrombosis following hip surgery: a critical review	Systematic review, bibliography screened
Balderston et al. 1989	The prevention of pulmonary embolism in total hip arthroplasty. Evaluation of low-dose warfarin therapy	Not best available evidence
Davis et al.	Deep vein thrombosis after total hip replacement. A comparison	Fewer than 100 patients per group
1989	between spinal and general anaesthesia	and no non-VTE outcomes
	Beneficial effects on intraoperative and postoperative blood loss	Report of
Modig 1989	in total hip replacement when performed under lumbar epidural	previously
XX7:11 -	anesthesia. An explanatory study	published study
Wille- Jorgensen et al. 1989	Prevention of thromboembolism following elective hip surgery. The value of regional anesthesia and graded compression stockings	Not best available evidence
Fredin et al. 1986	Anaesthetic techniques and thromboembolism in total hip arthroplasty	Not best available evidence
Modig et al. 1983	Role of extradural and of general anaesthesia in fibrinolysis and coagulation after total hip replacement	Not best available evidence
Chin et al. 1982	Blood loss in total hip replacement: extradural v. phenoperidine analgesia	Does not address question of interest
Rosberg et al. 1982	Anesthetic techniques and surgical blood loss in total hip arthroplasty	Not best available evidence
Modig et al. 1981	Comparative influences of epidural and general anaesthesia on deep venous thrombosis and pulmonary embolism after total hip replacement	Not best available evidence
Thorburn et al. 1980	Spinal and general anaesthesia in total hip replacement: frequency of deep vein thrombosis	Not best available evidence
Keith 1977	Anaesthesia and blood loss in total hip replacement	Less than 10
Amaranath et al. 1975	Relation of anesthesia to total hip replacement and control of operative blood loss	patients per group Not best available evidence
Sculco et al. 1975	The use of spinal anesthesia for total hip-replacement arthroplasty	Not best available evidence

IVC FILTERS

Author	Title	Reason for Exclusion
Smoot et al. 2010	Inferior vena cava filters in trauma patients: Efficacy, morbidity, and retrievability	Not best available evidence
Binkert et al. 2009	Technical success and safety of retrieval of the G2 filter in a prospective, multicenter study	Not best available evidence
Charles et al. 2009	G2 inferior vena cava filter: retrievability and safety	Not specific to surgical patients
Helling et al. 2009	Practice patterns in the use of retrievable inferior vena cava filters in a trauma population: A single-center experience	Not best available evidence
Ishihara et al. 2009	Clinical outcome of perioperative nonpermanent vena cava filter placement in patients with deep venous thrombosis or blood stasis of the vein	Not best available evidence
Ko et al. 2009	Institutional protocol improves retrievable inferior vena cava filter recovery rate	Not best available evidence
Kuo et al. 2009	High-risk retrieval of adherent and chronically implanted IVC filters: techniques for removal and management of thrombotic complications	Not best available evidence
Lyon et al. 2009	Short- and long-term retrievability of the Celect vena cava filter: results from a multi-institutional registry	Not best available evidence
Onat et al. 2009	OptEase and TrapEase vena cava filters: a single-center experience in 258 patients	Narrative review, bibliography screened
Overby et al. 2009	Risk-group targeted inferior vena cava filter placement in gastric bypass patients	Not best available evidence
Rosenthal et al. 2009	Gunther Tulip and Celect IVC filters in multiple-trauma patients	Not best available evidence
Saour et al. 2009	Inferior vena caval filters: 5 years of experience in a tertiary care center	Not best available evidence
Vaziri et al. 2009	Retrievable inferior vena cava filters in high-risk patients undergoing bariatric surgery	Not best available evidence
Adib et al. 2008	The use of inferior vena caval filters prior to major surgery in women with gynaecological cancer	Does not investigate prophylaxis
Chung et al. 2008	Using inferior vena cava filters to prevent pulmonary embolism	Systematic review, bibliography screened
de Villiers et al. 2008	Initial Australian experience with the recovery inferior vena cava filter in patients with increased risk of thromboembolic disease	Not best available evidence
Given et al. 2008	Retrievable Gunther Tulip inferior vena cava filter: experience in 317 patients	Not best available evidence
Hermsen et al. 2008	Retrievable inferior vena cava filters in high-risk trauma and surgical patients: factors influencing successful removal	Not best available evidence
Kardys et al. 2008	Safety and efficacy of intravascular ultrasound-guided inferior vena cava filter in super obese bariatric patients	Not best available evidence
Lo et al. 2008	Inferior vena cava filters and lower limb flap reconstructions	Not best available evidence

Author	Title	Reason for Exclusion
Oliva et al.	Recovery G2 inferior vena cava filter: technical success and	Not specific to
2008	safety of retrieval	surgical patients
Seshadri et al. 2008	Ins and outs of inferior vena cava filters in patients with venous thromboembolism: the experience at Monash Medical Centre and review of the published reports	Not specific to surgical patients
Spaniolas et al. 2008	Bedside placement of removable vena cava filters guided by intravascular ultrasound in the critically injured	Not best available evidence
Strauss et al. 2008	The use of retrievable inferior vena cava filters in orthopaedic patients	Not best available evidence
Zakhary et al. 2008	Optional filters in trauma patients: can retrieval rates be improved?	Not best available evidence
Ahmed et al. 2007	Role of inferior vena cava filter implantation in preventing pulmonary embolism	Not specific to surgical patients
Austin et al. 2007	The inferior vena cava filter is effective in preventing fatal pulmonary embolus after hip and knee arthroplasties	Not specific to prophylaxis
Aziz et al. 2007	Changing Patterns in the Use of Inferior Vena Cava Filters: Review of a Single Center Experience	Not best available evidence
Berczi et al. 2007	Long-term retrievability of IVC filters: should we abandon permanent devices?	Narrative review, bibliography screened
Corriere et al. 2007	Vena cava filters and inferior vena cava thrombosis	Not specific to surgical patients
Halmi et al. 2007	Preoperative placement of retreivable inferior vena cava filters in bariatric surgery	Not best available evidence
Hulse et al. 2007	Role of vena cava filters in high-risk trauma and elective orthopaedic procedures	Narrative review, bibliography screened
Kardys et al. 2007	The use of intravascular ultrasound imaging to improve use of inferior vena cava filters in a high-risk bariatric population	Not best available evidence
Karmy-Jones et al. 2007	Practice patterns and outcomes of retrievable vena cava filters in trauma patients: an AAST multicenter study	Not best available evidence
Keller et al. 2007	Clinical comparison of two optional vena cava filters	Not best available evidence
Martin et al. 2007	Vena cava filters in surgery and trauma	Narrative review, bibliography screened
Mismetti et al. 2007	A prospective long-term study of 220 patients with a retrievable vena cava filter for secondary prevention of venous thromboembolism	Not best available evidence
Piano et al. 2007	Safety, feasibility, and outcome of retrievable vena cava filters in high-risk surgical patients	Not best available evidence
Schuster et al. 2007	Retrievable inferior vena cava filters may be safely applied in gastric bypass surgery	Not best available evidence
Trigilio-Black et al. 2007	Inferior vena cava filter placement for pulmonary embolism risk reduction in super morbidly obese undergoing bariatric surgery	Not best available evidence

Author	Title	Reason for Exclusion
		Systematic
Young et al. 2007	Vena caval filters for the prevention of pulmonary embolism	review, bibliography screened
Antevil et al. 2006	Retrievable vena cava filters for preventing pulmonary embolism in trauma patients: a cautionary tale	Not best available evidence
Dovrish et al. 2006	Retrospective analysis of the use of inferior vena cava filters in routine hospital practice	Not specific to surgical patients
Hoppe et al. 2006	Gunther Tulip filter retrievability multicenter study including CT follow-up: final report	Not specific to surgical patients
Meier et al. 2006	Early experience with the retrievable OptEase vena cava filter in high-risk trauma patients	Not best available evidence
Pancione et al. 2006	Use of the ALN permanent/removable vena cava filter. A multi- centre experience	Not specific to surgical patients
Rosenthal et al. 2006	Retrievable inferior vena cava filters: Initial clinical results	Not best available evidence
Stefanidis et al. 2006	Extended interval for retrieval of vena cava filters is safe and may maximize protection against pulmonary embolism	Not best available evidence
Grande et al. 2005	Experience with the recovery filter as a retrievable inferior vena cava filter	Not best available evidence
Imberti et al. 2005 Keeling et al.	Clinical experience with retrievable vena cava filters: results of a prospective observational multicenter study Current indications for preoperative inferior vena cava filter	Not specific to surgical patients Not best available
2005 Kurtoglu et al.	insertion in patients undergoing surgery for morbid obesity Intermittent pneumatic compression in the prevention of venous	evidence Fewer than 100 patients and no
2005	thromboembolism in high-risk trauma and surgical ICU patients	non-VTE outcomes
Leon et al. 2005	The prophylactic use of inferior vena cava filters in patients undergoing high-risk spinal surgery	Fewer than 100 patients and no non-VTE outcomes
Oliva et al. 2005	The Jonas study: evaluation of the retrievability of the Cordis OptEase inferior vena cava filter	Not specific to surgical patients
Prokubovsky et al. 2005	The use of the Zontik cava filter for temporary implantation to the inferior vena cava	Not best available evidence
Rosenthal et al. 2005	OptEase retrievable inferior vena cava filter: initial multicenter experience	Not specific to surgical patients
Sarani et al. 2005	Role of optional (retrievable) IVC filters in surgical patients at risk for venous thromboembolic disease	Narrative review, bibliography screened
Benevenia et al. 2004	Inferior vena cava filters prevent pulmonary emboli in patients with metastatic pathologic fractures of the lower extremity	Not best available evidence Systematic
Dawson et al. 2004	Best evidence topic reports. Safety of inferior vena cava filters as primary treatment for proximal deep vein thrombosis	review, bibliography screened

		Reason for
Author	Title	Exclusion
Rosner et al.	Prophylactic placement of an inferior vena cava filter in high-risk	Not best available
2004	patients undergoing spinal reconstruction	evidence
Terhaar et al. 2004	Extended interval for retrieval of Gunther Tulip filters	Not best available evidence
De Gregorio	The Gunther Tulip retrievable filter: prolonged temporary	Not specific to
et al. 2003	filtration by repositioning within the inferior vena cava Factors associated with recurrent venous thromboembolism in	surgical patients Not specific to
Lin et al. 2003	patients with malignant disease	surgical patients
Offner et al.	The role of temporary inferior vena cava filters in critically ill	Not best available
2003	surgical patients	evidence
Pieri et al.	Optional vena cava filters: preliminary experience with a new	Not best available
2003	vena cava filter	evidence
Donat et al.	Incidence of thromboembolism after transurethral resection of the prostate (TURP)a study on TED stocking prophylaxis and	Does not address question of
2002	literature review	interest
Jarrett et al.		Does not
2002	Inferior vena cava filters in malignant disease	investigate
2002		prophylaxis
		Fewer than 100 patients; not
Millward et	Gunther Tulip Retrievable Vena Cava Filter: results from the	specific to
al. 2001	Registry of the Canadian Interventional Radiology Association	elective
		arthroplasty
Schleich et al.	Long-term follow-up of percutaneous vena cava filters: a	Not best available
2001 MoMuntary at	prospective study in 100 consecutive patients	evidence Not best available
McMurtry et al. 1999	Increased use of prophylactic vena cava filters in trauma patients failed to decrease overall incidence of pulmonary embolism	evidence
Rogers et al.	Five-year follow-up of prophylactic vena cava filters in high-risk	Not best available
1998	trauma patients	evidence
Gosin et al.	Efficacy of prophylactic vena cava filters in high-risk trauma	Not best available
1997 Rogers et al.	patients Prophylactic yang cays filter insertion in calcoted high risk	evidence Not best available
1997	Prophylactic vena cava filter insertion in selected high-risk orthopaedic trauma patients	evidence
Rodriguez et	Early placement of prophylactic vena caval filters in injured	Not best available
al. 1996	patients at high risk for pulmonary embolism	evidence
~		Not relevant -
Crystal et al. 1995	Utilization patterns with inferior vena cava filters: surgical versus	examines VTE
1995	percutaneous placement	treatment, not prevention
Ricco et al.		Not specific to
1995	The LGM Vena-Tech caval filter: Results of a multicenter study	surgical patients
Rogers et al.	Routine prophylactic vena cava filter insertion in severely injured	Not best available
1995 Creamfield at	trauma patients decreases the incidence of pulmonary embolism	evidence
Greenfield et al. 1994	Extended evaluation of the titanium Greenfield vena caval filter	Not specific to surgical patients
ai. 1774		surgiour patients

Author	Title	Reason for Exclusion
Kniemeyer et al. 1994	Complications following caval interruption	Does not address question of interest
Leach et al. 1994	Surgical prophylaxis for pulmonary embolism	Not best available evidence
Lord et al. 1994	Early and late results after Bird's Nest filter placement in the inferior vena cava: clinical and duplex ultrasound follow up	Not best available evidence
Rosenthal et al. 1994	Use of the Greenfield filter in patients with major trauma	Not best available evidence
Collins et al. 1992	Vena caval filter use in orthopaedic trauma patients with recognized preoperative venous thromboembolic disease	Not best available evidence Less than 10
Magnant et al. 1992	Current use of inferior vena cava filters	surgical prophylaxis patients
Webb et al. 1992	Greenfield filter prophylaxis of pulmonary embolism in patients	Not best available
1992 Emerson et al. 1991	undergoing surgery for acetabular fracture Prophylactic and early therapeutic use of the Greenfield filter in hip and knee joint arthroplasty	evidence Not specific to prophylaxis
Bucci et al. 1989	Mechanical prophylaxis of venous thrombosis in patients undergoing craniotomy: a randomized trial	Patient population not relevant
Vaughn et al. 1989	Use of the Greenfield filter to prevent fatal pulmonary embolism associated with total hip and knee arthroplasty	Retrospective case series Systematic
Clagett et al. 1988	Prevention of venous thromboembolism in general surgical patients. Results of meta-analysis	review, bibliography screened
Golueke et al. 1988	Interruption of the vena cava by means of the Greenfield filter: Expanding the indications	Retrospective case series
Thomas et al. 1988	A retrospective analysis of inferior vena caval filtration for prevention of pulmonary embolization	Not specific to surgical patients
Colditz et al. 1986	Rates of venous thrombosis after general surgery: combined results of randomised clinical trials	Systematic review, bibliography screened
Fullen et al. 1973	Prophylactic vena caval interruption in hip fractures	Not best available evidence

OTHER EXCLUDED STUDIES

	_	
Author	Title	Reason for Exclusion
Babis et al. 2011	Incidence and prevention of thromboembolic events in one stage bilateral total hip arthroplasty: a systematic review	Systematic review, bibliography screened
Dushey et al. 2011	Short-Term Coagulation Complications Following Total Knee Arthroplasty A Comparison of Patient-Reported and Surgeon-Verified Complication Rates	Incidence study
Fitzgerald et al. 2011	Incidence of postthrombotic syndrome in patients undergoing primary total hip arthroplasty for osteoarthritis	Background article
Asensio et al. 2010	Timing of DVT prophylaxis and risk of postoperative knee prosthesis infection	Does not address question of interest
Baser et al. 2010	Impact of postoperative venous thromboembolism on Medicare recipients undergoing total hip replacement or total knee replacement surgery	Background article
Baser et al. 2010	Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery	Incidence study
Berend et al. 2010	Unicompartmental knee arthroplasty: incidence of transfusion and symptomatic thromboembolic disease	Incidence study
Bottaro et al. 2010	How should we define major bleeding events in thromboprophylaxis?	Letter
Bozic et al. 2010	The influence of procedure volumes and standardization of care on quality and efficiency in total joint replacement surgery	Does not address question of interest
Clifford et al. 2010	How should we define major bleeding events in thromboprophylaxis?: Reply	Letter
Cushner et al. 2010	Complications and functional outcomes after total hip arthroplasty and total knee arthroplasty: results from the Global Orthopaedic Registry (GLORY)	Incidence study
Dahl et al. 2010	A critical appraisal of bleeding events reported in venous thromboembolism prevention trials of patients undergoing hip and knee arthroplasty	Background article
Kurmis et al. 2010	Review article: thromboprophylaxis after total hip replacement	Systematic review, bibliography screened
Lanes et al. 2010	Incidence rates of thromboembolic, bleeding, and hepatic outcomes in patients undergoing hip or knee replacement surgery	Incidence study
Maynard et al. 2010	Optimizing prevention of hospital-acquired venous thromboembolism (VTE): prospective validation of a VTE risk assessment model	Not specific to elective arthroplasty
McAndrew et al. 2010	Incidence of postthrombotic syndrome in patients undergoing primary total knee arthroplasty for osteoarthritis	Does not address question of interest
McNally 2010	The impact of national guidelines for the prophylaxis of venous thromboembolism on the complications of arthroplasty of the lower limb	Letter

Author	Title	Reason for Exclusion
Memtsoudis et al. 2010	Risk factors for perioperative mortality after lower extremity arthroplasty: a population-based study of 6,901,324 patient discharges	Does not address question of interest
Moganasundram et al. 2010	The relationship among thromboelastography, hemostatic variables, and bleeding after cardiopulmonary bypass surgery in children	Incorrect patient population
Muntz et al. 2010	Prevention and management of venous thromboembolism in the surgical patient: options by surgery type and individual patient risk factors	Systematic review, bibliography screened
Parvizi et al. 2010	Is deep vein thrombosis a good proxy for pulmonary embolus?	Background article
Plumb et al. 2010	Cost effectiveness of venous thromboembolism pharmacological prophylaxis in total hip and knee replacement: A systematic review	Letter
Raslan et al. 2010 Rhodes et al. 2010	Prophylaxis for venous thrombo-embolism in neurocritical care: a critical appraisal Discontinuation of warfarin is unnecessary in total knee arthroplasty	Does not address question of interest Does not address question of interest
Rosencher et al. 2010	Definition of major bleeding in surgery: An anesthesiologist's point of view: A rebuttal	Background article
Sheth et al. 2010	DVT Prophylaxis in Total Joint Reconstruction	Narrative review, bibliography screened
Struijk-Mulder et al. 2010	Comparing consensus guidelines on thromboprophylaxis in orthopedic surgery	Systematic review, bibliography screened
Van Herck et al. 2010	Key interventions and outcomes in joint arthroplasty clinical pathways: a systematic review	Does not address question of interest
Wuerz et al. 2010	The Surgical Apgar Score in Hip and Knee Arthroplasty	Does not address question of interest
Al Sayegh et al. 2009	Global Risk Profile Verification in Patients with Venous Thromboembolism (GRIP VTE) in 5 Gulf countries	Does not address question of interest
Andrade et al. 2009	Risk factors and prophylaxis for venous thromboembolism in hospitals in the city of Manaus, Brazil	Does not address question of interest
Arnold et al. 2009	Rational testing: Preoperative risk assessment for bleeding and thromboembolism	Commentary
Bono et al. 2009	An evidence-based clinical guideline for the use of antithrombotic therapies in spine surgery	Does not address question of interest
Clayton et al. 2009	Thromboembolic disease after total knee replacement: experience of 5100 cases	Incidence study
Dall et al. 2009	The influence of pre-operative factors on the length of in- patient stay following primary total hip replacement for osteoarthritis: A multivariate analysis of 2302 patients	No relevant outcomes
De Luca et al. 2009	Risk profile and benefits from Gp IIb-IIIa inhibitors among patients with ST-segment elevation myocardial infarction treated with primary angioplasty: A meta-regression analysis of randomized trials	Does not address question of interest

Dowsey et al. 2009Obese diabetic patients are at substantial risk for deep infection after primary TKADoes not address question of interest2009Bilateral Total Joint Arthroplasty. The Early Results from the New Zealand National Joint RegistryDoes not address question of interestHuddleston et al. 2009Adverse events after total knee arthroplasty: the al. 2009Lower extremities' postthrombotic syndrome after total knee arthroplastyIncidence studyLi et al. 2009Lower extremities' postthrombotic syndrome after total steroidal anti-inflammatory drugs in total hip replacement at al. 2009Does not address question of interestSharma et al. 2009Pactors influencing early rehabilitation after tha: accurate compared to the standard laboratory test?Does not address question of interest Does not address question of interestSweetland et al. 2009Venous thromboembolism after spinal cord injury Urwyler et al. 2008Venous thromboembolism after spinal cord injury is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Obesity is a major risk factor for prosthetic infection after replacement at the hip and knee in chronic arthropathy Knac erplacement at the hip and knee in chronic arthropathy Knac erplacement at the hip and knee in chronic arthropathy Knee replacement at the hip and knee in chronic arthropathy knee replacement	Author	Title	Reason for Exclusion
Hooper et al. 2009Bilateral Total Joint Arthroplasty. The Early Results from the New Zealand National Joint RegistryDoes not address question of interestHuddleston et 	Dowsey et al.	Obese diabetic patients are at substantial risk for deep	Does not address
2009the New Zealand National Joint Registryquestion of interestHuddleston et al. 2009Adverse events after total knee arthroplasty: anational Medicare studyIncidence studyKhuangsirikul et al. 2009Lower extremities' postthrombotic syndrome after total knee arthroplastyDoes not address question of interestLi et al. 2009Experimental study of COX-2 selective and traditional non- steroidal anti-inflammatory drugs in total hip replacement Perioperative outcomes after unilateral and bilateral total 2009Does not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective ochort studyDoes not address question of interestWenous thromboembolism after spinal cord injury 2009Venous thromboembolism after spinal cord injury securate compared to the standard laboratory test?Does not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDows et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty (Provisional abstract)Does not address question of interestBorris et al. 2008Post-thrombotic syndrome after total hip arthroplasty continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisiona	2009	infection after primary TKA	question of interest
Huddleston et al. 2009Adverse events after total knee arthroplasty: a national Medicare studyIncidence studyKhauagsirikul et al. 2009Lower extremities' postfrombotic syndrome after total knee arthroplastyDoes not address question of interestMemtsoudis et al. 2009Experimental study of COX-2 selective and traditional non- throidal anti-inflammatory drugs in total hip replacement perioperative outcomes after unilateral and bilateral total systematic reviewDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestWenous thromboembolism in middle aged women: prospective cohort studyUsers ont address question of interest2009Venous thromboembolism: Results from the RIETE accurate compared to the standard laboratory test? Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestDouse yet al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestContinucus pasive motion following joint replacement at the hip and knee in chronic arthropaty Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestKhatod et al. 2008Wenous thromboembolism in cancer patients undergoing major surgeryDoes not address question of	Hooper et al.	Bilateral Total Joint Arthroplasty. The Early Results from	Does not address
al. 2009Medicare studyIncidence studyKhungsirikul et al. 2009Lower extremities' posthrombotic syndrome after total knee arthroplastyDoes not address question of interestLi et al. 2009Experimental study of COX-2 selective and traditional non- steroidal anti-inflammatory drugs in total hip replacement Perioperative outcomes after unilateral and bilateral total 2009Does not address question of interestMentsoudis et al. 2009Factors influencing early rehabilitation after tha: A 2009Does not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestYeneus thromboembolism in middle aged women: prospective venous thromboembolism after spinal cord injury 2009Does not address question of interestArcelus et al. 2008Nenous thromboembolism and bleeding eventsDoes not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestPrevention of venous thromboembolism and bleeding vents 2008Does not address question of interestCollen et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty Continuous passive motion following total knee arthroplasty: useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation program	2009	the New Zealand National Joint Registry	question of interest
Khuangsirikul et al. 2009Lower extremities' postthrombotic syndrome after total knee arthroplastyDoes not address question of interestLi et al. 2009Experimental study of COX-2 selective and traditional non- steroidal anti-inflammatory drugs in total hip replacement Perioperative outcomes after unilateral and bilateral total knee arthroplastyDoes not address question of interestMemtsoudis et al. 2009Factors influencing early rehabilitation after tha: A systematic reviewDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestVenous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interest2009Venous thromboembolism: Results from the RIETE RegistryDoes not address question of interest2008Does not address question of interestDoes not address question of interest2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestReal 2008Post-thrombotic syndrom			Incidence study
al. 2009knee arthroplastyquestion of interestLi et al. 2009Experimental study of COX-2 selective and traditional non- steroidal anti-inflammatory drugs in total hip replacementDoes not address question of interestMemtsoudis et al. 2009Factors influencing early rehabilitation after tha: A systematic reviewDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism after spinal cord injury accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Operative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism in neurosurgery: a 2008Does not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a 2008Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement : epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestKhatod et al. 2008Venous thromboembolism in cancer patients undergoin major surgeryDoes not address question of interest<		•	Does not address
Li et al. 2009Experimental study of COX-2 selective and traditional non- steroidal anti-inflammatory drugs in total hip replacement Perioperative outcomes after unilateral and bilateral total acrone compared to the standard laboratory test?Does not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestYenous thromboembolism after spinal cord injury 2009Is perioperative point-of-care prothrombin fine testing accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Doesity is a major risk factor for prosthetic infection after primary hip arthroplasty 2008Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement: epidemiology, outcomes, and trends in Southern Califormia: 17,080 replacements from 1995 through 2004Does not address question of interestKhatod et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestKhatod et al. 2008Does hort shromboembolism in cancer patients undergoing major		· ·	question of interest
Memtsoudis et al. 2009Perioperative outcomes after unilateral and bilateral total knee arthroplastyDoes not address question of interestSharma et al. 2009Factors influencing early rehabilitation after tha: A systematic reviewDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyDoes not address question of interestTeasell et al. 2009Venous thromboembolism after spinal cord injury accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Venous thromboembolism: Results from the RIETE RegistryDoes not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a arthroplasty is a major risk factor for prosthetic infection after primary hip arthroplasty (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Khatod et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy knee replacement epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMultidisciplinary rehabilitation programmes uncomm	Li et al. 2009	Experimental study of COX-2 selective and traditional non-	
al. 2009knee arthroplastyquestion of interestSharma et al. 2009Factors influencing early rehabilitation after tha: A systematic reviewquestion of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyIncidence studyTeasell et al. 2009Venous thromboembolism after spinal cord injury accurate compared to the standard laboratory test?Does not address question of interestUrwyler et al. 2008Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a 2008Does not address question of interestDows ye et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement: epidemiclogy, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMultidisciplinary rehabilitation programmes following joint replacement end the hip and knee in chronic arthropathy knee replacement: epidemiclogy, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not ad	Manutaandia at		
Sharma et al. 2009Factors influencing early rehabilitation after tha: A systematic reviewDoes not address question of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyIncidence studyTeasell et al. 2009Venous thromboembolism after spinal cord injury accurate compared to the standard laboratory test?Does not address question of interestVrwyler et al. 2009Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a primary hip arthroplastyDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestKhatod et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestKhatod et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not a		*	
2009systematic reviewquestion of interestSweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyIncidence studyTeasell et al. 2009Venous thromboembolism after spinal cord injury accurate compared to the standard laboratory test?Does not address question of interestUrwyler et al. 2009Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestBorris et al. 2008Prevention of venous thromboembolism in neurosurgery: a motombombolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a 2008Does not address question of interestGrella 2008Multidisciplinary rehabilitation programmes following joint replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestKhan et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address <td></td> <td>· ·</td> <td></td>		· ·	
Sweetland et al. 2009Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort studyIncidence studyTeasell et al. 		- · ·	
Sweedalid et al. 2009thromboembolism in middle aged women: prospective cohort studyIncidence studyTeasell et al. 2009Venous thromboembolism after spinal cord injury accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Is perioperative point-of-care prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a primary hip arthroplastyDoes not address question of interestCollen et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestContinuous passive motion following total knee Grella 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestMant et al. 2008Periprosthetic joint infection: the incidence, timing, andDoes not address puestion of	2009	•	question of interest
Teasell et al. 2009Venous thromboembolism after spinal cord injuryDoes not address question of interestUrwyler et al. 2009Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE RegistryDoes not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestKhatod et al. 2008Periprosthetic joint infection: the incidence, timing, andDoes not address question of interest		thromboembolism in middle aged women: prospective	Incidence study
Urwyler et al. 2009Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test?Does not address question of interestArcelus et al. 2008Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE RegistryDoes not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a primary hip arthroplastyDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestGrella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address primary hip arthroplasty is screenedMultido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address puestion of interes		·	
2009accurate compared to the standard laboratory test?question of interestArcelus et al. 20082008Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE Registryquestion of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Urwyler et al.	Is perioperative point-of-care prothrombin time testing	-
Arcelus et al. 2008Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE RegistryDoes not address question of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a utromboembolism and bleeding eventsDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestOsborne et al. 2008Periprosthetic joint infection: the incidence, timing, andDoes not address question of interest	•		
Arcelus et al. 2008venous thromboembolism: Results from the RIETE RegistryDoes not address question of interest2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address question of interest		· · · · ·	-
2008Registryquestion of interestBorris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestGrella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address prevention of interest			
Borris et al. 2008Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestGrella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address poes not address	2008		question of interest
Borris et al. 2008after total hip replacement in relation to venous thromboembolism and bleeding eventsDoes not address question of interest2008Prevention of venous thromboembolism in neurosurgery: a 2008Does not address question of interest2008Prevention of venous thromboembolism in neurosurgery: a 2008Does not address question of interest2008Does ity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interest2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interest2008Obesity is a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address puestion of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address			
2008thromboembolism and bleeding eventsquestion of interestCollen et al. 2008Prevention of venous thromboembolism in neurosurgery: a 2008Does not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestContinuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address			
Collen et al. 2008Prevention of venous thromboembolism in neurosurgery: a metaanalysisDoes not address question of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestGrella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	2008		question of interest
2008metaanalysisquestion of interestDowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplastyDoes not address question of interestGrella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Collen et al		Does not address
Dowsey et al. 2008Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address provisional abstract)			
2008primary hip arthroplastyquestion of interestGrella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address			
Grella 2008Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	•	• • •	
Grella 2008arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract)Does not address question of interestKhan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address question of interest	2000		_
Khan et al. 2008Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Does not address question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interestPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address post-thrombotic syndrome after sundergoing major surgery	Grella 2008		Does not address
Khan et al. 2008replacement at the hip and knee in chronic arthropathy replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004question of interestMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address systematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Grena 2000	(Provisional abstract)	•
Khatod et al. 2008Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004Incidence studyMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address systematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Khan et al. 2008		
Khatod et al. 2008Southern California: 17,080 replacements from 1995 through 2004Incidence studyMant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interest Systematic review, bibliography screenedOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address systematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Kildil et dl. 2000		question of interest
Mant et al. 2008Post-thrombotic syndrome after total hip arthroplasty is uncommonDoes not address question of interest Systematic review, bibliography screenedOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryDoes not address question of interest Systematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address			Incidence study
Maint et al. 2008uncommonquestion of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryquestion of interest Systematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	2008		
Maint et al. 2008uncommonquestion of interestOsborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgeryquestion of interest Systematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Mont at al 2009	Post-thrombotic syndrome after total hip arthroplasty is	Does not address
Osborne et al. 2008Venous thromboembolism in cancer patients undergoing major surgerySystematic review, bibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Iviant et al. 2008		question of interest
2008major surgerybibliography screenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address	Oshorna at al	Vanous thromboambolism in concernations, undersaine	
2008major surgeryscreenedPulido et al.Periprosthetic joint infection: the incidence, timing, andDoes not address		· · ·	bibliography
1 5	2008	major surgery	
	Pulido et al.	Periprosthetic joint infection: the incidence, timing, and	Does not address
	2008		question of interest

Author	Title	Reason for Exclusion
Ramos et al.	Interventions for preventing venous thromboembolism in	Not specific to
2008	adults undergoing knee arthroscopy	elective arthroplasty
Tsiridis et al.	The safety and efficacy of bilateral simultaneous total hip	Does not address
2008	replacement: an analysis of 2063 cases	question of interest
	Does different time interval between staggered bilateral	Does not address
Wu et al. 2008	total knee arthroplasty affect perioperative outcome? A retrospective study	question of interest
Agren et al.	Low PAI-1 activity in relation to the risk for perioperative	Does not address
2007	bleeding complications in transurethral resection of the prostate	question of interest
Becattini et al.	Acute pulmonary embolism: risk stratification in the	Not specific to
2007	emergency department	elective arthroplasty
Chan et al. 2007	Systemic anticoagulant prophylaxis for central catheter- associated venous thrombosis in cancer patients	Not specific to surgical patients
Einstein et al.	Venous thromboembolism prevention in gynecologic	Not specific to
2007	cancer surgery: a systematic review	elective arthroplasty
Ferreira et al.	Clinically significant delayed postsphincterotomy bleeding:	Does not address
2007	a twelve year single center experience	question of interest
Hashmi et al. 2007	Staged bilateral hip or knee arthroplasties	Does not address question of interest
Parvizi et al.	Does 'excessive' anticoagulation predispose to	Does not address
2007	periprosthetic infection?	question of interest
		Systematic review,
Patiar et al. 2007	Prevention of venous thromboembolism in surgical patients with breast cancer	bibliography screened
	Association between asymptomatic deep vein thrombosis	Crustomotic merions
Quinlan et al.	detected by venography and symptomatic venous	Systematic review,
2007	thromboembolism in patients undergoing elective hip or knee surgery	bibliography screened
Restrepo et al.	Safety of simultaneous bilateral total knee arthroplasty. A	Does not address
2007	meta-analysis	question of interest
Salam et al.	·	Does not address
2007	Bleeding after dental extractions in patients taking warfarin	question of interest
Barrett et al.	Bilateral total knee replacement: staging and pulmonary	Does not address
2006	embolism	question of interest
Hutchinson et	A comparison of bilateral uncemented total knee	Does not address
al. 2006	arthroplasty: simultaneous or staged?	question of interest
Lonner et al.	Postthrombotic syndrome after asymptomatic deep vein	Does not address
2006	thrombosis following total knee and hip arthroplasty	question of interest
Martino et al.	Pulmonary embolism after major abdominal surgery in	Not specific to
2006	gynecologic oncology	elective arthroplasty
Nome of al		Systematic review,
Negus et al.	Thromboprophylaxis in major abdominal surgery for	bibliography
2006	cancer	screened
Powell et al.	Bilateral vs Unilateral Total Knee Arthroplasty: A Patient-	Does not address
2006	Based Comparison of Pain Levels and Recovery of	question of interest
2000	Ambulatory Skills	question of interest

		Reason for
Author	Title	Exclusion
Rocha et al. 2006	Risk of venous thromboembolism and efficacy of thromboprophylaxis in hospitalized obese medical patients and in obese patients undergoing bariatric surgery	Systematic review, bibliography screened
Samama et al. 2006	An electronic tool for venous thromboembolism prevention in medical and surgical patients	Does not address question of interest
Samama et al. 2006	Venous thromboembolism prevention in surgery and obstetrics: clinical practice guidelines	Clinical guideline
Wu et al. 2006	Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study	Systematic review, bibliography screened
Asensio et al. 2005	Preoperative low molecular weight heparin as venous thromboembolism prophylaxis in patients at risk for prosthetic infection after knee arthroplasty	Does not address question of interest
Borly et al. 2005	Systematic review of thromboprophylaxis in colorectal surgery an update	Does not address question of interest
Cotter et al. 2005	Efficacy of venous thromboembolism prophylaxis in morbidly obese patients undergoing gastric bypass surgery	Does not address question of interest
Goodacre et al. 2005	Meta-analysis: The value of clinical assessment in the diagnosis of deep venous thrombosis	Systematic review, bibliography screened
Howie et al. 2005	Venous thromboembolism associated with hip and knee replacement over a ten-year period: a population-based study	Incidence study
Schindler et al. 2005	Post-thrombotic syndrome after total hip or knee arthroplasty: incidence in patients with asymptomatic deep venous thrombosis	Does not address question of interest
Sliva et al. 2005	Staggered bilateral total knee arthroplasty performed four to seven days apart during a single hospitalization	Does not address question of interest
Cordell-Smith et al. 2004	Lower limb arthroplasty complicated by deep venous thrombosis. Prevalence and subjective outcome	Incidence study
Friis et al. 2004	Thromboembolic prophylaxis as a risk factor for postoperative complications after breast cancer surgery	Does not address question of interest
Gonzalez et al. 2004	Incidence of clinically evident deep venous thrombosis after laparoscopic Roux-en-Y gastric bypass	Not specific to elective arthroplasty
Howard et al. 2004	Randomized clinical trial of low molecular weight heparin with thigh-length or knee-length antiembolism stockings for patients undergoing surgery	Not specific to elective arthroplasty
Lee et al. 2004	Bilateral vs. ipsilateral venography as the primary efficacy outcome measure in thromboprophylaxis clinical trials: a	Systematic review, bibliography
Miller et al. 2004	systematic review An approach to venous thromboembolism prophylaxis in laparoscopic Roux-en-Y gastric bypass surgery	screened Does not address question of interest
Minnema et al. 2004	Risk factors for surgical-site infection following primary total knee arthroplasty	Does not address question of interest
Smith et al. 2004	Prophylaxis for deep venous thrombosis in neurosurgical oncology: review of 2779 admissions over a 9-year period	Not specific to elective arthroplasty

Author	Title	Reason for Exclusion
Windfuhr et al. 2004	Unidentified coagulation disorders in post-tonsillectomy hemorrhage	Insufficient data
Grabowska- Gawel et al. 2003	Combined subarachnoid and epidural anaesthesia for endoprosthetoplasty of the knee joint	Cannot locate publication
Major et al. 2003	The incidence of thromboembolism in the surgical intensive care unit	Does not address question of interest
Mehta et al. 2003	Venous leg ulcers after hip replacement	Does not address question of interest
Nutescu et al. 2003	Tinzaparin: Considerations for Use in Clinical Practice	Systematic review, bibliography screened
Phillips et al. 2003	Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement	Incidence study
Ramirez et al. 2003	Sequential compression devices as prophylaxis for venous thromboembolism in high-risk colorectal surgery patients: reconsidering American Society of Colorectal Surgeons parameters	Not specific to elective arthroplasty
Ritter et al. 2003	Simultaneous bilateral, staged bilateral, and unilateral total knee arthroplasty. A survival analysis	Does not address question of interest
Rodriguez- Merchan et al. 2003	Elective orthopaedic surgery for inhibitor patients	Less than 10 arthroplasty patients
Sapala et al. 2003	Fatal pulmonary embolism after bariatric operations for morbid obesity: a 24-year retrospective analysis	Insufficient data
Wang et al. 2003	Outcome of calf deep-vein thrombosis after total knee arthroplasty	DVT-PE Correlation
Zenios et al. 2003	Post-thrombotic syndrome after total hip arthroplasty	Does not address question of interest
Handoll et al. 2002	Heparin, low molecular weight heparin and physical methods for preventing deep vein thrombosis and pulmonary embolism following surgery for hip fractures	Systematic review, bibliography screened
Piovella et al. 2002	Normalization rates of compression ultrasonography in patients with a first episode of deep vein thrombosis of the lower limbs: association with recurrence and new thrombosis	Not relevant - examines VTE treatment, not prevention
Williams et al. 2002	Mortality, morbidity, and 1-year outcomes of primary elective total hip arthroplasty	Incidence study
Deehan et al. 2001	Postphlebitic syndrome after total knee arthroplasty: 405 patients examined 2-10 years after surgery	Does not address question of interest
Maxwell et al. 2001	Pneumatic compression versus low molecular weight heparin in gynecologic oncology surgery: a randomized trial	Not specific to elective arthroplasty
Ziegler et al. 2001	Post-thrombotic syndrome after primary event of deep venous thrombosis 10 to 20 years ago	Not specific to elective arthroplasty

Author	Title	Reason for Exclusion
Dahl et al. 2000	Late occurring clinical deep vein thrombosis in joint-	Not specific to
Ginsberg et al. 2000	operated patients Postthrombotic syndrome after hip or knee arthroplasty: a cross-sectional study	elective arthroplasty Does not address question of interest
Neal et al. 2000	No effect of low-dose aspirin for the prevention of heterotopic bone formation after total hip replacement: a randomized trial of 2,649 patients	Does not address question of interest
Wroblewski et al. 2000	Fatal pulmonary embolism and mortality after revision of failed total hip arthroplasties	Incidence study
Alfaro-Adrian et al. 1999	One- or two-stage bilateral total hip replacement	Does not address question of interest
Perkins et al. 1999	Vascular surgical society of great britain and ireland: randomized controlled trial of heparin plus graduated compression stocking for the prophylaxis of deep venous thrombosis in general surgical patients	Abstract
Williams et al. 1999	Coagulation tests during cardiopulmonary bypass correlate with blood loss in children undergoing cardiac surgery	Incorrect patient population
Bould et al. 1998	Blood loss in sequential bilateral total knee arthroplasty	Does not address question of interest
Cafferata et al. 1998	Venous thromboembolism in trauma patients: standardized risk factors	Does not address question of interest
Heck et al. 1998	Patient outcomes after knee replacement	Incidence study
Wroblewski et al. 1998	Fatal pulmonary embolism after total hip arthroplasty: diurnal variations	Does not address question of interest
Koch et al. 1997	Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis after major surgical intervention: update of previous meta-analyses	Systematic review, bibliography screened
Palmer et al. 1997	Efficacy and safety of low molecular weight heparin, unfractionated heparin and warfarin for thrombo-embolism prophylaxis in orthopaedic surgery: a meta-analysis of randomised clinical trials	Systematic review, bibliography screened
Rader et al. 1997	Comparison of low molecular weight and PTT adjusted heparin for thromboprophylaxis in patients with total hip and total knee arthroplasty	Foreign language
Baron et al. 1996	Total hip arthroplasty: use and select complications in the US Medicare population	Incidence study
Eggli et al. 1996	Bilateral total hip arthroplasty: one stage versus two stage procedure	Does not address question of interest
Flinn et al. 1996	Prospective surveillance for perioperative venous thrombosis. Experience in 2643 patients	Does not address question of interest
Hynson et al. 1996	Epidural hematoma associated with enoxaparin	Case report
Lisander et al. 1996	Giving both enoxaparin and dextran increases the need for transfusion in revision hip arthroplasty	Does not address question of interest
Ramos et al. 1996	The efficacy of pneumatic compression stockings in the prevention of pulmonary embolism after cardiac surgery	Not specific to elective arthroplasty

Author	Title	Reason for Exclusion
Ricotta et al. 1996	Post discharge clinically overt venous thromboembolism in orthopaedic surgery patients with negative venographyan overview analysis	Systematic review, bibliography screened
Schwartsmann et al. 1996	Randomized controlled trial, comparative to evaluate the efficacy and security of enoxaparin comparated by heparin in prophylaxis of thromboembolism in patients with arthroplasty replacement hip	Foreign language
Siddique et al. 1996 Warwick et al. 1996	Thirty-day case-fatality rates for pulmonary embolism in the elderly Does total hip arthroplasty predispose to chronic venous insufficiency?	Does not address question of interest Does not address question of interest
Despotis et al. 1995	The impact of heparin concentration and activated clotting time monitoring on blood conservation. A prospective, randomized evaluation in patients undergoing cardiac operation	Does not address question of interest
Goldhaber et al. 1995	Prevention of venous thrombosis after coronary artery bypass surgery (a randomized trial comparing two mechanical prophylaxis strategies)	Not specific to elective arthroplasty
Rosenow 1995	Venous and pulmonary thromboembolism: an algorithmic approach to diagnosis and management	Narrative review, bibliography screened
Sharrock et al. 1995	Changes in mortality after total hip and knee arthroplasty over a ten- year period	Incidence study
Unsworth-White et al. 1995 Jankiewicz et al.	Resternotomy for bleeding after cardiac operation: a marker for increased morbidity and mortality One-stage versus 2-stage bilateral total knee arthroplasty	Does not address question of interest Does not address
1994 Lotke et al.	Significance of deep venous thrombosis in the lower	question of interest DVT-PE Correlation
1994 McNally et al. 1994 Ferree et al. 1993	extremity after total joint arthroplasty Postphlebitic syndrome after hip arthroplasty. 43 patients followed at least 5 years Deep venous thrombosis following posterior lumbar spinal surgery	Does not address question of interest Does not address question of interest
Ivory et al. 1993	Bilateral knee replacements: simultaneous or staged?	Does not address question of interest
Monreal et al. 1993	Venographic assessment of deep vein thrombosis and risk of developing post-thrombotic syndrome: a prospective study	Not specific to elective arthroplasty
Pellegrini et al. 1993	Embolic complications of calf thrombosis following total hip arthroplasty	DVT-PE Correlation
Robinson et al. 1993	Nonsteroidal antiinflammatory drugs, perioperative blood loss, and transfusion requirements in elective hip arthroplasty	Does not address question of interest
Haas et al. 1992	The significance of calf thrombi after total knee arthroplasty	DVT-PE Correlation
Wroblewski et al. 1992	Fatal pulmonary embolism after total hip arthroplasty. Seasonal variation	Does not address question of interest

Author	Title	Reason for Exclusion
An et al. 1991	Effects of hypotensive anesthesia, nonsteroidal antiinflammatory drugs, and polymethylmethacrylate on bleeding in total hip arthroplasty patients	Does not address question of interest
Connelly et al. 1991	Should nonsteroidal anti-inflammatory drugs be stopped before elective surgery?	Does not address question of interest
Paavolainen et al. 1991	Registration of arthroplasties in Finland. A nationwide prospective project	Incidence study
Seagroatt et al. 1991	Elective total hip replacement: incidence, emergency readmission rate, and postoperative mortality	Incidence study
Traverso et al. 1991	The effect of intravenous fixed-dose heparin during total hip arthroplasty on the incidence of deep-vein thrombosis. A randomized, double-blind trial in patients operated on with epidural anesthesia and controlled hypotension	Letter
Kalebo et al. 1990	Phlebographic findings in venous thrombosis following total hip replacement	DVT-PE Correlation
Francis et al. 1988	Long-term clinical observations and venous functional abnormalities after asymptomatic venous thrombosis following total hip or knee arthroplasty	Does not address question of interest
Morrey et al. 1987	Complications and mortality associated with bilateral or unilateral total knee arthroplasty	Does not address question of interest
Brotherton et al. 1986	Staged versus simultaneous bilateral total knee replacement	Does not address question of interest
Shih et al. 1985	One-stage versus two-stage bilateral autophor ceramic total hip arthroplasty	Does not address question of interest
Soudry et al. 1985	Successive bilateral total knee replacement	Does not address question of interest
Clarke-Pearson et al. 1984	Perioperative external pneumatic calf compression as thromboembolism prophylaxis in gynecologic oncology: report of a randomized controlled trial	Not specific to elective arthroplasty
Lotke et al. 1984	Indications for the treatment of deep venous thrombosis following total knee replacement	Incidence study
de Mourgues et al. 1979	Study of efficacy of subcutaneous heparin used by two different methods for prevention of postoperative venous thrombosis after hip prosthesis	Foreign language
Salvati et al. 1978	Bilateral total hip-replacement arthroplasty in one stage	Does not address question of interest
Bachmann et al. 1976	Low pressure intermittent compression to calves and thighs: a successful new method for prevention of postoperative thrombosis. <original> INTERMITTIERENDE PNEUMATISCHE KOMPRESSION VON UNTER- UND OBERSCHENKEL; EINE NEUE ERFOLGREICHE METHODE ZUR POSTOPERAT</original>	Foreign language

SYSTEMATIC REVIEWS SCREENED FOR ADDITIONAL ARTICLES

Author	Title
	Incidence and prevention of thromboembolic events in one stage bilateral total
Babis et al. 2011	hip arthroplasty: a systematic review
Kalyani et al.	Low molecular weight heparin: Current evidence for its application in
2011	orthopaedic surgery
Dranitsaris et al.	Meta regression analysis to indirectly compare dalteparin to enoxaparin for the
2011	prevention of venous thromboembolic events following total hip replacement
Friedman et al.	Dabigatran versus enoxaparin for prevention of venous thromboembolism after
2010	hip or knee arthroplasty: a pooled analysis of three trials
2010	Apixaban versus enoxaparin in patients with total knee arthroplasty. A meta-
Unana et al. 2010	
Huang et al. 2010	analysis of randomised trials
TT 1 1	Enoxaparin versus dabigatran or rivaroxaban for thromboprophylaxis after hip or
Huisman et al. 2010	knee arthroplasty: Results of separate pooled analyses of phase III multicenter randomized trials
	Rivaroxaban versus enoxaparin for thromboprophylaxis after total hip or knee
Cao et al. 2010	arthroplasty: a meta-analysis of randomized controlled trials
	Rivaroxaban for thromboprophylaxis in patients undergoing major orthopedic
Melillo et al. 2010	surgery
	Cost effectiveness of venous thromboembolism pharmacological prophylaxis in
Kapoor et al. 2010	total hip and knee replacement: a systematic review
Rap001 Ct al. 2010	Prevention and management of venous thromboembolism in the surgical patient:
Muntz et al. 2010	options by surgery type and individual patient risk factors
Winniz et al. 2010	
Comini 2010	Risk assessment as a guide for the prevention of the many faces of venous
Caprini 2010	thromboembolism
	Meta-analysis of low molecular weight heparin versus placebo in patients
T 1 0 010	undergoing total hip replacement and post-operative morbidity and mortality
Tasker et al. 2010	since their introduction
	Rivaroxaban for the prevention of venous thromboembolism after hip or knee
Turpie et al. 2010	arthroplasty. Pooled analysis of four studies
Donohoe et al. 2010	Aspirin for lower limb arthroplasty thromboprophylaxis: review of international guidelines
	Nonadherence in outpatient thromboprophylaxis after major orthopedic surgery:
Wilke et al. 2010	a systematic review
Struijk-Mulder et	
al. 2010	Comparing consensus guidelines on thromboprophylaxis in orthopedic surgery
Kurmis 2010	Review article: thromboprophylaxis after total hip replacement
Kullins 2010	Direct thrombin inhibitors versus vitamin K antagonists or low molecular weight
	•
Salamar at al 2010	heparins for prevention of venous thromboembolism following total hip or knee
Salazar et al. 2010	replacement
Sachdeva et al.	Elastic compression stockings for prevention of deep vein thrombosis (Cochrane
2010	review) [with consumer summary]
	Dabigatran etexilate for the prevention of venous thromboembolism in patients
Holmes et al. 2009	undergoing elective hip and knee surgery: a single technology appraisal
Macfarlane et al.	
2009	Does regional anesthesia improve outcome after total knee arthroplasty?
Macfarlane et al.	Does regional anaesthesia improve outcome after total hip arthroplasty? A
2009	systematic review
Eriksson et al.	Oral rivaroxaban for the prevention of symptomatic venous thromboembolism
2009	after elective hip and knee replacement

Lazo-Langner et al. 2009 Turpie et al. 2009 Hu et al. 2009 Wolowacz et al. 2009	Lessons from ximelagatran: issues for future studies evaluating new oral direct thrombin inhibitors for venous thromboembolism prophylaxis in orthopedic surgery Pharmacokinetic and clinical data supporting the use of fondaparinux 1.5 mg once daily in the prevention of venous thromboembolism in renally impaired patients A comparison of regional and general anaesthesia for total replacement of the hip
al. 2009 Turpie et al. 2009 Hu et al. 2009 Wolowacz et al.	surgery Pharmacokinetic and clinical data supporting the use of fondaparinux 1.5 mg once daily in the prevention of venous thromboembolism in renally impaired patients
Turpie et al. 2009 Hu et al. 2009 Wolowacz et al.	Pharmacokinetic and clinical data supporting the use of fondaparinux 1.5 mg once daily in the prevention of venous thromboembolism in renally impaired patients
Hu et al. 2009 Wolowacz et al.	once daily in the prevention of venous thromboembolism in renally impaired patients
Hu et al. 2009 Wolowacz et al.	patients
Hu et al. 2009 Wolowacz et al.	patients
Hu et al. 2009 Wolowacz et al.	
Wolowacz et al.	The comparison of regional and general anacomesia for total replacement of the mp
	or knee: a meta-analysis
2009	Efficacy and safety of dabigatran etexilate for the prevention of venous
	thromboembolism following total hip or knee arthroplasty. A meta-analysis
Kinnaird et al.	Bleeding during percutaneous intervention: Tailoring the approach to minimise
2009	risk
O'Riordan et al.	
2009	Antiplatelet agents in the perioperative period
	State-of-the-art review: Assessing the safety profiles of new anticoagulants for
Hull et al. 2009	major orthopedic surgery thromboprophylaxis
	Venous Thromboembolism Prophylaxis After Major Orthopaedic Surgery: A
Brown 2009	Pooled Analysis of Randomized Controlled Trials
	Guidelines on the assessment of bleeding risk prior to surgery or invasive
Chee et al. 2008	procedures. British Committee for Standards in Haematology
Sharrock et al.	Potent anticoagulants are associated with a higher all-cause mortality rate after
2008	hip and knee arthroplasty
Chung et al. 2008	Using inferior vena cava filters to prevent pulmonary embolism
Osborne et al.	
2008	Venous thromboembolism in cancer patients undergoing major surgery
	The effect of pre-operative aspirin on bleeding, transfusion, myocardial
	infarction, and mortality in coronary artery bypass surgery: A systematic review
Sun et al. 2008	of randomized and observational studies
	Combined intermittent pneumatic leg compression and pharmacological
Kakkos et al. 2008	prophylaxis for prevention of venous thromboembolism in high-risk patients
	Has the incidence of deep vein thrombosis in patients undergoing total hip/knee
	arthroplasty changed over time? A systematic review of randomized controlled
Xing et al. 2008	trials
Rosencher et al.	Selected new antithrombotic agents and neuraxial anaesthesia for major
2007	orthopaedic surgery: management strategies
	Does the use of preoperative aspirin increase the risk of bleeding in patients
Alghamdi et al.	undergoing coronary artery bypass grafting surgery? Systematic review and
2007	meta-analysis
	Rivaroxaban for thromboprophylaxis after orthopaedic surgery: pooled analysis
Fisher et al. 2007	of two studies
	Association between asymptomatic deep vein thrombosis detected by
Quinlan et al.	venography and symptomatic venous thromboembolism in patients undergoing
2007	elective hip or knee surgery
Patiar et al. 2007	Prevention of venous thromboembolism in surgical patients with breast cancer
Skedgel et al.	The cost-effectiveness of extended-duration antithrombotic prophylaxis after
2007	total hip arthroplasty
	Thromboprophylaxis in total hip-replacement surgery in Europe:
Ivanovic et al.	
Ivanovic et al. 2007	Acenocoumarol, fondaparinux, dabigatran and rivaroxban

Author	Title
Mauermann et al.	A comparison of neuraxial block versus general anesthesia for elective total hip
2006	replacement: a meta-analysis
Negus et al. 2006	Thromboprophylaxis in major abdominal surgery for cancer
C	The effect of neuraxial blocks on surgical blood loss and blood transfusion
Guay 2006	requirements: a meta-analysis
•	Risk of venous thromboembolism and efficacy of thromboprophylaxis in
	hospitalized obese medical patients and in obese patients undergoing bariatric
Rocha et al. 2006	surgery
	Screening for thrombophilia in high-risk situations: systematic review and cost-
	effectiveness analysis. The Thrombosis: Risk and Economic Assessment of
Wu et al. 2006	Thrombophilia Screening (TREATS) study
Chan et al. 2006	Role for aspirin after total hip replacement?
Goodacre et al.	Meta-analysis: The value of clinical assessment in the diagnosis of deep venous
2005	thrombosis
2000	Paucity of studies to support that abnormal coagulation test results predict
Segal et al. 2005	bleeding in the setting of invasive procedures: An evidence-based review
	Bilateral vs. ipsilateral venography as the primary efficacy outcome measure in
Lee et al. 2004	thromboprophylaxis clinical trials: a systematic review
Dawson et al.	Best evidence topic reports. Safety of inferior vena cava filters as primary
2004	treatment for proximal deep vein thrombosis
Edmonds et al.	doument for provintial deep tom dirontoosis
2004	Evidence-based risk factors for postoperative deep vein thrombosis
Mismetti et al.	Prevention of venous thromboembolism in orthopedic surgery with vitamin K
2004	antagonists: A meta-analysis
2001	Fondaparinux for prevention of venous thromboembolism in major orthopedic
Tran et al. 2003	surgery
11un et ul. 2005	Reduction of out-of-hospital symptomatic venous thromboembolism by extended
O'Donnell et al.	thromboprophylaxis with low-molecular-weight heparin following elective hip
2003	arthroplasty: a systematic review
Samama et al.	Quantification of risk factors for venous thromboembolism: a preliminary study
2003	for the development of a risk assessment tool
Nutescu et al.	for the development of a fish assessment tool
2003	Tinzaparin: Considerations for Use in Clinical Practice
Zufferey et al.	Optimal low-molecular-weight heparin regimen in major orthopaedic surgery: A
2003	meta-analysis of randomised trials
2005	Fondaparinux vs enoxaparin for the prevention of venous thromboembolism in
Turpie et al. 2002	major orthopedic surgery: a meta-analysis of 4 randomized double-blind studies
Cehng 2002	Fondaparinux: a new antithrombotic agent
Cening 2002	Preoperative or postoperative start of prophylaxis for venous thromboembolism
Strebel et al. 2002	with low-molecular-weight heparin in elective hip surgery?
Streber et al. 2002	Short-duration prophylaxis against venous thromboembolism after total hip or
Douketis et al.	knee replacement: a meta-analysis of prospective studies investigating
2002	symptomatic outcomes
Nerurkar et al.	Cost/death averted with venous thromboembolism prophylaxis in patients
2002	
2002	undergoing total knee replacement or knee arthroplasty Heparin, low molecular weight heparin and physical methods for preventing
Handoll et al.	deep vein thrombosis and pulmonary embolism following surgery for hip
2002	fractures

Author	Title
	A meta-analysis of fondaparinux versus enoxaparin in the prevention of venous
Turpie et al. 2002	thromboembolism after major orthopaedic surgery
	Timing of initial administration of low-molecular-weight heparin prophylaxis
	against deep vein thrombosis in patients following elective hip arthroplasty: a
Hull et al. 2001	systematic review
	Extended out-of-hospital low-molecular-weight heparin prophylaxis against deep
Hull et al. 2001	venous thrombosis in patients after elective hip arthroplasty: a systematic review
Berry 2001	Surveillance for venous thromboembolic disease after total knee arthroplasty
Eikelboom et al.	Extended-duration prophylaxis against venous thromboembolism after total hip
2001	or knee replacement: a meta-analysis of the randomised trials
H-11	Low-molecular-weight heparin prophylaxis: preoperative versus postoperative
Hull et al. 2001	initiation in patients undergoing elective hip surgery
Krishna et al. 2001	Post tonsillootomy blooding: a mate analysis
Brookenthal et al.	Post-tonsillectomy bleeding: a meta-analysis
2001	A meta-analysis of thromboembolic prophylaxis in total knee arthroplasty
Freedman et al.	A meta-analysis of thromboembolic prophylaxis in total knee antioprasty
2000	arthroplasty
Westrich et al.	
2000	Meta-analysis of thromboembolic prophylaxis after total knee arthroplasty
Amaragiri et al.	Elastic compression stockings for prevention of deep vein thrombosis (Cochrane
2000	Review) [with con sumer summary]
	Preoperative vs postoperative initiation of low-molecular-weight heparin
	prophylaxis against venous thromboembolism in patients undergoing elective hip
Hull et al. 1999	replacement
Agu et al. 1999	Graduated compression stockings in the prevention of venous thromboembolism
	Cost effectiveness of danaparoid compared with enoxaparin as deep vein
Wade 1999	thrombosis prophylaxis after hip replacement surgery
VI 1 1000	Meta-analysis of effectiveness of intermittent pneumatic compression devices
Vanek 1998	with a comparison of thigh-high to knee-high sleeves
Howard at al	Low molecular weight heparin decreases proximal and distal deep venous
Howard et al. 1998	thrombosis following total knee arthroplasty. A meta-analysis of randomized trials
1998	Noninvasive diagnosis of deep venous thrombosis. McMaster Diagnostic
Kearon et al. 1998	Imaging Practice Guidelines Initiative
Reafon et al. 1996	Efficacy and safety of low molecular weight heparin, unfractionated heparin and
	warfarin for thrombo-embolism prophylaxis in orthopaedic surgery: a meta-
Palmer et al. 1997	analysis of randomised clinical trials
	Low molecular weight heparin and unfractionated heparin in thrombosis
Koch et al. 1997	prophylaxis after major surgical intervention: update of previous meta-analyses
Skoutakis 1997	Danaparoid in the prevention of thromboembolic complications
Howard et al.	
1997	Dalteparin: a low-molecular-weight heparin
Murray et al. 1996	Thromboprophylaxis and death after total hip replacement
	Post discharge clinically overt venous thromboembolism in orthopaedic surgery
Ricotta et al. 1996	patients with negative venographyan overview analysis
	Antithrombotic strategy after total hip replacement. A cost-effectiveness analysis
	comparing prolonged oral anticoagulants with screening for deep vein
Sarasin et al. 1996	thrombosis

Author	Title
	Survival in patients undergoing total hip arthroplasty in relation to
Andersen et al.	thromboprophylaxis with low molecular weight heparin: A long-term follow-up
1996	study
	Accuracy of ultrasound for the diagnosis of deep venous thrombosis in
Wells et al. 1995	asymptomatic patients after orthopedic surgery. A meta-analysis
	Perioperative thrombosis prophylaxis with low molecular weight heparins in
Borris et al. 1994	elective hip surgery. Clinical and economic considerations
Imperiale et al.	A meta-analysis of methods to prevent venous thromboembolism following total
1994	hip replacement
	Collaborative overview of randomised trials of antiplatelet therapyIII:
Antiplatelet	Reduction in venous thrombosis and pulmonary embolism by antiplatelet
Trialists	prophylaxis among surgical and medical patients. Antiplatelet Trialists'
Collaboration 1994	Collaboration
	Cost-effectiveness of enoxaparin versus warfarin prophylaxis against deep-vein
O'Brien et al. 1994	thrombosis after total hip replacement
Landefeld et al.	Anticoagulant-related bleeding: clinical epidemiology, prediction, and
1993	prevention
Malar (1.1002	Prophylactic agents for venous thrombosis in elective hip surgery. Meta-analysis
Mohr et al. 1993	of studies using venographic assessment
Anderson et al.	Efficacy and cost of low-molecular-weight heparin compared with standard
1993	heparin for the prevention of deep vein thrombosis after total hip arthroplasty Enoxaparin: The low-molecular-weight heparin for prevention of postoperative
Carter et al. 1993	thromboembolic complications
Leizorovicz et al.	unoniooemoone complications
1992	Low molecular weight heparin in prevention of perioperative thrombosis
Nurmohamed et	Low molecular-weight heparin versus standard heparin in general and
al. 1992	orthopaedic surgery: a meta-analysis
Lind 1991	The bleeding time does not predict surgical bleeding
Lind 1771	A comparison of general anesthesia and regional anesthesia as a risk factor for
Prins et al. 1990	deep vein thrombosis following hip surgery: a critical review
111115 of ul. 1990	Prevention of venous thromboembolism in general surgical patients. Results of
Clagett et al. 1988	meta-analysis
	Rates of venous thrombosis after general surgery: combined results of
Colditz et al. 1986	randomised clinical trials

APPENDIX XV PROPHYLAXIS RECOMMENDATION ANALYSIS SUMMARY OF DIRECT COMPARISONS

Comparison	Studies	OR (95% CI)	Favors
GCS v None	1	1 (0.062, 16.089)	No Difference
IPC v None	2	0.138 (0.009, 2.206)	No Difference
Aspirin (<300mg/day) v			
Placebo	1	0.997 (0.374, 2.661)	No Difference
Enoxaparin v Placebo/None IPC + Aspirin (>300mg/day)	2	1.037† (0.065, 16.591)	No Difference
v Aspirin (>300mg/day)	1	1.044 (0.065, 16.81)	No Difference
Enoxaparin v GCS	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin + GCS v Foot			
Pump + GCS	1	0.133 (0.003, 6.722)	No Difference
Tinzaparin + GCS v GCS	1	1 (0.062, 16.094)	No Difference
IPC + Low-dose Aspirin v	1	0.969 (0.135, 6.935)	No Difference
Enoxaparin IPC + Aspirin (>300mg/day)	1	0.909 (0.155, 0.955)	No Difference
v IPC + Enoxaparin	1	7.741 (0.153, 390.51)	No Difference
IPC v GCS	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin + IPC v			
Enoxaparin	1	0.964 (0.06, 15.503)	No Difference
Apixaban v Enoxaparin	4	1.125 (0.649, 1.952)	No Difference
Dabigatran v Enoxaparin	4	1.032 (0.503, 2.116)	No Difference
Desirudin v Enoxaparin	1	0.501 (0.135, 1.856)	No Difference
Fondaparinux $+$ GCS v	-		
Enoxaparin + GCS	3	1.575 (0.777, 3.19)	No Difference
Heparin v Enoxaparin	4	7.345 (1.982, 27.219)	Enoxaparin
Rivaroxaban v Enoxaparin	5	0.584 (0.285, 1.195)	No Difference
Tinzaparin v Enoxaparin	1	0.991 (0.062, 15.893)	No Difference
Tinzaparin v Warfarin	1	1.008 (0.063, 16.138)	No Difference
Warfarin v Enoxaparin	4	0.898 (0.457, 1.764)	No Difference
Desirudin v Heparin	2	0.306† (0.053, 1.779)	No Difference

Table 67. Pulmonary Embolism Direct Comparisons among Hip and Knee Patients

 $\dagger = heterogeneity$

Comparison	Studies	OR (95% CI)	Favors
IPC v None	1	0.141 (0.003, 7.09)	No Difference
Aspirin (<300mg/day) v Placebo	1	0.997 (0.374, 2.661)	No Difference
Enoxaparin v Placebo/None	1	7.965 (0.158, 402.4)	No Difference
IPC + Aspirin (>300mg/day) v Aspirin			
(>300mg/day)	1	1.044 (0.065, 16.81)	No Difference
Enoxaparin + GCS v Foot Pump + GCS	1	0.133 (0.003, 6.722)	No Difference
Tinzaparin + GCS v GCS	1	1 (0.062, 16.094)	No Difference
IPC + Low-dose Aspirin v Enoxaparin	1	0.969 (0.135, 6.935)	No Difference
Apixaban v Enoxaparin	1	0.366 (0.118, 1.136)	No Difference
Dabigatran v Enoxaparin	2	0.999 (0.351, 2.84)	No Difference
Desirudin v Enoxaparin	1	0.501 (0.135, 1.856)	No Difference
Fondaparinux + GCS v Enoxaparin + GCS	2	2.196 (0.967, 4.983)	No Difference
Heparin v Enoxaparin	3	7.295 (1.651, 32.235)	Enoxaparin
Rivaroxaban v Enoxaparin	3	0.857† (0.288, 2.544)	No Difference
Tinzaparin v Enoxaparin	1	0.991 (0.062, 15.893)	No Difference
Tinzaparin v Warfarin	1	1.008 (0.063, 16.138)	No Difference
Warfarin v Enoxaparin	1	0.811 (0.38, 1.729)	No Difference
Desirudin v Heparin	2	0.306† (0.053, 1.779)	No Difference

Table 68. Pulmonary Embolism Direct Comparisons among Hip Patients

 \dagger = heterogeneity

Table 69. Pulmonary Embolism Direct Comparisons among Knee Patients

Comparison	Studies	OR (95% CI)	Favors
GCS v None	1	1 (0.062, 16.089)	No Difference
IPC v None	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin v Placebo/None	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin v GCS	1	0.135 (0.003, 6.82)	No Difference
IPC + Aspirin (>300mg/day) v IPC +			
Enoxaparin	1	7.741 (0.153, 390.51)	No Difference
IPC v GCS	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin + IPC v Enoxaparin	1	0.964 (0.06, 15.503)	No Difference
Apixaban v Enoxaparin	3	1.593† (0.848, 2.991)	No Difference
Dabigatran v Enoxaparin	2	1.062 (0.396, 2.846)	No Difference
Fondaparinux + GCS v Enoxaparin + GCS	1	0.604 (0.15, 2.428)	No Difference
Heparin v Enoxaparin	1	7.522 (0.469, 120.6)	No Difference
Rivaroxaban v Enoxaparin	3	0.435 (0.168, 1.128)	No Difference
Warfarin v Enoxaparin	3	1.333 (0.302, 5.884)	No Difference

Comparison	Studies	OR (95% CI)	Favors
Dabigatran v Placebo	1	2.644 (0.368, 19.002)	No Difference
Enoxaparin v Placebo/None	4	0.989† (0.316, 3.095)	No Difference
Fondaparinux v Placebo	1	2.811 (0.392, 20.134)	No Difference
Heparin v Placebo/None	1	9.273 (1.54, 55.8)	None
Enoxaparin v GCS	1	7.457 (0.463, 119.98)	No Difference
Enoxaparin + GCS v GCS IPC + Low-dose Aspirin v	1	1 (0.062, 16.12)	No Difference
Enoxaparin Fondaparinux + GCS v	1	0.126 (0.036, 0.416)	IPC + Low-dose Aspirin
Fondaparinux	1	0.14 (0.003, 7.047)	No Difference
Enoxaparin v IPC	1	7.457 (0.463, 119.98)	No Difference
Apixaban v Enoxaparin	4	0.793 (0.532, 1.183)	No Difference
Dabigatran v Enoxaparin	5	1.285 (0.904, 1.825)	No Difference
Desirudin v Enoxaparin	1	0.995 (0.532, 1.86)	No Difference
Fondaparinux v Enoxaparin Fondaparinux + GCS v	1	1.326 (0.494, 3.557)	No Difference
Enoxaparin + GCS	3	1.766 (1.233, 2.531)	Enoxaparin + GCS
Heparin v Enoxaparin	5	1.335 (0.8, 2.229)	No Difference
Rivaroxaban v Enoxaparin	8	1.552 (0.889, 2.709)	No Difference
Tinzaparin v Enoxaparin	1	0.505 (0.101, 2.524)	No Difference
Tinzaparin v Warfarin	1	2.186 (1.048, 4.56)	Warfarin
Warfarin v Enoxaparin	3	0.563 (0.299, 1.061)	No Difference
LY517717 v Enoxaparin	1	0.848 (0.052, 13.778)	No Difference
YM150 v Enoxaparin	1	0.144 (0.003, 7.258)	No Difference
Apixaban v Warfarin Aspirin (≥300mg/day) v	1	7.201 (0.143, 363.02)	No Difference
Warfarin	1	0.735 (0.158, 3.419)	No Difference
Dalteparin v Warfarin	2	1.94 (1.22, 3.084)	Warfarin
Desirudin v Heparin	1	1.96 (0.393, 9.78)	No Difference

Table 70.	Major Bleedi	ng Direct Con	nparisons among	Hip and	Knee Patients
		0	I	, , , , ,	

 $\dot{\dagger}$ = heterogeneity

Comparison	Studies	OR (95% CI)	Favors
Enoxaparin v Placebo/None	2	1.494† (0.256, 8.734)	No Difference
Fondaparinux v Placebo	1	2.811 (0.392, 20.134)	No Difference
Heparin v Placebo/None	1	9.273 (1.54, 55.8)	Placebo/None
Enoxaparin + GCS v GCS	1	1 (0.062, 16.12)	No Difference IPC + Low-
IPC + Low-dose Aspirin v Enoxaparin	1	0.126 (0.036, 0.416)	Dose Aspirin
Fondaparinux + GCS v Fondaparinux	1	0.14 (0.003, 7.047)	No Difference
Apixaban v Enoxaparin	1	1.217 (0.653, 2.267)	No Difference
Dabigatran v Enoxaparin	3	1.585 (1.044, 2.405)	Enoxaparin
Desirudin v Enoxaparin	1	0.995 (0.532, 1.86)	No Difference
Fondaparinux v Enoxaparin	1	1.326 (0.494, 3.557)	No Difference Enoxaparin +
Fondaparinux + GCS v Enoxaparin + GCS	2	1.56 (1.068, 2.28)	GCS
Heparin v Enoxaparin	4	1.377 (0.802, 2.365)	No Difference
Rivaroxaban v Enoxaparin	5	1.76 (0.743, 4.173)	No Difference
Tinzaparin v Enoxaparin	1	0.505 (0.101, 2.524)	No Difference
Tinzaparin v Warfarin	1	2.186 (1.048, 4.56)	Warfarin
LY517717 v Enoxaparin	1	0.848 (0.052, 13.778)	No Difference
YM150 v Enoxaparin	1	0.144 (0.003, 7.258)	No Difference
Aspirin (≥300mg/day) v Warfarin	1	0.735 (0.158, 3.419)	No Difference
Dalteparin v Warfarin	2	1.94 (1.22, 3.084)	Warfarin
Desirudin v Heparin	1	1.96 (0.393, 9.78)	No Difference

Table 71. Major Bleeding Direct Comparisons among Hip Patients

† = heterogeneity

Table 72. Major Bleeding Direct Comparisons among Knee Patients

Comparison	Studies	OR (95% CI)	Favors
Dabigatran v Placebo	1	2.644 (0.368, 19.002)	No Difference
Enoxaparin v Placebo/None	2	0.736† (0.165, 3.28)	No Difference
Fondaparinux v Placebo	1	2.811 (0.392, 20.134)	No Difference
Enoxaparin v GCS	1	7.457 (0.463, 119.981)	No Difference
Enoxaparin v IPC	1	7.457 (0.463, 119.981)	No Difference
Apixaban v Enoxaparin	3	0.587 (0.348, 0.989)	Apixaban
Dabigatran v Enoxaparin	2	0.774 (0.405, 1.481)	No Difference
			Enoxaparin +
Fondaparinux + GCS v Enoxaparin + GCS	1	5.39 (1.728, 16.815)	GCS
Heparin v Enoxaparin	1	1.013 (0.203, 5.067)	No Difference
Rivaroxaban v Enoxaparin	3	1.418 (0.683, 2.941)	No Difference
Apixaban v Warfarin	1	7.201 (0.143, 363.019)	No Difference

Comparison	Studies	OR (95% CI)	Favors
IPC v None	1	7.738 (0.482, 124.327)	No Difference
Aspirin (<300mg/day) v			
Placebo	1	0.816 (0.339, 1.963)	No Difference
Enoxaparin + GCS v Foot			
Pump + GCS	1	0.379 (0.053, 2.729)	No Difference
Warfarin + GCS v IPC + GCS	1	1 (0.062, 16.089)	No Difference
Tinzaparin + GCS v GCS	1	1 (0.062, 16.094)	No Difference
Aspirin (≥300mg/day) + IPC			
v Aspirin (≥300mg/day)	1	7.723 (0.153, 390)	No Difference
Fondaparinux + GCS v			
Fondaparinux	1	0.379 (0.053, 2.699)	No Difference
Apixaban v Enoxaparin	3	1.22 (0.507, 2.932)	No Difference
Warfarin v Enoxaparin	3	1.284 (0.585, 2.819)	No Difference
Dabigatran v Enoxaparin	4	1.231 (0.377, 4.017)	No Difference
Desirudin v Enoxaparin	1	1.91 (0.385, 9.49)	No Difference
Heparin v Enoxaparin	1	1.824 (0.188, 17.659)	No Difference
Fondaparinux v Enoxaparin	1	0.186 (0.003, 10.093)	No Difference
Fondaparinux + GCS v			
Enoxaparin + GCS	3	0.999 (0.415, 2.402)	No Difference
Rivaroxaban v Enoxaparin	5	0.625 (0.333, 1.171)	No Difference
Desirudin v Heparin	2	0.135 (0.014, 1.299)	No Difference
Dalteparin v Warfarin	1	0.986 (0.138, 7.02)	No Difference
Tinzaparin v Warfarin	1	1.008 (0.291, 3.497)	No Difference

Table 73. All Cause Mortality Direct Comparisons among Hip and Knee Patients

Comparison	Studies	OR (95% CI)	Favors
IPC v None	1	7.738 (0.482, 124.327)	No Difference
Aspirin (<300mg/day) v Placebo	1	0.816 (0.339, 1.963)	No Difference
Warfarin + GCS v IPC + GCS	1	1 (0.062, 16.089)	No Difference
Tinzaparin + GCS v GCS Aspirin (≥300mg/day) + IPC v Aspirin	1	1 (0.062, 16.094)	No Difference
(≥300mg/day)	1	7.723 (0.153, 390)	No Difference
Fondaparinux + GCS v Fondaparinux	1	0.379 (0.053, 2.699)	No Difference
Apixaban v Enoxaparin	1	2.351 (0.534, 10.352)	No Difference
Warfarin v Enoxaparin	1	1.127 (0.457, 2.779)	No Difference
Dabigatran v Enoxaparin	2	1.491† (0.258, 8.611)	No Difference
Desirudin v Enoxaparin	1	1.91 (0.385, 9.49)	No Difference
Heparin v Enoxaparin	1	1.824 (0.188, 17.659)	No Difference
Fondaparinux v Enoxaparin Fondaparinux + GCS v Enoxaparin +	1	0.186 (0.003, 10.093)	No Difference
GCS	2	1.141 (0.414, 3.144)	No Difference
Rivaroxaban v Enoxaparin	3	0.743 (0.315, 1.749)	No Difference
Desirudin v Heparin	2	0.135 (0.014, 1.299)	No Difference
Dalteparin v Warfarin	1	0.986 (0.138, 7.02)	No Difference
Tinzaparin v Warfarin	1	1.008 (0.291, 3.497)	No Difference

Table 74. All Cause Mortality Direct Comparisons among Hip Patients

 \dagger = heterogeneity

Table 75. All Cause Mortality Direct Comparisons among Knee Patients

Comparison	Studies	OR (95% CI)	Favors
Enoxaparin + GCS v Foot Pump + GCS	1	0.379 (0.053, 2.729)	No Difference
Apixaban v Enoxaparin	2	0.856 (0.288, 2.542)	No Difference
Warfarin v Enoxaparin	2	1.937 (0.389, 9.648)	No Difference
Dabigatran v Enoxaparin	2	1.048 (0.211, 5.202)	No Difference
Fondaparinux + GCS v Enoxaparin + GCS	1	0.669 (0.116, 3.876)	No Difference
Rivaroxaban v Enoxaparin	2	0.511† (0.202, 1.288)	No Difference

Comparison	Studies	OR (95% CI)	Favors
Apixaban v Enoxaparin	4	0.548 (0.295, 1.02)	No Difference
Apixaban v Warfarin	1	2.036 (0.209, 19.791)	No Difference
Warfarin v Enoxaparin Aspirin (<300mg/day) v	1	1 (0.062, 16.09)	No Difference
Placebo	1	0.786 (0.4, 1.545)	No Difference
Dabigatran v Enoxaparin	5	0.765† (0.364, 1.608)	No Difference
Dabigatran v Placebo	1	0.491 (0.051, 4.761)	No Difference
Dalteparin v Warfarin	1	0.358 (0.147, 0.872)	Dalteparin
Desirudin v Enoxaparin	1	1.12 (0.405, 3.094)	No Difference
Desirudin v Heparin	1	0.797 (0.213, 2.987)	No Difference
Tinzaparin v Enoxaparin Enoxaparin + GCS v Foot	1	0.662 (0.114, 3.851)	No Difference
Pump + GCS Enoxaparin + IPC v	1	1.929 (0.199, 18.699)	No Difference
Enoxaparin Fondaparinux + GCS v	1	0.964 (0.06, 15.503)	No Difference
Enoxaparin + GCS	3	2.121 (0.795, 5.66)	No Difference
IPC v None	1	2.034 (0.21, 19.711)	No Difference
Rivaroxaban v Enoxaparin	3	0.478 (0.194, 1.178)	No Difference

 Table 76. Symptomatic Deep Vein Thrombosis Direct Comparisons among Hip and

 Knee Patients

 $\dagger = heterogeneity$

Comparison	Studies	OR (95% CI)	Favors
Apixaban v Enoxaparin	1	0.21 (0.057, 0.776)	Apixaban
Aspirin (<300mg/day) v Placebo	1	0.786 (0.4, 1.545)	No Difference
Dabigatran v Enoxaparin	3	1.51† (0.548, 4.159)	No Difference
Dalteparin v Warfarin	1	0.358 (0.147, 0.872)	Dalteparin
Desirudin v Enoxaparin	1	1.12 (0.405, 3.094)	No Difference
Desirudin v Heparin	1	0.797 (0.213, 2.987)	No Difference
Tinzaparin v Enoxaparin	1	0.662 (0.114, 3.851)	No Difference
Enoxaparin + GCS v Foot Pump +			
GCS	1	1.929 (0.199, 18.699)	No Difference
Fondaparinux + GCS v Enoxaparin +			
GCS	2	4.743 (1.283, 17.5)	Enoxaparin + GCS
IPC v None	1	2.034 (0.21, 19.711)	No Difference
Rivaroxaban v Enoxaparin	1	0.128 (0.003, 6.458)	No Difference
\dagger = heterogeneity			

Table 77. Symptomatic DVT Direct Comparisons among Hip Patients

Table 78. Symptomatic DVT Direct Comparisons among Knee Patients

Comparison	Studies	OR (95% CI)	Favors
Apixaban v Enoxaparin	3	0.725 (0.358, 1.469)	No Difference
Apixaban v Warfarin	1	2.036 (0.209, 19.791)	No Difference
Warfarin v Enoxaparin	1	1 (0.062, 16.09)	No Difference
Dabigatran v Enoxaparin	2	0.349 (0.117, 1.038)	No Difference
Dabigatran v Placebo	1	0.491 (0.051, 4.761)	No Difference
Enoxaparin + IPC v Enoxaparin	1	0.964 (0.06, 15.503)	No Difference
Fondaparinux + GCS v Enoxaparin + GCS	1	0.75 (0.17, 3.315)	No Difference
Rivaroxaban v Enoxaparin	2	0.509 (0.201, 1.287)	No Difference

Comparison	Studies	OR (95% CI)	Favors
GCS v None	1	0.531 (0.264, 1.066)	No Difference
IPC v None	2	0.342 (0.231, 0.505)	IPC
Enoxaparin v Placebo/None	2	0.469† (0.289, 0.762)	Enoxaparin
Enoxaparin v GCS	1	0.416 (0.166, 1.042)	No Difference
Enoxaparin + GCS v Foot			
Pump + GCS	2	0.789 (0.512, 1.216)	No Difference
Tinzaparin + GCS v GCS	1	0.551 (0.307, 0.987)	Tinzaparin + GCS
IPC + Low-dose Aspirin v	1	0.069 (0.256, 0.621)	No Difference
Enoxaparin IPC + Aspirin (>300mg/day)	1	0.968 (0.356, 2.631)	No Difference
v IPC + Enoxaparin	1	1.323 (0.685, 2.555)	No Difference
IPC + Aspirin (>300mg/day)	-	11020 (01000, 21000)	
v Aspirin (>300mg/day)	1	0.802 (0.291, 2.209)	No Difference
Warfarin + GCS v IPC +			
GCS	1	1.246 (0.678, 2.291)	No Difference
Fondaparinux + GCS v Enoxaparin + GCS	3	0.482† (0.388, 0.599)	Fondaparinux + GCS
IPC v GCS	3 1	0.617 (0.261, 1.46)	No Difference
	1		No Difference
Enoxaparin v IPC Enoxaparin + IPC v	1	0.652 (0.229, 1.857)	No Difference
Enoxaparin	1	0.329 (0.132, 0.815)	Enoxaparin + IPC
Apixaban v Enoxaparin	4	0.6† (0.51, 0.705)	Apixaban
Dabigatran v Enoxaparin	5	0.973† (0.846, 1.12)	No Difference
Desirudin v Enoxaparin	1	0.659 (0.518, 0.839)	Desirudin
Fondaparinux v Enoxaparin	1	0.276 (0.104, 0.729)	Fondaparinux
Heparin v Enoxaparin	3	1.857 (1.36, 2.536)	Enoxaparin
Rivaroxaban v Enoxaparin	7	0.462† (0.391, 0.545)	Rivaroxaban
Tinzaparin v Enoxaparin	1	1.103 (0.697, 1.746)	No Difference
Tinzaparin v Warfarin	1	0.764 (0.603, 0.969)	Tinzaparin
Warfarin v Enoxaparin	3	2.065 (1.583, 2.695)	Enoxaparin
YM150 v Enoxaparin	1	1.026 (0.54, 1.95)	No Difference
Apixaban v Warfarin	1	0.362 (0.181, 0.724)	Apixaban
Aspirin (>300mg/day) v		· · · · · · · · · · · · · · · · · · ·	• • • • •
Warfarin/Aspirin	1	1.138 (0.728, 1.778)	No Difference
Dalteparin v Warfarin	2	0.434 (0.318, 0.592)	Dalteparin
Desirudin v Heparin	2	0.387 (0.275, 0.546)	Desirudin
Heparin + GCS v	_		NY 5100
$\frac{\text{Heparin/Enoxaparin} + \text{GCS}}{\text{Hepareneity}}$	1	0.323 (0.091, 1.143)	No Difference

Table 79. Deep Vein Thrombosis Direct Comparisons among Hip and Knee Patients

Comparison	Studies	OR (95% CI)	Favors
IPC v None	1	0.34 (0.214, 0.54)	IPC
Enoxaparin v Placebo/None	1	0.71 (0.38, 1.327)	No Difference
Enoxaparin + GCS v Foot Pump + GCS	1	0.702 (0.364, 1.354)	No Difference Tinzaparin +
Tinzaparin + GCS v GCS	1	0.551 (0.307, 0.987)	GCS
IPC + Low-dose Aspirin v Enoxaparin IPC + Aspirin (>300mg/day) v Aspirin	1	0.968 (0.356, 2.631)	No Difference
(>300mg/day)	1	0.802 (0.291, 2.209)	No Difference
Warfarin + GCS v IPC + GCS	1	1.246 (0.678, 2.291)	No Difference
			Fondaparinux +
Fondaparinux + GCS v Enoxaparin + GCS	2	0.535† (0.409, 0.7)	GCS
Apixaban v Enoxaparin	1	0.345 (0.227, 0.524)	Apixaban
Dabigatran v Enoxaparin	3	0.747 (0.596, 0.936)	Dabigatran
Desirudin v Enoxaparin	1	0.659 (0.518, 0.839)	Desirudin
Fondaparinux v Enoxaparin	1	0.276 (0.104, 0.729)	Fondaparinux
Heparin v Enoxaparin	2	2.388 (1.467, 3.889)	Enoxaparin
Rivaroxaban v Enoxaparin	4	0.316† (0.24, 0.415)	Rivaroxaban
Tinzaparin v Enoxaparin	1	1.103 (0.697, 1.746)	No Difference
Tinzaparin v Warfarin	1	0.764 (0.603, 0.969)	Tinzaparin
YM150 v Enoxaparin	1	1.026 (0.54, 1.95)	No Difference
Dalteparin v Warfarin	2	0.434 (0.318, 0.592)	Dalteparin
Desirudin v Heparin	2	0.387 (0.275, 0.546)	Desirudin
Heparin + GCS v Heparin/Enoxaparin + GCS	1	0.323 (0.091, 1.143)	No Difference

Table 80. Deep Vein Thrombosis Direct Comparisons among Hip Patients

 \dagger = heterogeneity

Comparison	Studies	OR (95% CI)	Favors
GCS v None	1	0.531 (0.264, 1.066)	No Difference
IPC v None	1	0.345 (0.165, 0.722)	IPC
Enoxaparin v Placebo/None	1	0.251 (0.116, 0.541)	Enoxaparin
Enoxaparin v GCS	1	0.416 (0.166, 1.042)	No Difference
Enoxaparin + GCS v Foot Pump + GCS IPC + Aspirin (>300mg/day) v IPC +	1	0.863 (0.486, 1.534)	No Difference
Enoxaparin	1	1.323 (0.685, 2.555)	No Difference Fondaparinux
Fondaparinux + GCS v Enoxaparin + GCS	1	0.397 (0.276, 0.573)	$+ \hat{G}CS$
IPC v GCS	1	0.617 (0.261, 1.46)	No Difference
Enoxaparin v IPC	1	0.652 (0.229, 1.857)	No Difference
			Enoxaparin +
Enoxaparin + IPC v Enoxaparin	1	0.329 (0.132, 0.815)	IPC
	2	0.661† (0.555,	
Apixaban v Enoxaparin	3	0.788)	Apixaban
Dabigatran v Enoxaparin	2	1.149† (0.961, 1.375)	No Difference
Heparin v Enoxaparin	1	1.561 (1.041, 2.34)	Enoxaparin
Rivaroxaban v Enoxaparin	3	0.574 (0.466, 0.706)	Rivaroxaban
Warfarin v Enoxaparin	3	2.065 (1.583, 2.695)	Enoxaparin
Apixaban v Warfarin	1	0.362 (0.181, 0.724)	Apixaban
Aspirin (>300mg/day) v Warfarin/Aspirin	1	1.138 (0.728, 1.778)	No Difference
+ - heterogeneity			

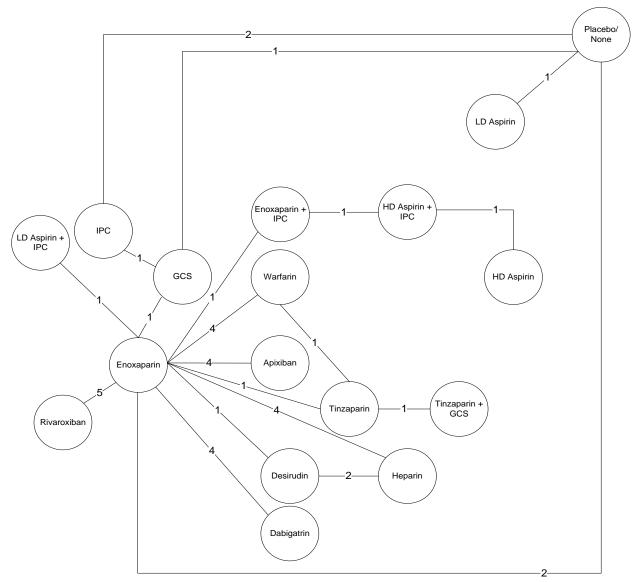
Table 81. Deep Vein Thrombosis Direct Comparisons among Knee Patients

 \dagger = heterogeneity

Comparison	Studies	OR (95% CI)	Favors
GCS v None	1	0.363 (0.05, 2.611)	No Difference
IPC v None	2	0.446 (0.262, 0.761)	IPC
Dabigatran v Placebo	1	0.131 (0.026, 0.664)	Dabigatran
Enoxaparin v Placebo/None	2	0.604 (0.237, 1.534)	No Difference
Enoxaparin v GCS	1	1 (0.062, 16.089)	No Difference
Enoxaparin + GCS v Foot Pump +			
GCS	2	0.548 (0.268, 1.122)	No Difference
IPC + Low-dose Aspirin v			
Enoxaparin	1	1.452 (0.249, 8.46)	No Difference
IPC + Aspirin (>300mg/day) v IPC			
+ Enoxaparin	1	0.627 (0.154, 2.555)	No Difference
IPC + Aspirin (>300 mg/day) v			
Aspirin (>300mg/day)	1	0.141 (0.003, 7.122)	No Difference
Warfarin + GCS v IPC + GCS	1	0.261 (0.091, 0.745)	Warfarin + GCS
IPC v GCS	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin v IPC	1	7.389 (0.147, 372.4)	No Difference
Apixaban v Enoxaparin	4	0.477 (0.313, 0.726)	Apixaban
Dabigatran v Enoxaparin	5	0.649 (0.48, 0.877)	Dabigatran
Desirudin v Enoxaparin	1	0.584 (0.386, 0.884)	Desirudin
Fondaparinux v Enoxaparin	1	0.369 (0.071, 1.915)	No Difference
Fondaparinux + GCS v Enoxaparin			
+ GCS	3	0.555† (0.358, 0.861)	Fondaparinux + GCS
Heparin v Enoxaparin	3	2.99 (1.835, 4.878)	Enoxaparin
Rivaroxaban v Enoxaparin	7	0.26 (0.187, 0.362)	Rivaroxaban
Tinzaparin v Enoxaparin	1	0.895 (0.480, 1.67)	No Difference
Tinzaparin v Warfarin	1	0.789 (0.505, 1.233)	No Difference
Warfarin v Enoxaparin	3	1.481† (0.919, 2.387)	No Difference
YM150 v Enoxaparin	1	1.119 (0.316, 3.966)	No Difference
Apixaban v Warfarin	1	1.039 (0.144, 7.48)	No Difference
Aspirin (>300mg/day) v			
Warfarin/Aspirin	1	0.759 (0.372, 1.547)	No Difference
Dalteparin v Warfarin	2	0.48 (0.254, 0.906)	Dalteparin
Desirudin v Heparin	2	0.212 (0.129, 0.348)	Desirudin
Fondaparinux + GCS v		· · /	
Fondaparinux	1	0.847 (0.43, 1.67)	No Difference
+ - heterogeneity			

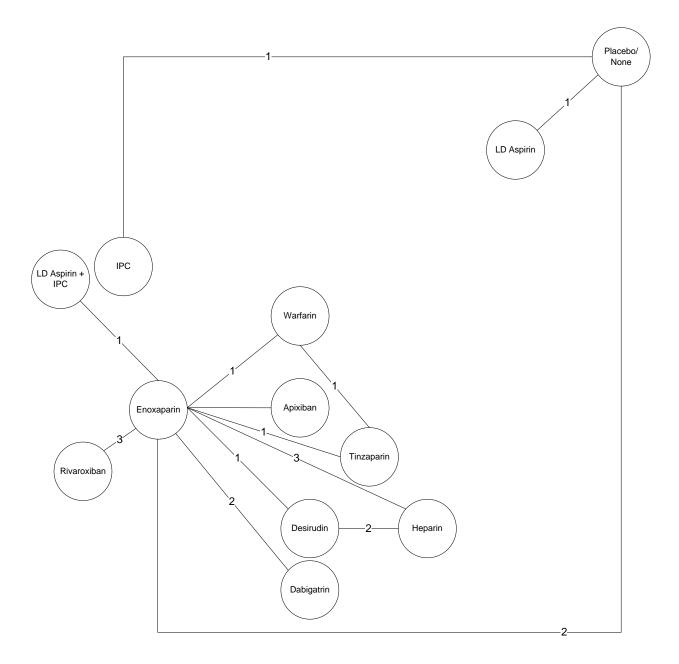
Table 82. Proximal DVT Direct Comparisons among Hip and Knee Patients

Comparison	Studies	OR (95% CI)	Favors
IPC v None	1	0.479 (0.276, 0.829)	IPC
Enoxaparin v Placebo/None	1	0.699 (0.242, 2.014)	No Difference
Enoxaparin + GCS v Foot Pump +			
GCS	1	0.67 (0.311, 1.445)	No Difference
IPC + Low-dose Aspirin v			
Enoxaparin	1	1.452 (0.249, 8.46)	No Difference
IPC + Aspirin (>300mg/day) v			
Aspirin (>300mg/day)	1	0.141 (0.003, 7.122)	No Difference
Warfarin + GCS v IPC + GCS	1	0.261 (0.091, 0.745)	Warfarin + GCS
Apixaban v Enoxaparin	1	0.379 (0.178, 0.807)	Apixaban
Dabigatran v Enoxaparin	3	0.519 (0.362, 0.746)	Dabigatran
Desirudin v Enoxaparin	1	0.584 (0.386, 0.884)	Desirudin
Fondaparinux v Enoxaparin	1	0.369 (0.071, 1.915)	No Difference
Fondaparinux + GCS v Enoxaparin			
+ GCS	2	0.614† (0.357, 1.057)	No Difference
Heparin v Enoxaparin	2	2.533 (1.351, 4.75)	Enoxaparin
Rivaroxaban v Enoxaparin	4	0.199 (0.132, 0.3)	Rivaroxaban
Tinzaparin v Enoxaparin	1	0.895 (0.480, 1.67)	No Difference
Tinzaparin v Warfarin	1	0.789 (0.505, 1.233)	No Difference
YM150 v Enoxaparin	1	1.119 (0.316, 3.966)	No Difference
Dalteparin v Warfarin	2	0.48 (0.254, 0.906)	Dalteparin
Desirudin v Heparin	2	0.212 (0.129, 0.348)	Desirudin
Fondaparinux + GCS v		,	
Fondaparinux	1	0.847 (0.430, 1.67)	No Difference
+ - hotorogonaity			

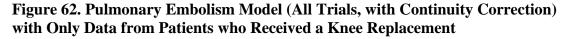

Table 83. Proximal DVT Direct Comparisons among Hip Patients

Comparison	Studies	OR (95% CI)	Favors
GCS v None	1	0.363 (0.05, 2.611)	No Difference
IPC v None	1	0.133 (0.014, 1.291)	No Difference
Dabigatran v Placebo	1	0.131 (0.026, 0.664)	Dabigatran
Enoxaparin v Placebo/None	1	0.363 (0.05, 2.611)	No Difference
Enoxaparin v GCS	1	1 (0.062, 16.089)	No Difference
Enoxaparin + GCS v Foot Pump +			
GCS	1	0.145 (0.02, 1.05)	No Difference
IPC + Aspirin (>300mg/day) v IPC			
+ Enoxaparin	1	0.627 (0.154, 2.555)	No Difference
IPC v GCS	1	0.135 (0.003, 6.82)	No Difference
Enoxaparin v IPC	1	7.389 (0.147, 372.4)	No Difference
Apixaban v Enoxaparin	3	0.506 (0.304, 0.842)	Apixaban
Dabigatran v Enoxaparin	2	1.075 (0.623, 1.854)	No Difference
Fondaparinux + GCS v Enoxaparin			
+ GCS	1	0.46 (0.219, 0.965)	Fondaparinux + GCS
Heparin v Enoxaparin	1	3.86 (1.77, 8.40)	Enoxaparin
Rivaroxaban v Enoxaparin	3	0.401 (0.228, 0.704)	Rivaroxaban
Warfarin v Enoxaparin	3	1.481† (0.919, 2.387)	No Difference
Apixaban v Warfarin	1	1.039 (0.144, 7.48)	No Difference
Aspirin (>300mg/day) v			
Warfarin/Aspirin	1	0.759 (0.372, 1.547)	No Difference

Table 84. Proximal DVT Direct Comparisons among Knee Patients


 \dagger = heterogeneity

NETWORK META-ANALYSIS SENSITIVITY ANALYSIS MODELS Figure 60. Pulmonary Embolism Model (All Trials, with Continuity Correction)



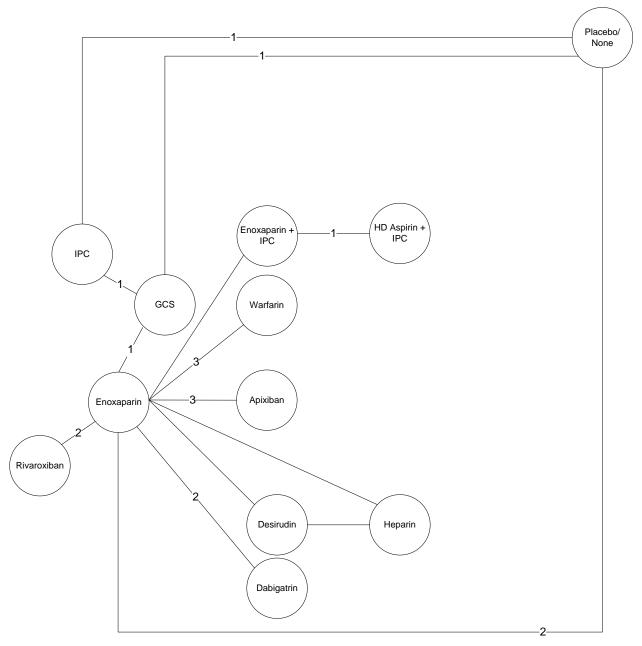
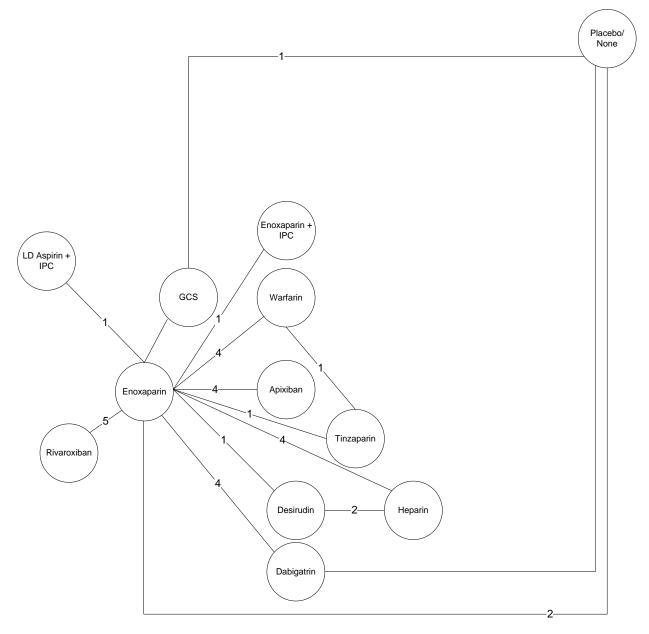

The model depicted in the figure is the base case model for pulmonary embolism. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 61. Pulmonary Embolism Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Hip Replacement


The model depicted in the figure is a model for pulmonary embolism. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

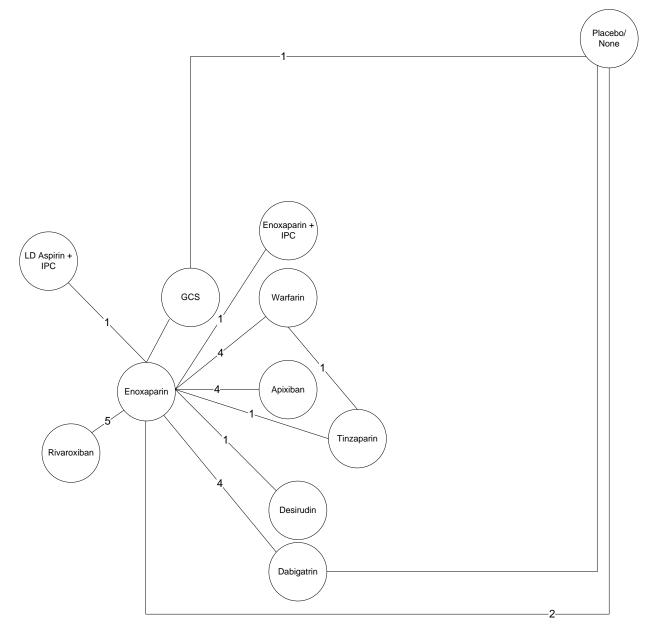
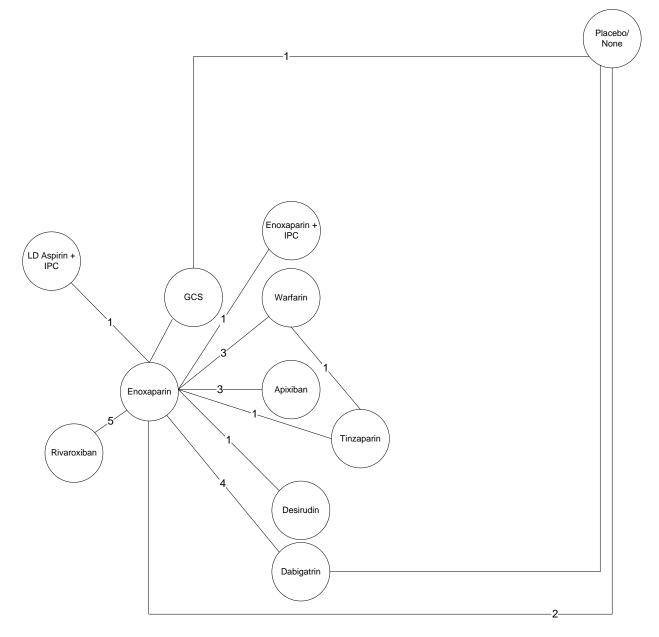

The model depicted in the figure a model for pulmonary embolism. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 63. Pulmonary Embolism Model Omitting Studies that Required a Continuity Correction



The model depicted in the figure is a model for pulmonary embolism that omits studies for which a continuity correction was required. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 64. Pulmonary Embolism Model Omitting Trials that Required a Continuity Correction and Omitting Trials of Heparin

The model depicted in the figure is a model for pulmonary embolism that omits studies for which a continuity correction was required, and that also omits studies of heparin. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Figure 65. Pulmonary Embolism Model Omitting Trials that Required a Continuity Correction, Trials of Heparin, and Trials with > 2 Arms.

The model depicted in the figure is a model for pulmonary embolism that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

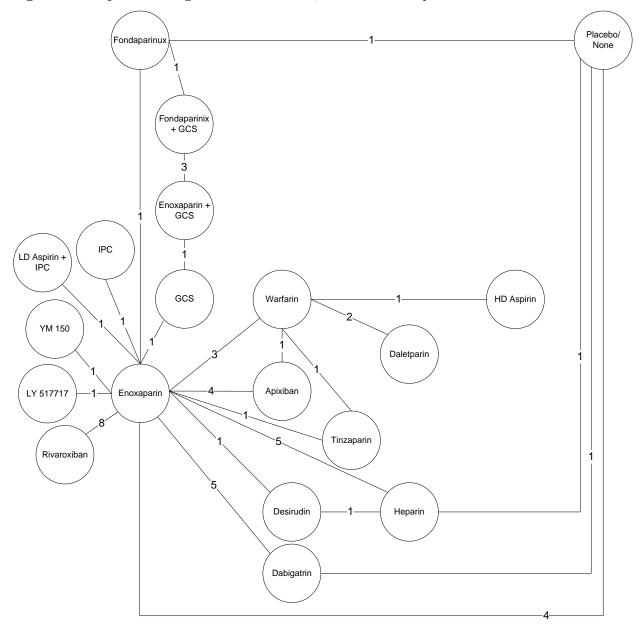
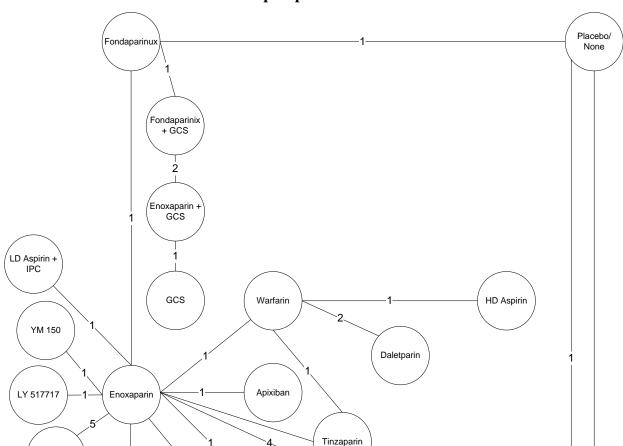
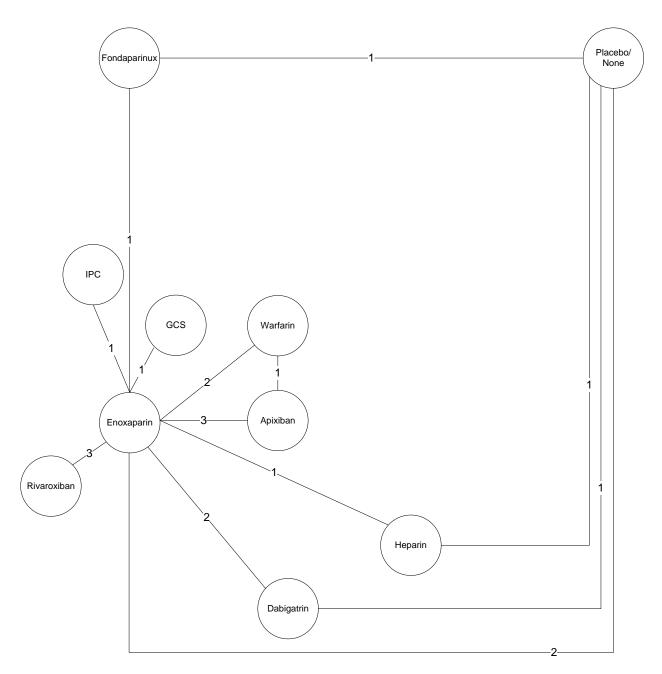



Figure 66. Major Bleeding Model (All Trials, with Continuity Correction)

The model depicted in the figure is the base case model for major bleeding. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Heparin

Figure 67. Major Bleeding Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Hip Replacement


The model depicted in the figure is a model for major bleeding. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Desirudin

Dabigatrin

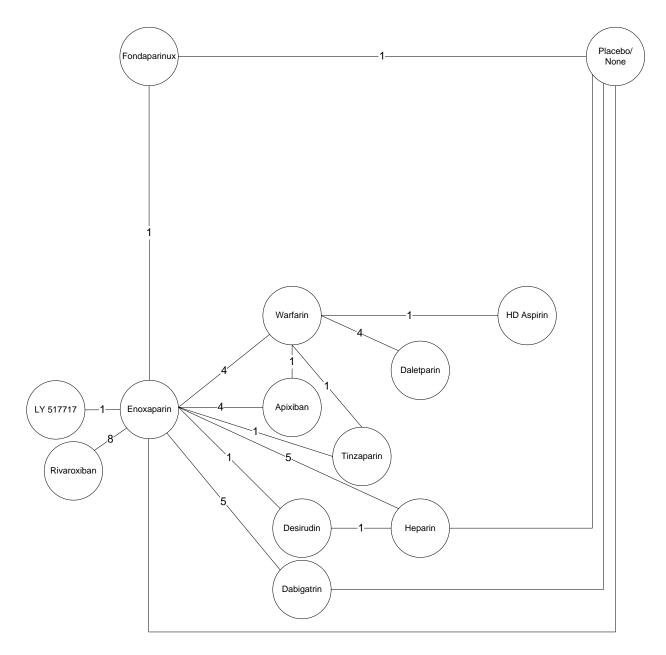
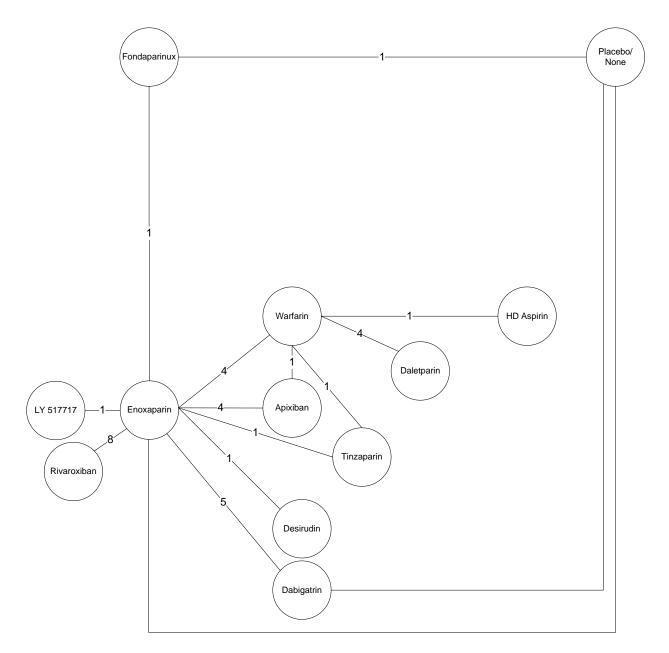
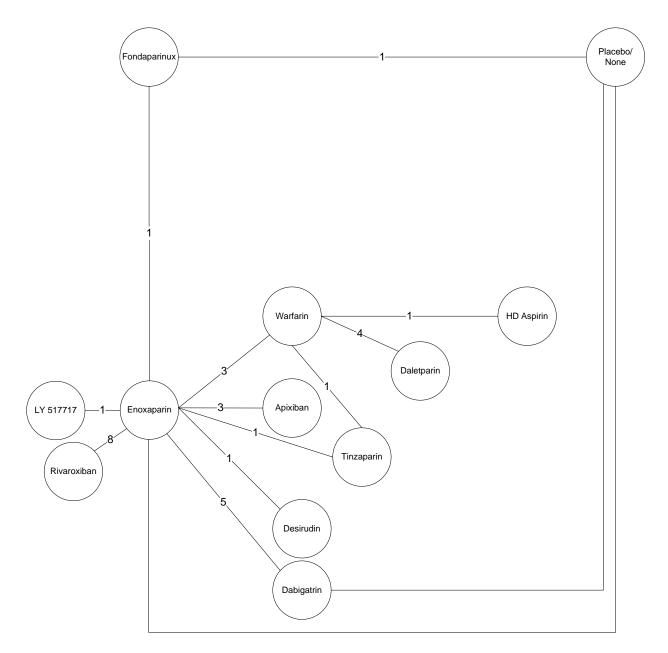
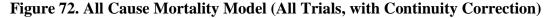

Rivaroxiban

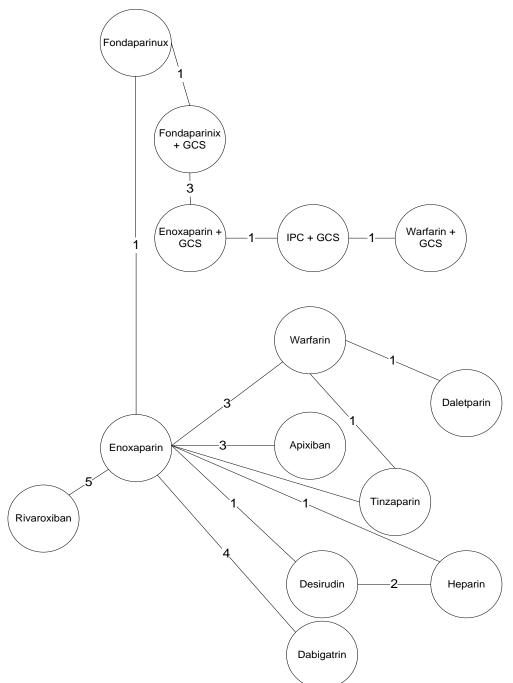
Figure 68. Major Bleeding Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Knee Replacement



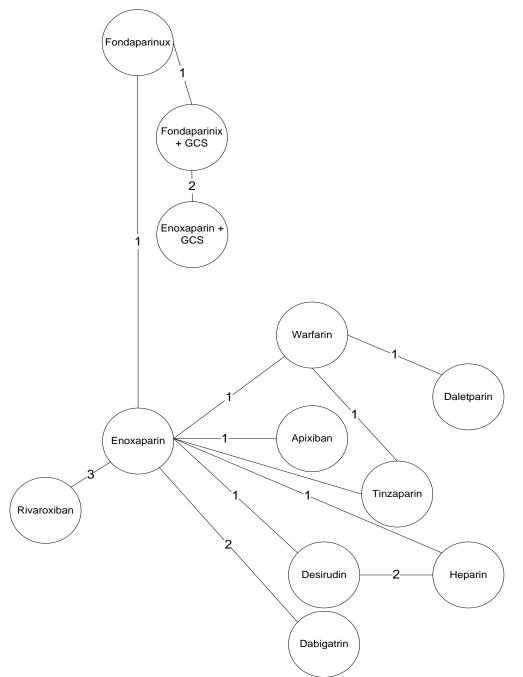
The model depicted in the figure a model for major bleeding. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.


Figure 69. Major Bleeding Model Omitting Studies that Required a Continuity Correction


The model depicted in the figure is a model for major bleeding that omits studies for which a continuity correction was required. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Figure 70. Major Bleeding Model Omitting Trials that Required a Continuity Correction and Omitting Trials of Heparin



The model depicted in the figure is a model for major bleeding that omits studies for which a continuity correction was required, and that also omits studies of heparin. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Figure 71. Major Bleeding Model Omitting Trials that Required a Continuity Correction, Trials of Heparin, and Trials with > 2 Arms.

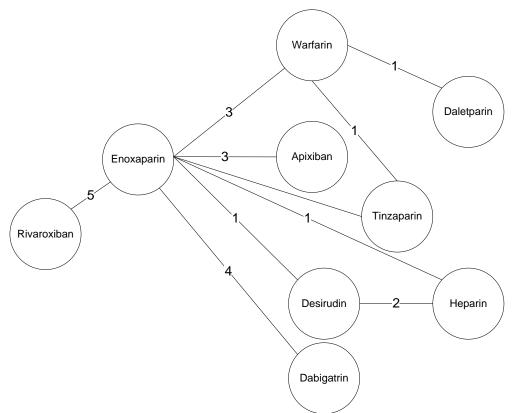
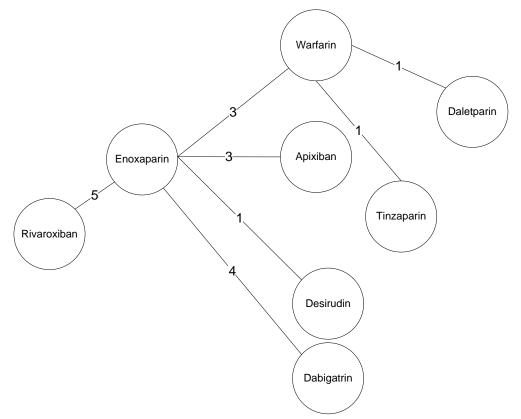

The model depicted in the figure is a model for major bleeding that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

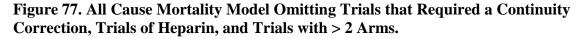
The model depicted in the figure is the base case model for all cause mortality. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 73. All Cause Mortality Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Hip Replacement

The model depicted in the figure is a model for all cause mortality. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Figure 74. All Cause Mortality Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Knee Replacement

The model depicted in the figure a model for all cause mortality. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.


Figure 75. All Cause Mortality Model Omitting Studies that Required a Continuity Correction

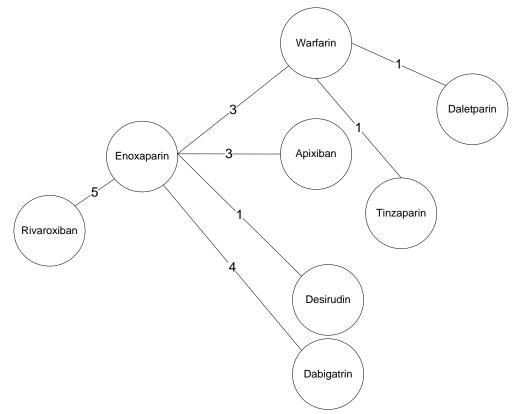
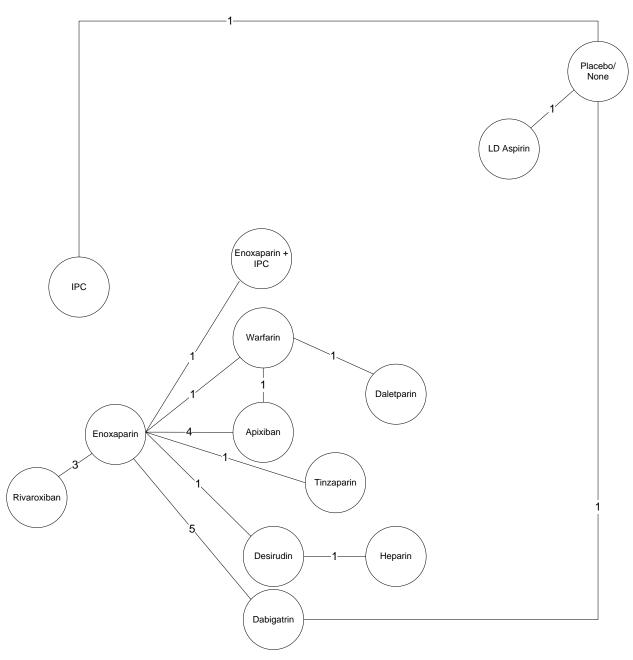
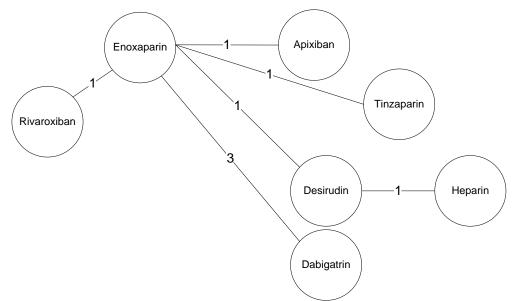
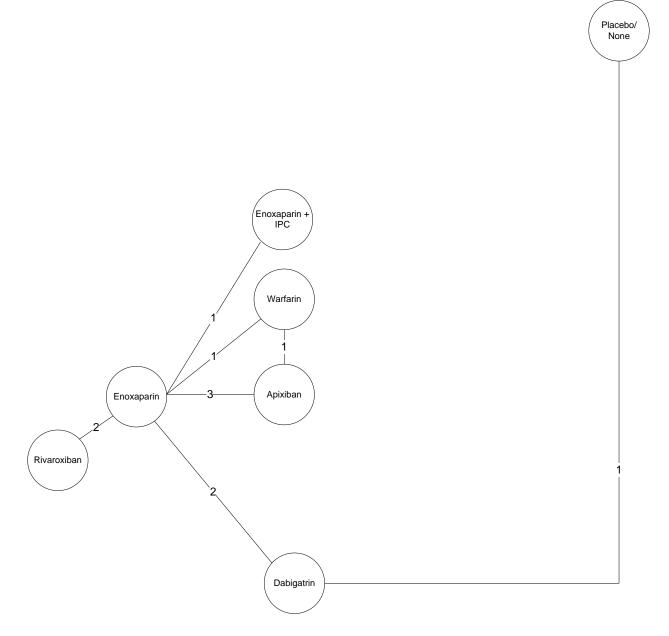

The model depicted in the figure is a model for all cause mortality that omits studies for which a continuity correction was required. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 76. All Cause Mortality Model Omitting Trials that Required a Continuity Correction and Omitting Trials of Heparin

The model depicted in the figure is a model for all cause mortality that omits studies for which a continuity correction was required, and that also omits studies of heparin. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

The model depicted in the figure is a model for all cause mortality that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Note that there were no studies with > 3 arms, so this model is identical to the model in which studies of heparin were omitted.


Figure 78. Symptomatic DVT Model (All Trials, with Continuity Correction)

The model depicted in the figure is the base case model for symptomatic DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 79. Symptomatic DVT Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Hip Replacement

The model depicted in the figure is a model for symptomatic DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Figure 80. Symptomatic DVT Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Knee Replacement

The model depicted in the figure a model for symptomatic DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

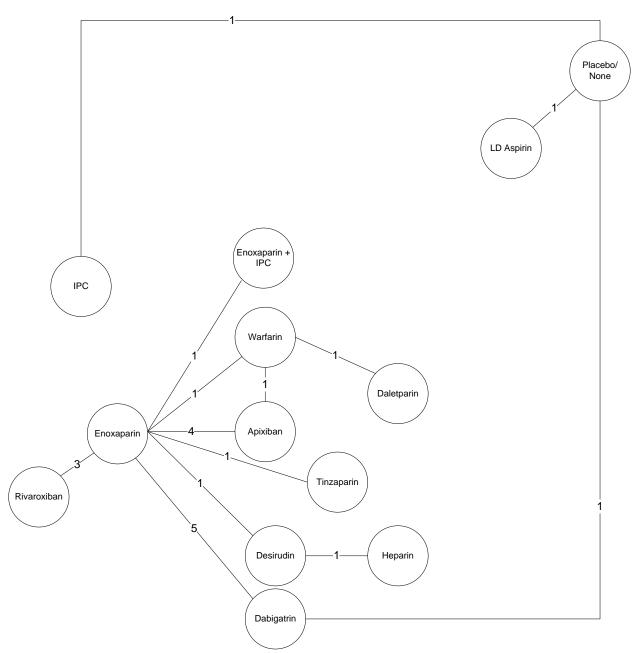
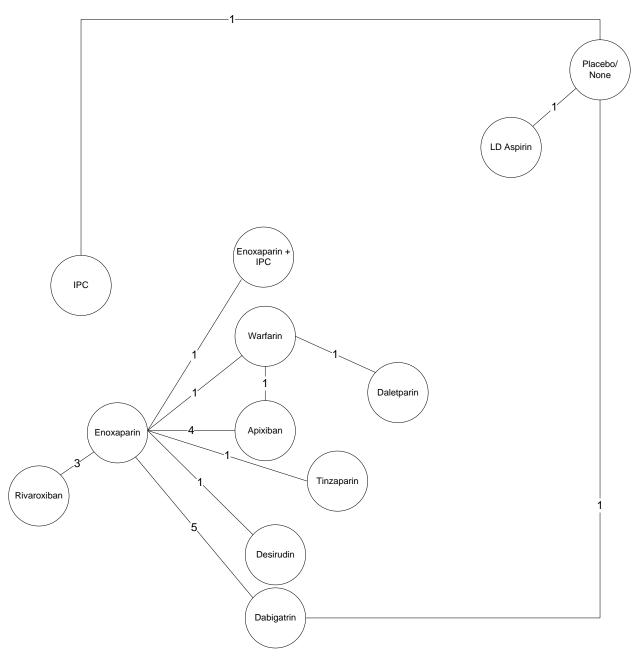
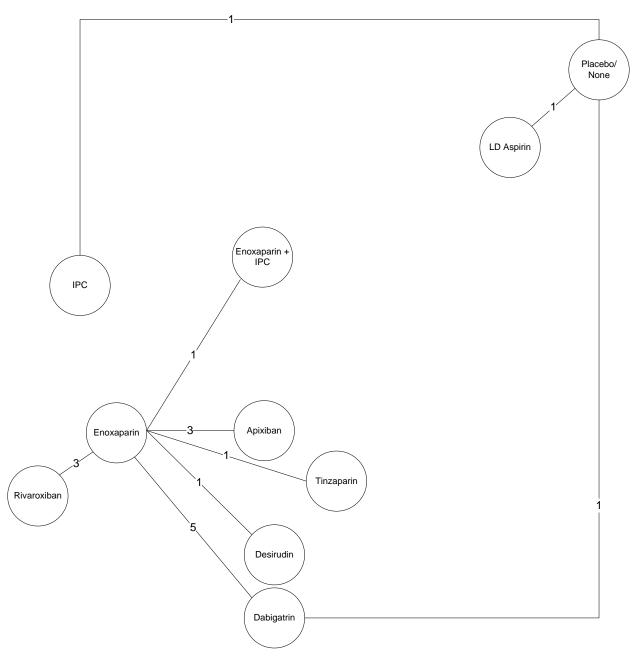
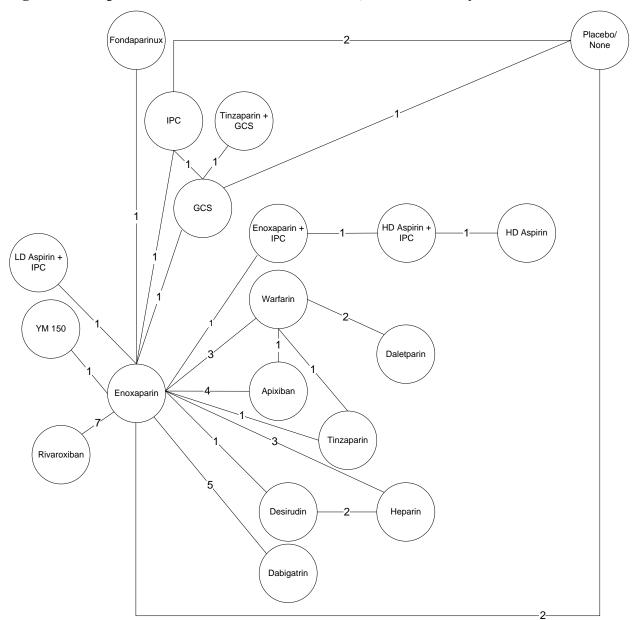




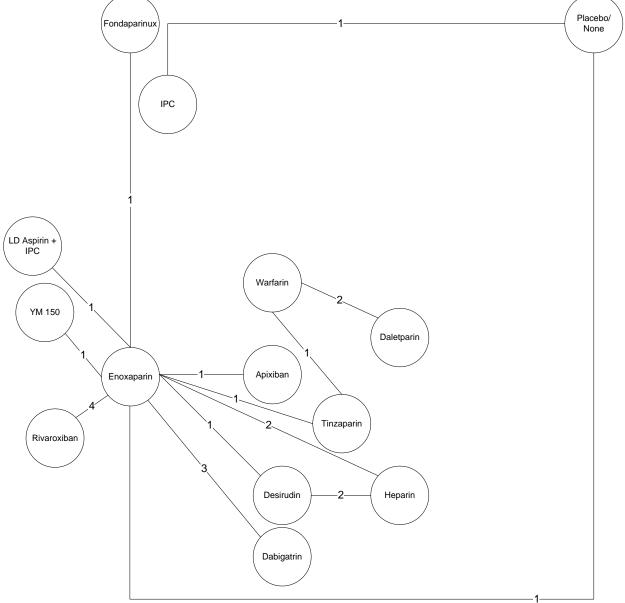
Figure 81. Symptomatic DVT Model Omitting Studies that Required a Continuity Correction

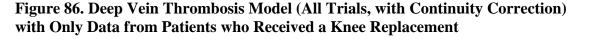
The model depicted in the figure is a model for symptomatic DVT that omits studies for which a continuity correction was required. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Note that this is the same as the model with all trials. Figure 82. Symptomatic DVT Model Omitting Trials that Required a Continuity Correction and Omitting Trials of Heparin

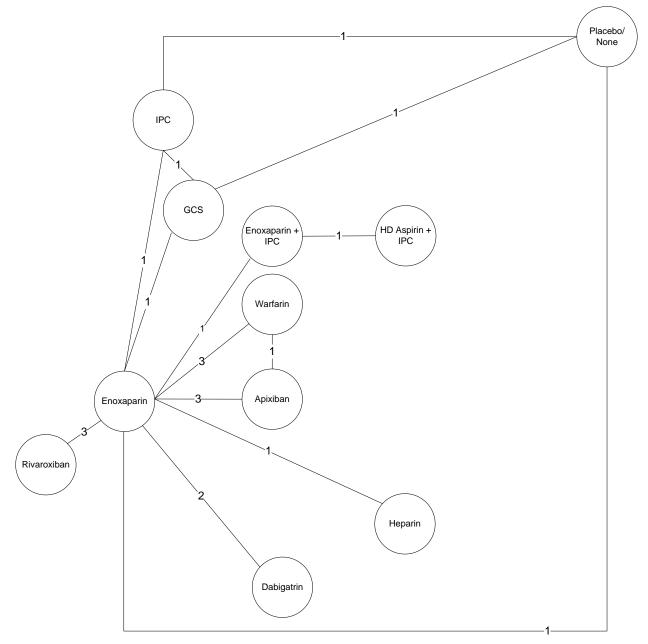
The model depicted in the figure is a model for all symptomatic DVT that omits studies for which a continuity correction was required, and that also omits studies of heparin. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles. Figure 83. Symptomatic DVT Model Omitting Trials that Required a Continuity Correction, Trials of Heparin, and Trials with > 2 Arms.

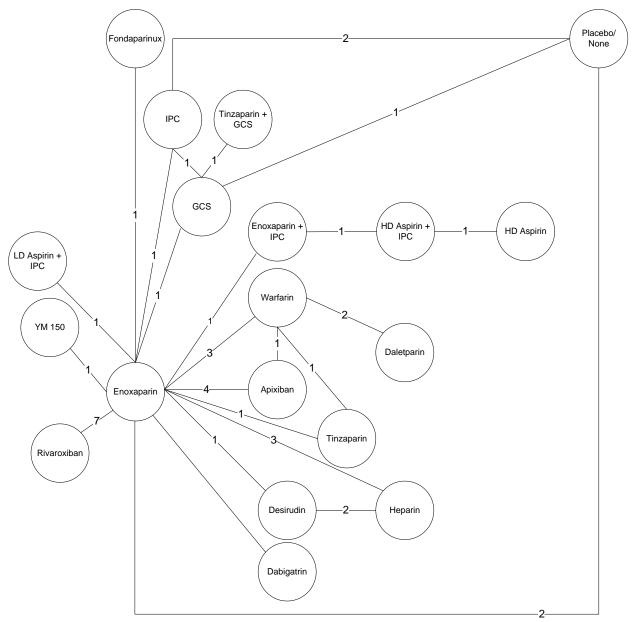
The model depicted in the figure is a model for symptomatic DVT that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

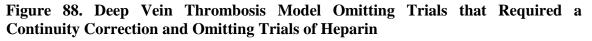





Figure 84. Deep Vein Thrombosis Model (All Trials, with Continuity Correction)


The model depicted in the figure is the base case model for DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.


The model depicted in the figure is a model for DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.



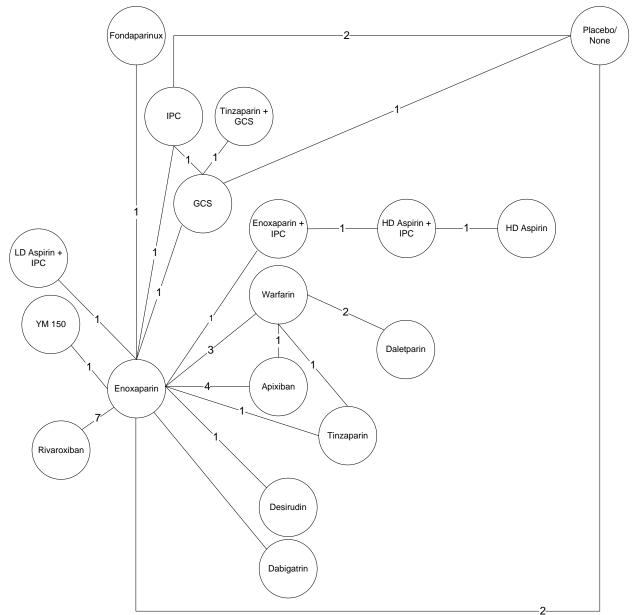

The model depicted in the figure a model for DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 87. Deep Vein Thrombosis Model Omitting Studies that Required a Continuity Correction

The model depicted in the figure is a model for DVT that omits studies for which a continuity correction was required. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

The model depicted in the figure is a model for DVT that omits studies for which a continuity correction was required, and that also omits studies of heparin. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

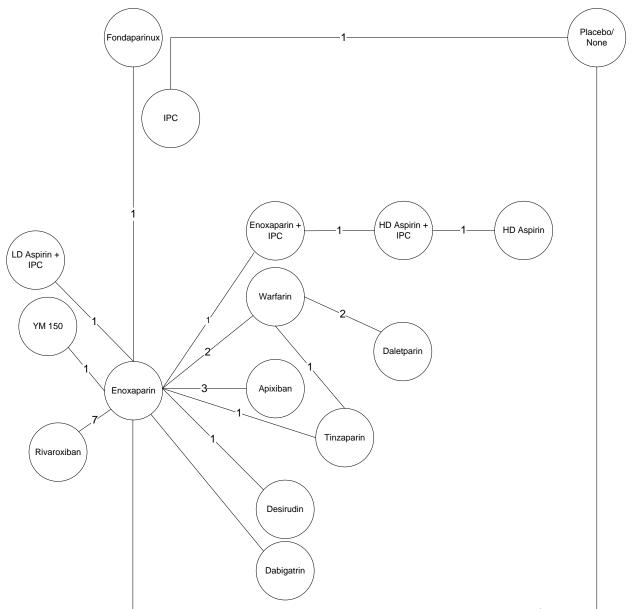
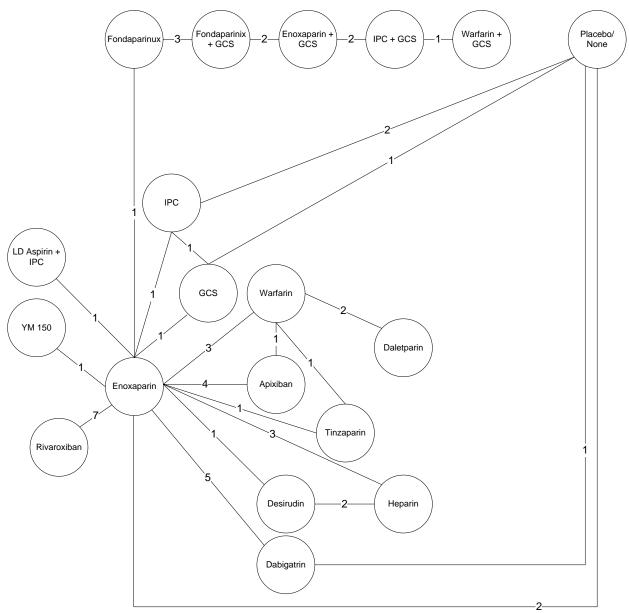



Figure 89. Deep Vein Thrombosis Model Omitting Trials that Required a Continuity Correction, Trials of Heparin, and Trials with > 2 Arms.

The model depicted in the figure is a model for DVT that omits studies for which a continuity correction was required, studies of heparin, and studies with > 2 arms. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

Figure 90. Proximal Deep Vein Thrombosis Model (All Trials, with Continuity Correction)

The model depicted in the figure is the initial model for proximal DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes data from patients who received a hip replacement and those who received a total knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

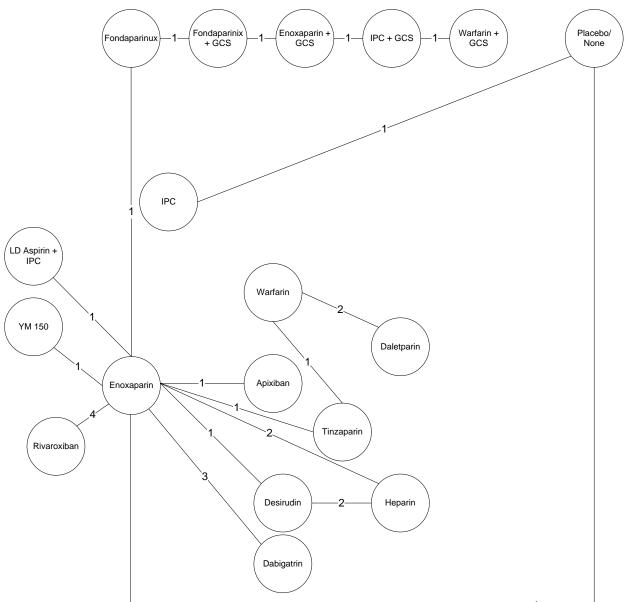


Figure 91. Proximal Deep Vein Thrombosis Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Hip Replacement

The model depicted in the figure is a model for proximal DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a hip replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

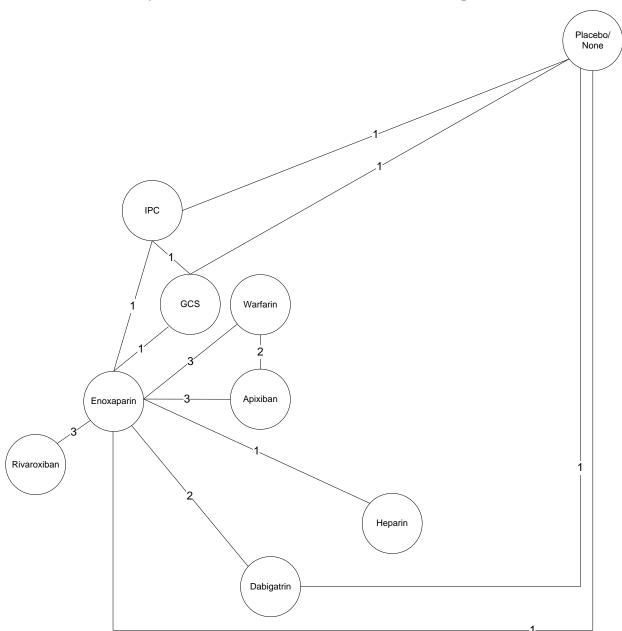
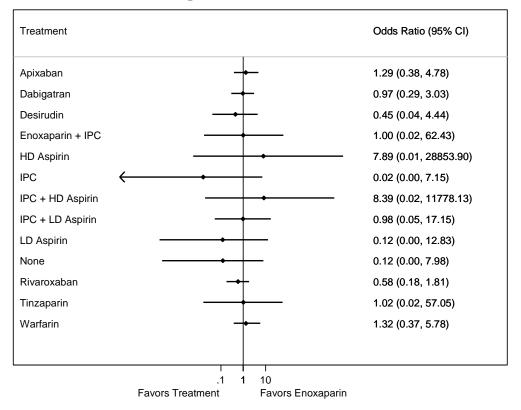



Figure 92. Proximal Deep Vein Thrombosis Model (All Trials, with Continuity Correction) with Only Data from Patients who Received a Knee Replacement

The model depicted in the figure a model for proximal DVT. All trials that observed at least one event in one of its groups are included. A continuity correction was employed for trials that observed no events at least one of its groups. The model includes only data from patients who received a knee replacement. Circles denote the treatments studied. Lines between circles denote treatment comparisons that are addressed by direct evidence. The numbers on these lines show the number of trials that compared the two treatments denoted in the circles.

FINAL MODEL RESULTS AS COMPARED TO ENOXAPARIN

Figure 93. Pumonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Note: The comparator in this graph is enoxaparin rather than no treatment.

Figure 94. Pumonary Embolism among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

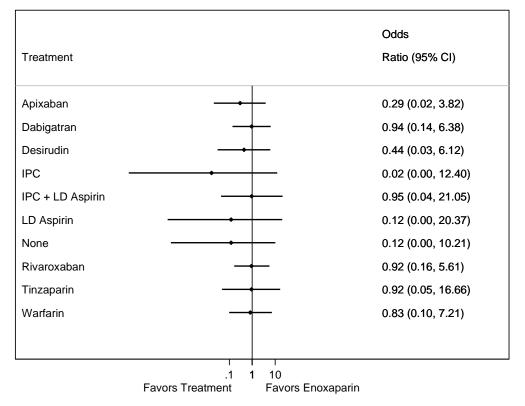
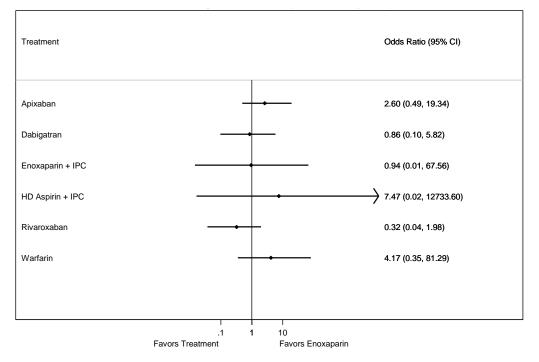



Figure 95. Pumonary Embolism among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Figure 96. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

		Odds
Treatment		Ratio (95% CI)
Apixaban		0.75 (0.41, 1.35)
Dabigatran	- - -	1.32 (0.81, 2.14)
Dalteparin	_ _	0.95 (0.31, 2.73)
Desirudin	_ + _	1.00 (0.38, 2.63)
Enoxaparin + GCS		0.13 (0.00, 7.16)
Fondaparinux		1.63 (0.55, 4.99)
Fondaparinux + GCS		0.27 (0.00, 13.45)
GCS		0.16 (0.00, 54.93)
HD Aspirin	-	0.34 (0.04, 2.34)
IPC + LD Aspirin -		0.01 (0.00, 0.26)
LY517717		0.85 (0.02, 31.19)
None	_+ _	0.91 (0.32, 2.54)
Rivaroxaban	+	1.54 (0.81, 2.92)
Tinzaparin	_ _	0.90 (0.30, 2.64)
Warfarin		0.48 (0.22, 1.01)
YM150		0.14 (0.00, 6.44)
	.1 1 10 Favors Treatment Favors Enoxaparin	

	Odds
Treatment	Ratio (95% CI)
Apixaban	1.23 (0.49, 3.13)
Dabigatran +	1.63 (0.92, 2.99)
Dalteparin	0.67 (0.16, 2.55)
Desirudin -	1.00 (0.39, 2.54)
Enoxaparin + GCS	0.10 (0.00, 6.71)
Fondaparinux	1.49 (0.48, 4.69)
Fondaparinux + GCS	- 0.17 (0.00, 10.14)
GCS	0.10 (0.00, 33.08)
HD Aspirin	0.24 (0.03, 2.20)
IPC + LD Aspirin	0.01 (0.00, 0.26)
LY517717	0.87 (0.02, 38.74)
None	0.50 (0.10, 2.26)
Rivaroxaban	1.83 (0.72, 4.91)
Tinzaparin	0.69 (0.18, 2.42)
Warfarin	0.34 (0.10, 1.05)
YM150	- 0.15 (0.00, 7.77)
	Ι
	10
Favors Treatment Fa	vors Enoxaparin

Figure 97. Major Bleeding among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Figure 98. Major Bleeding among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

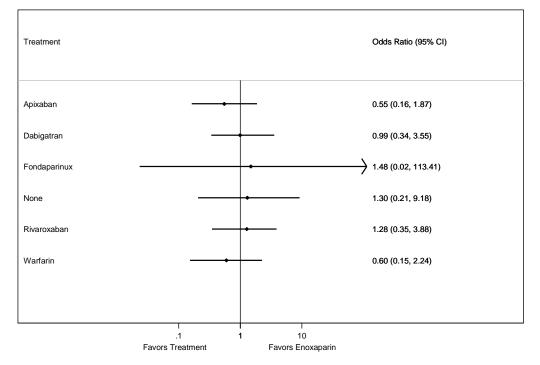


Figure 99. Symptomatic Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

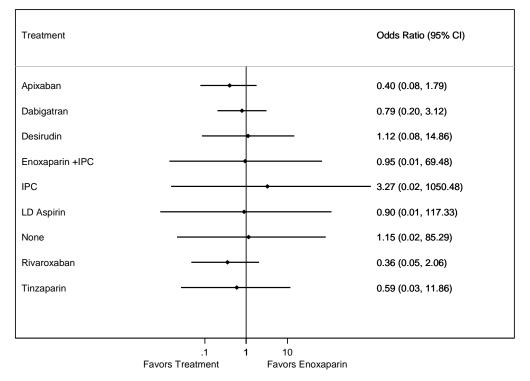


Figure 100. Symptomatic Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

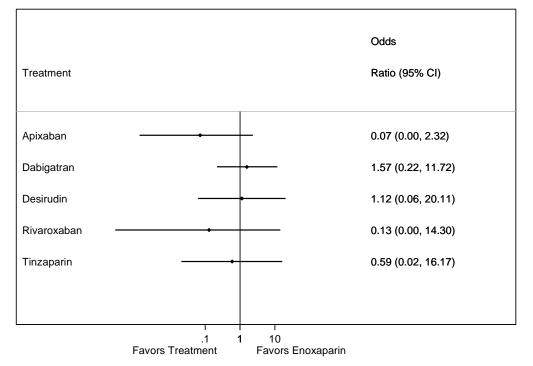
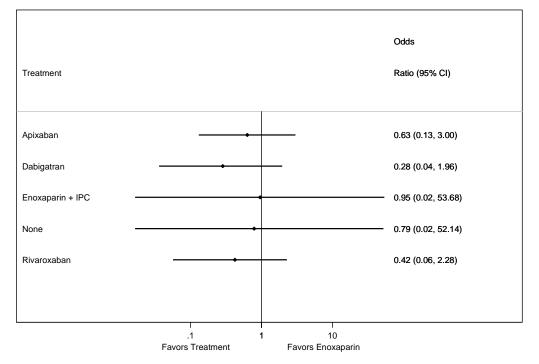
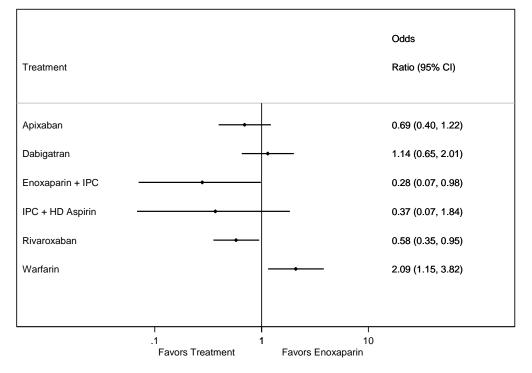



Figure 101. Symptomatic Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results with Continuity Correction Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)



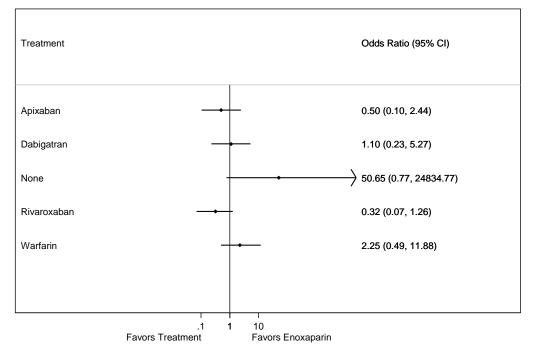
		Odds
Treatment		Ratio (95% CI)
Apixaban	_	0.55 (0.33, 0.92)
Dabigatran		0.89 (0.60, 1.32)
Dalteparin	_	0.82 (0.34, 2.00)
Desirudin	+	0.65 (0.28, 1.56)
Enoxaparin + IPC		0.27 (0.07, 1.03)
Fondaparinux	← →	0.13 (0.02, 0.71)
HD Aspirin		0.46 (0.05, 3.97)
IPC		0.46 (0.11, 1.86)
IPC + HD Aspirin		0.37 (0.06, 1.98)
IPC + LD Aspirin		0.97 (0.26, 3.66)
None		1.41 (0.50, 3.99)
Rivaroxaban	→	0.42 (0.29, 0.61)
Tinzaparin	+	1.30 (0.64, 2.65)
Warfarin		1.93 (1.08, 3.46)
YM150		1.03 (0.36, 2.94)
	.1 1 1 10 Favors Treatment Favors Enoxaparii	2
	Favors Treatment Favors Enoxapari	1

Figure 102. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

		Odds
Treatment		Ratio (95% CI)
Apixaban		0.31 (0.11, 0.84)
Dabigatran	+ _	0.74 (0.42, 1.29)
Dalteparin		0.61 (0.12, 2.87)
Desirudin	+	0.65 (0.25, 1.70)
Fondaparinux		0.14 (0.02, 0.71)
IPC		0.46 (0.10, 2.07)
IPC + LD Aspirin		0.98 (0.26, 3.75)
None	+	1.43 (0.48, 4.29)
Rivaroxaban		0.30 (0.17, 0.53)
Tinzaparin	+	1.10 (0.39, 3.00)
Warfarin	+	1.44 (0.35, 5.68)
YM150		1.02 (0.34, 3.05)
	.1 1 10 Favors Treatment Favors Enoxaparin	I

Figure 103. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin) Figure 104. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Figure 105. Proximal Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)


_

Treatment			Odds Ratio (95% CI)
Apixaban		-	0.44 (0.16, 1.18)
Dabigatran		-	0.60 (0.29, 1.24)
Dalteparin	+		0.78 (0.15, 4.15)
Desirudin			0.58 (0.12, 2.73)
Enoxaparin + GCS			0.29 (0.01, 7.84)
Fondaparinux			0.18 (0.01, 2.60)
Fondaparinux + GCS	+		0.15 (0.00, 3.55)
IPC		◆	1.23 (0.14, 12.03)
IPC + GCS	+		0.68 (0.01, 27.30)
IPD + LD Aspirin		•	1.61 (0.14, 21.50)
None	-	_	2.65 (0.60, 13.05)
Rivaroxaban	_		0.20 (0.09, 0.42)
Tinzaparin		←	1.16 (0.34, 4.11)
Warfarin	-		1.88 (0.67, 5.66)
Warfarin + GCS	<		0.13 (0.00, 8.75)
YM150		•	1.13 (0.16, 8.25)
	۱ .1	I 10	
	Favors Treatment	Favors Enoxaparin	

Figure 106. Proximal Deep Vein Thrombosis among Hip Patients - Network Meta-
Analysis Results Without Heparin Trials and Without Trials with > 2 Arms
(vs. Enoxaparin)

Treatment		Odds Ratio (95% CI)
Apixaban	+	0.33 (0.04, 2.87)
Dabigatran	+ _	0.47 (0.14, 1.56)
Dalteparin		0.46 (0.02, 12.26)
Desirudin	•	0.58 (0.08, 4.38)
Enoxaparin + GCS		0.26 (0.00, 14.21)
Fondaparinux		0.19 (0.00, 3.67)
Fondaparinux + GCS		0.16 (0.00, 6.16)
IPC		0.70 (0.03, 14.64)
IPC + GCS		0.40 (0.00, 36.67)
IPC + LD Aspirin	+	1.59 (0.10, 27.09)
None	+	1.51 (0.16, 14.15)
Rivaroxaban	_	0.13 (0.04, 0.45)
Tinzaparin		0.89 (0.11, 7.21)
Warfarin	_	1.14 (0.06, 20.74)
Warfarin + GCS —		0.08 (0.00, 12.47)
YM150	_	1.11 (0.11, 11.55)
		(,/
	.1 1 10	
Fav	vors Treatment Favors Enoxaparin	

Figure 107. Proximal Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

FINAL MODEL RESULTS – RANKING OF TREATMENTS

The first set of tables below (Table 85 - Table 90) ranks treatments according to the probability that the listed treatment is the best for that particular outcome. These rankings are based on the network meta-analysis of the final model and only includes the treatments included in the final model.

The second set of tables (Table 91- Table 96) presents the same results from the same models but also includes the complete set of probabilities (i.e., probability that a treatment is best, probability that a treatment is second best,... probability that a treatment is the worst) for each outcome.

	Probability that Treatment is
Treatment	Best
IPC	56%
LD Aspirin	10%
Tinzaparin	6%
HD Aspirin	6%
Desirudin	6%
None	5%
Enoxaparin + IPC	5%
IPC + LD Aspirin	3%
IPC + HD Aspirin	2%
Rivaroxaban	1%
Dabigatran	0%
Warfarin	0%
Apixaban	0%
Enoxaparin	0%

Table 85. Final Network Meta-Analysis Ranking of Agents - Pulmonary Embolism

Table 86. Final Network Meta-Analysis Ranking of Agents - Major Bleeding

	Probability that Treatment is
Treatment	Best
IPC + LD Aspirin	56%
GCS	16%
YM150	13%
Enoxaparin + GCS	11%
LY517717	2%
HD Aspirin	2%
Fondaparinux + GCS	0%
Warfarin	0%
None	0%
Dalteparin	0%
Tinzaparin	0%
Desirudin	0%
Apixaban	0%

	Probability that Treatment is
Treatment	Best
Enoxaparin	0%
Dabigatran	0%
Fondaparinux	0%
Rivaroxaban	0%

 Table 87. Final Network Meta-Analysis Ranking of Agents – All Cause Mortality

	Probability that Treatment is
Treatment	Best
Fondaparinux + GCS	27%
Enoxaparin + GCS	23%
Warfarin + GCS	20%
Rivaroxiban	6%
Fondaparinux	6%
IPC + GCS	6%
Dalteparin	6%
Tinzaparin	3%
Dabigatran	2%
Desirudin	2%
Apixaban	1%
Warfarin	0%
Enoxaparin	0%

Table 88. Final Network Meta-Analysis Ranking of Agents – Symptomatic DVT

	Probability that Treatment is
Treatment	Best
Rivaroxaban	20%
Tinzaparin	17%
Enoxaparin + IPC	17%
LD Aspirin	15%
Apixaban	11%
IPC	7%
Desirudin	5%
None	4%
Dabigatran	3%
Enoxaparin	0%

Table 89. Final Network Meta-Analysis Ranking of Agents - DVT

	Probability that Treatment is
Treatment	Best
Fondaparinux	62%
Enoxaparin + IPC	13%
HD Aspirin	9%

	Probability that Treatment is
Treatment	Best
IPC	7%
IPC + HD Aspirin	6%
Rivaroxaban	1%
IPC + LD Aspirin	1%
Desirudin	1%
Apixaban	0%
Dalteparin	0%
YM150	0%
Tinzaparin	0%
None	0%
Dabigatran	0%
Enoxaparin	0%
Warfarin	0%

 Table 90. Final Network Meta-Analysis Ranking of Agents – Proximal DVT

	Probability that Treatment is
Treatment	Best
Warfarin + GCS	38%
Rivaroxaban	23%
Fondaparinux + GCS	16%
Fondaparinux	11%
Desirudin	3%
Apixaban	2%
IPC	2%
IPD + LD Aspirin	2%
Dalteparin	2%
YM150	1%
Enoxaparin + GCS	1%
Dabigatran	0%
Tinzaparin	0%
IPC + GCS	0%
None	0%
Enoxaparin	0%
Warfarin	0%

	Rank 1													Rank 14
Treatment	(Best)	2	3	4	5	6	7	8	9	10	11	12	13	(Worst)
Apixaban	0%	1%	1%	2%	4%	7%	9%	11%	13%	16%	15%	11%	6%	3%
Dabigatran	0%	1%	2%	5%	8%	11%	13%	13%	13%	13%	10%	6%	3%	1%
Desirudin	6%	9%	9%	16%	14%	10%	8%	6%	5%	5%	5%	4%	2%	1%
Enoxaparin	0%	0%	0%	2%	4%	9%	16%	21%	20%	14%	8%	3%	1%	0%
Enoxaparin +														
IPC	5%	6%	6%	9%	8%	7%	5%	5%	5%	6%	10%	19%	6%	3%
HD Aspirin	6%	5%	3%	5%	4%	3%	2%	2%	2%	2%	4%	7%	21%	35%
IPC	56%	12%	9%	5%	3%	2%	2%	1%	1%	2%	2%	2%	1%	2%
IPC + HD														
Aspirin	2%	3%	4%	3%	4%	3%	3%	2%	2%	3%	4%	8%	32%	27%
IPC + LD														
Aspirin	3%	5%	5%	9%	8%	8%	7%	6%	6%	8%	10%	11%	7%	7%
LD Aspirin	10%	23%	21%	9%	6%	4%	3%	3%	3%	3%	4%	4%	3%	3%
None	5%	23%	25%	11%	7%	5%	4%	3%	3%	4%	4%	3%	2%	1%
Rivaroxaban	1%	4%	7%	13%	17%	17%	13%	10%	7%	5%	3%	1%	1%	0%
Tinzaparin	6%	6%	5%	9%	7%	6%	5%	5%	5%	6%	9%	10%	8%	13%
Warfarin	0%	1%	2%	3%	5%	7%	9%	11%	13%	14%	15%	11%	7%	4%

1 Table 91. Final Network Meta-Analysis Complete Ranking of Agents - Pulmonary Embolism

	Rank 1																Rank 17
Treatment	(Best)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	(Worst)
Apixaban	0%	0%	1%	3%	6%	10%	13%	15%	16%	13%	9%	6%	4%	2%	1%	1%	0%
Dabigatran	0%	0%	0%	0%	0%	0%	1%	2%	4%	6%	9%	13%	16%	18%	16%	10%	4%
Dalteparin	0%	0%	1%	2%	3%	6%	8%	10%	11%	10%	9%	8%	8%	8%	7%	6%	4%
Desirudin	0%	0%	1%	2%	3%	5%	7%	9%	9%	10%	10%	10%	9%	9%	7%	6%	4%
Enoxaparin	0%	0%	0%	0%	0%	1%	4%	7%	12%	17%	21%	19%	12%	6%	1%	0%	0%
Enoxaparin +																	
GCS	11%	21%	20%	12%	6%	4%	3%	2%	2%	2%	2%	2%	2%	3%	6%	3%	0%
Fondaparinux	0%	0%	0%	0%	0%	1%	2%	3%	4%	5%	5%	7%	9%	13%	14%	19%	17%
Fondaparinux																	
$+ \overline{GCS}$	0%	5%	14%	18%	12%	7%	4%	3%	2%	2%	2%	2%	2%	3%	4%	9%	9%
GCS	16%	17%	14%	9%	6%	3%	2%	2%	2%	1%	1%	1%	2%	2%	3%	5%	14%
HD Aspirin	2%	11%	14%	12%	14%	14%	8%	5%	4%	3%	2%	2%	2%	2%	2%	2%	2%
IPC + LD																	
Aspirin	56%	18%	9%	10%	5%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
LY517717	2%	7%	8%	6%	7%	7%	5%	4%	3%	3%	3%	3%	3%	4%	4%	7%	23%
None	0%	1%	1%	3%	5%	7%	9%	10%	9%	9%	9%	9%	8%	7%	6%	5%	3%
Rivaroxaban	0%	0%	0%	0%	0%	0%	1%	1%	2%	4%	6%	9%	12%	15%	18%	18%	12%
Tinzaparin	0%	0%	1%	2%	4%	6%	9%	10%	11%	10%	9%	8%	8%	7%	6%	5%	3%
Warfarin	0%	1%	7%	13%	15%	20%	20%	13%	6%	3%	1%	1%	0%	0%	0%	0%	0%
YM150	13%	19%	10%	8%	12%	7%	4%	3%	2%	2%	2%	2%	2%	2%	2%	4%	6%

4 Table 92. Final Network Meta-Analysis Complete Ranking of Agents – Major Bleeding

	Rank 1				_		_	0	0				Rank 13
Treatment	(Best)	2	3	4	5	6	7	8	9	10	11	12	(Worst)
Apixaban	1%	2%	2%	3%	5%	8%	11%	12%	14%	13%	13%	11%	6%
Dabigatran	2%	2%	3%	4%	6%	10%	11%	12%	12%	11%	11%	10%	5%
Dalteparin	6%	3%	3%	4%	5%	10%	7%	6%	7%	7%	10%	12%	19%
Desirudin	2%	2%	2%	3%	4%	6%	6%	7%	7%	9%	12%	15%	26%
Enoxaparin	0%	1%	3%	5%	7%	10%	18%	21%	17%	11%	5%	1%	0%
Enoxaparin +													
GCS	23%	31%	18%	8%	4%	2%	2%	2%	3%	3%	3%	1%	1%
Fondaparinux	6%	5%	15%	13%	24%	7%	5%	4%	5%	4%	5%	4%	3%
Fondaparinux +													
GCS	27%	29%	16%	10%	3%	2%	2%	2%	3%	2%	2%	1%	0%
IPC + GCS	6%	9%	16%	20%	10%	4%	3%	3%	3%	4%	5%	11%	8%
Rivaroxiban	6%	6%	7%	10%	12%	23%	15%	9%	5%	3%	2%	1%	0%
Tinzaparin	3%	3%	3%	4%	6%	9%	9%	8%	8%	10%	12%	14%	13%
Warfarin	0%	1%	2%	3%	4%	6%	9%	12%	14%	18%	17%	11%	3%
Warfarin + GCS	20%	6%	10%	13%	10%	3%	2%	2%	3%	3%	4%	8%	15%

7 Table 93. Final Network Meta-Analysis Complete Ranking of Agents – All Cause Mortality

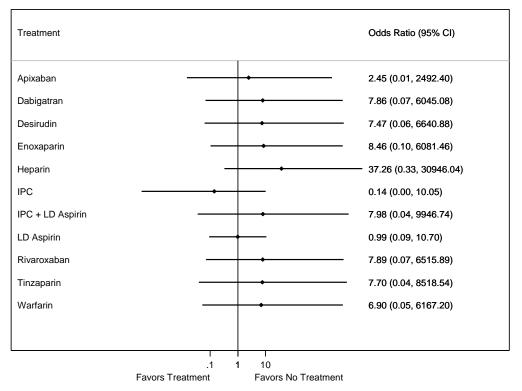
	Rank 1									Rank 10
Treatment	(Best)	2	3	4	5	6	7	8	9	(Worst)
Apixaban	11%	19%	21%	18%	14%	9%	5%	2%	1%	0%
Dabigatran	3%	7%	11%	14%	15%	16%	14%	10%	8%	3%
Desirudin	5%	7%	8%	8%	9%	12%	14%	11%	14%	13%
Enoxaparin	0%	0%	3%	10%	18%	21%	20%	16%	9%	2%
Enoxaparin +										
IPC	17%	8%	7%	7%	6%	7%	10%	7%	11%	19%
IPC	7%	5%	6%	5%	5%	5%	6%	9%	14%	40%
LD Aspirin	15%	11%	9%	7%	6%	6%	8%	15%	14%	8%
None	4%	11%	11%	9%	8%	8%	10%	17%	19%	5%
Rivaroxaban	20%	20%	16%	13%	11%	8%	6%	4%	2%	1%
Tinzaparin	17%	12%	10%	9%	8%	9%	9%	8%	9%	8%

10 Table 94. Final Network Meta-Analysis Complete Ranking of Agents – Symptomatic DVT

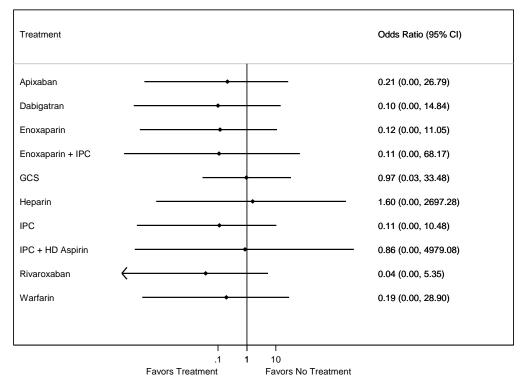
	Rank 1															Rank 16
Treatment	(Best)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	(Worst)
Apixaban	0%	2%	5%	9%	14%	19%	21%	15%	9%	4%	2%	1%	0%	0%	0%	0%
Dabigatran	0%	0%	0%	0%	1%	3%	6%	11%	17%	20%	17%	12%	8%	4%	1%	0%
Dalteparin	0%	1%	2%	3%	5%	7%	9%	12%	13%	11%	9%	9%	9%	6%	3%	0%
Desirudin	1%	2%	4%	6%	9%	11%	14%	14%	12%	8%	6%	5%	4%	2%	1%	1%
Enoxaparin	0%	0%	0%	0%	0%	0%	1%	3%	8%	18%	26%	25%	14%	4%	1%	0%
Enoxaparin +																
IPC	13%	28%	21%	14%	8%	5%	3%	2%	2%	1%	1%	1%	0%	0%	0%	0%
Fondaparinux	62%	12%	8%	8%	4%	2%	2%	1%	1%	1%	0%	0%	0%	0%	0%	0%
HD Aspirin	9%	12%	11%	11%	7%	6%	6%	5%	4%	3%	3%	3%	4%	4%	4%	7%
IPC	7%	14%	10%	10%	12%	9%	8%	7%	5%	4%	3%	3%	3%	2%	2%	0%
IPC + HD																
Aspirin	6%	16%	20%	14%	9%	7%	6%	5%	3%	3%	2%	2%	2%	2%	2%	1%
IPC + LD																
Aspirin	1%	2%	3%	3%	5%	5%	6%	7%	8%	7%	6%	7%	9%	10%	9%	11%
None	0%	0%	0%	0%	1%	1%	2%	4%	5%	5%	6%	8%	12%	16%	18%	21%
Rivaroxaban	1%	9%	15%	18%	23%	19%	9%	3%	1%	0%	0%	0%	0%	0%	0%	0%
Tinzaparin	0%	0%	0%	0%	0%	1%	1%	2%	4%	6%	8%	12%	18%	23%	18%	5%
Warfarin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%	6%	14%	31%	45%
YM150	0%	1%	1%	2%	3%	4%	6%	8%	9%	9%	8%	9%	11%	11%	10%	8%

13 Table 95. Final Network Meta-Analysis Complete Ranking of Agents – DVT

	Rank 1																Rank 17
Treatment	(Best)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	(Worst)
Apixaban	2%	6%	8%	9%	9%	11%	16%	14%	10%	7%	4%	2%	1%	1%	0%	0%	0%
Dabigatran	0%	1%	3%	6%	7%	9%	12%	15%	17%	13%	8%	5%	2%	1%	0%	0%	0%
Dalteparin	2%	3%	4%	4%	5%	6%	8%	9%	9%	9%	9%	8%	8%	7%	5%	3%	2%
Desirudin	3%	5%	5%	6%	7%	8%	11%	11%	10%	8%	7%	6%	5%	4%	3%	2%	1%
Enoxaparin	0%	0%	0%	0%	1%	2%	4%	6%	9%	14%	20%	20%	15%	7%	2%	0%	0%
Enoxaparin +																	
GCS	1%	7%	16%	18%	10%	7%	5%	5%	4%	4%	4%	4%	4%	4%	4%	4%	1%
Fondaparinux	11%	15%	16%	15%	12%	7%	5%	4%	3%	3%	2%	2%	2%	1%	1%	0%	0%
Fondaparinux																	
$+ \overline{\text{GCS}}$	16%	26%	17%	9%	6%	5%	4%	3%	3%	2%	2%	2%	2%	2%	1%	0%	0%
IPC	2%	2%	2%	3%	3%	4%	5%	6%	6%	6%	6%	7%	8%	9%	11%	12%	7%
IPC + GCS	0%	2%	2%	6%	15%	8%	6%	5%	5%	4%	4%	4%	4%	5%	6%	8%	15%
IPD + LD																	
Aspirin	2%	2%	2%	2%	3%	3%	4%	4%	5%	5%	5%	6%	6%	8%	9%	10%	22%
None	0%	0%	0%	0%	0%	0%	1%	1%	2%	3%	4%	5%	7%	10%	15%	24%	28%
Rivaroxaban	23%	17%	11%	10%	11%	18%	6%	2%	1%	0%	0%	0%	0%	0%	0%	0%	0%
Tinzaparin	0%	0%	1%	1%	2%	3%	4%	6%	7%	9%	11%	12%	13%	12%	9%	6%	3%
Warfarin	0%	0%	0%	0%	0%	0%	1%	1%	2%	3%	5%	8%	12%	18%	20%	18%	11%
Warfarin +																	
GCS	38%	11%	9%	8%	5%	4%	3%	3%	2%	2%	2%	2%	2%	2%	2%	3%	1%
YM150	1%	2%	3%	3%	3%	4%	5%	6%	6%	7%	7%	7%	8%	9%	9%	9%	10%


Table 96. Final Network Meta-Analysis Complete Ranking of Agents – Proximal DVT

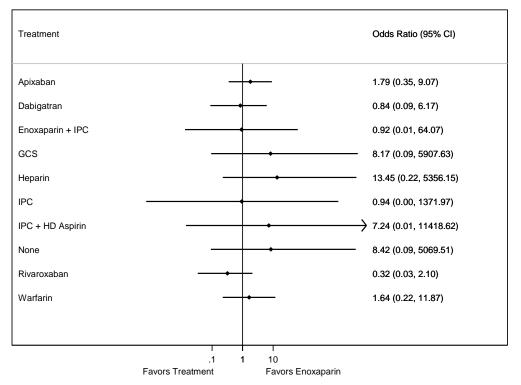
SENSITIVITY ANALYSIS RESULTS PULMONARY EMBOLISM


Figure 108. Pulmonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Treatment		Odds Ratio (95% CI)
Apixaban		1.09 (0.07, 14.43)
Dabigatran	_	0.94 (0.06, 12.59)
Desirudin		0.85 (0.04, 17.13)
Enoxaparin		0.99 (0.08, 10.67)
Enoxaparin + IPC		0.95 (0.01, 96.16)
GCS		1.54 (0.08, 27.19)
HD Aspirin		- 7.98 (0.00, 56954.04)
Heparin		4.46 (0.25, 78.96)
IPC	-	0.28 (0.01, 3.88)
IPC + HD Aspirin	•	8.01 (0.01, 21396.87)
IPC + LD Aspirin		0.93 (0.02, 36.60)
LD Aspirin	_	0.99 (0.15, 6.53)
Rivaroxaban		0.57 (0.04, 7.69)
Tinzaparin		0.99 (0.03, 35.23)
Tinzaparin + GCS		1.59 (0.01, 230.90)
Warfarin		1.06 (0.07, 15.52)
	.1 1 10	
	Favors Treatment Favors No Treatment	

Figure 109. Pulmonary Embolism among Hip Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Figure 110. Pulmonary Embolism among Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)


Figure 111. Pulmonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Treatment		Odds Ratio (95% CI)
Apixaban	—	1.10 (0.38, 3.15)
Dabigatran	_ + _	0.95 (0.29, 2.80)
Desirudin	_	0.86 (0.16, 5.01)
Enoxaparin + IPC		0.96 (0.02, 49.01)
GCS		1.56 (0.07, 35.41)
HD Aspirin		→ 8.05 (0.01, 38948.66)
Heparin		4.50 (1.12, 21.28)
IPC		0.29 (0.01, 7.43)
IPC + HD Aspirin		8.08 (0.02, 14913.17)
IPC + LD Aspirin		0.94 (0.06, 15.00)
LD Aspirin		0.99 (0.05, 21.76)
None		1.01 (0.09, 12.18)
Rivaroxaban		0.58 (0.19, 1.67)
Tinzaparin		1.00 (0.07, 13.28)
Tinzaparin + GCS		1.60 (0.01, 237.22)
Warfarin	_ _	1.07 (0.35, 3.55)
	.1 1 10	
	Favors Treatment Favors Enoxaparin	

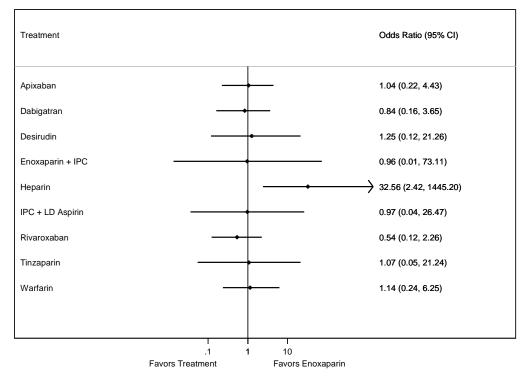
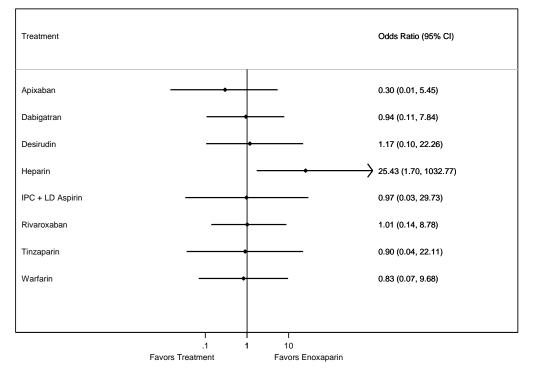
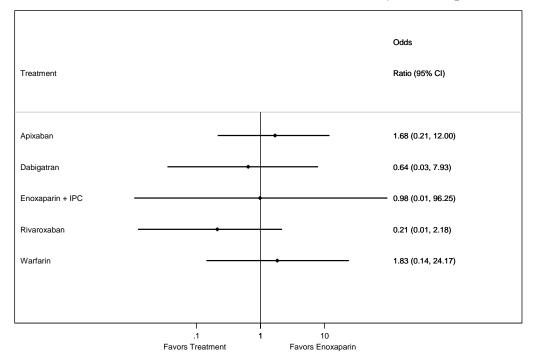
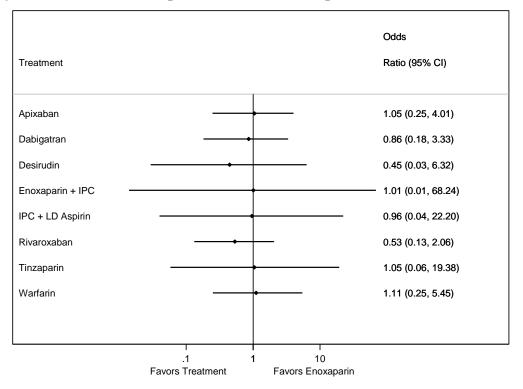

		Odds
Treatment		Ratio (95% CI)
Apixaban	+	0.29 (0.02, 3.62)
Dabigatran		0.93 (0.14, 6.03)
Desirudin		0.88 (0.13, 7.68)
Heparin		4.41 (0.80, 31.28)
IPC	<	0.02 (0.00, 9.61)
IPC + LD Aspirin		0.94 (0.05, 21.14)
LD Aspirin		0.12 (0.00, 17.48)
None		0.12 (0.00, 9.63)
Rivaroxaban	_ _	0.93 (0.17, 5.48)
Tinzaparin		0.91 (0.05, 17.57)
Warfarin	_	0.82 (0.10, 6.75)
	.1 1 10	
	Favors Treatment Favors Enoxaparin	

Figure 112. Pulmonary Embolism among Hip Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 113. Pulmonary Embolism among Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 114. Pulmonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Figure 115. Pulmonary Embolism among Hip Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

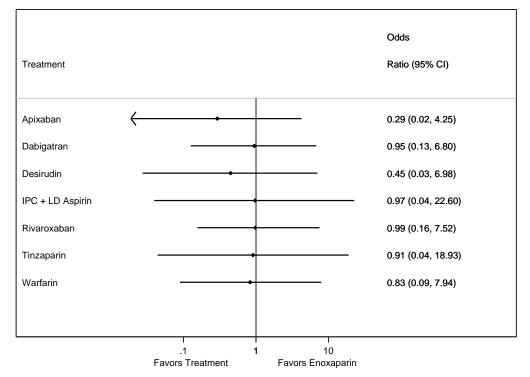

Figure 116. Pulmonary Embolism among Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Figure 117. Pulmonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

Figure 119. Pulmonary Embolism among Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

Same as prior model

Figure 120. Pulmonary Embolism among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

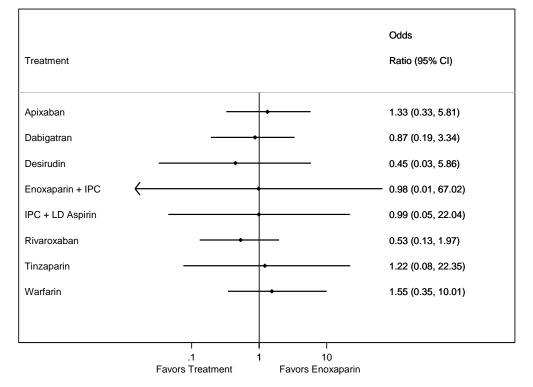
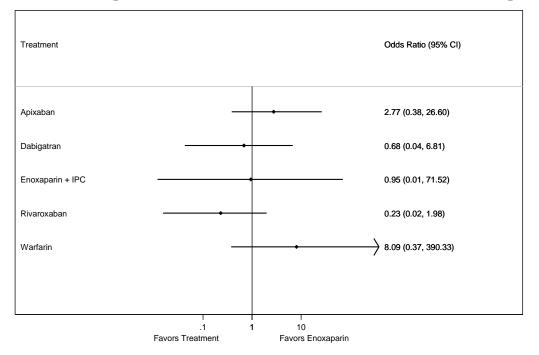



Figure 121. Pulmonary Embolism among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Same as prior model

Figure 122. Pulmonary Embolism among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

MAJOR BLEEDING

Figure 123. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Treatment		Odds Ratio (95% CI)
Apixaban	_ -	1.46 (0.52, 4.26)
Dabigatran	_	2.37 (0.93, 6.47)
Dalteparin		1.73 (0.44, 6.81)
Desirudin	+ •	2.22 (0.69, 7.80)
Enoxaparin	↓ ●	1.85 (0.78, 4.69)
Enoxaparin + GCS	+	0.27 (0.01, 5.53)
Fondaparinux		2.61 (0.77, 9.57)
Fondaparinux + GCS	+	0.54 (0.01, 11.30)
GCS	+	0.26 (0.01, 3.87)
HD Aspirin	+	0.62 (0.07, 5.17)
Heparin	_	2.38 (0.88, 6.63)
IPC —		0.15 (0.00, 4.51)
IPC + LD Aspirin		0.02 (0.00, 0.56)
LY517717	+	1.60 (0.03, 67.15)
Rivaroxaban		2.86 (0.98, 8.63)
Tinzaparin		1.68 (0.43, 6.61)
Warfarin	_4 _	0.88 (0.28, 2.81)
YM150		0.27 (0.00, 13.41)
	.1 1 10	
Favore	Treatment Favors No T	reatment

Figure 124. Major Bleeding among Hip Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Treatment	Odds Ratio (95% CI)
Apixaban	← 4.28 (0.91, 23.08)
Dabigatran -	→ 5.62 (1.35, 26.82)
Dalteparin	2.23 (0.34, 16.01)
Desirudin	← 4.07 (0.95, 20.99)
Enoxaparin	► 3.46 (0.95, 14.53)
Enoxaparin + GCS	0.34 (0.00, 25.51)
Fondaparinux	← 4.82 (1.07, 24.24)
Fondaparinux + GCS	0.55 (0.00, 39.25)
GCS	0.34 (0.00, 99.58)
HD Aspirin	
Heparin —	← 4.39 (1.19, 18.39)
IPC + LD Aspirin	0.03 (0.00, 1.21)
LY517717	2.86 (0.07, 111.72)
Rivaroxaban -	→ 6.26 (1.35, 36.71)
Tinzaparin	2.41 (0.39, 15.72)
Warfarin —	- 1.15 (0.20, 7.07)
YM150	0.47 (0.00, 27.63)
	Ι
.1 1 Favors Treatment F	10 Favors No Treatment

Figure 125. Major Bleeding among Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

_

Treatment		Odds Ratio (95% Cl)
Apixaban		0.84 (0.15, 5.99)
Dabigatran	•	1.17 (0.25, 6.61)
Enoxaparin	-	1.31 (0.30, 6.04)
Fondaparinux		1.05 (0.02, 45.15)
GCS		0.14 (0.00, 5.42)
Heparin		1.33 (0.09, 20.64)
IPC		0.13 (0.00, 5.49)
Rivaroxaban	+	1.70 (0.25, 10.72)
Warfarin		0.73 (0.11, 4.95)
	.1 1 10 Favors Treatment Favors No Treatment	:

Figure 126. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis
Results from All Trials (vs. Enoxaparin)

Treatment	Odds Ratio (95% CI)
Apixaban 🔸	0.79 (0.45, 1.38)
Dabigatran +	1.28 (0.80, 2.04)
Dalteparin	0.93 (0.32, 2.61)
Desirudin -	1.20 (0.54, 2.88)
Enoxaparin + GCS	0.14 (0.00, 2.72)
Fondaparinux	1.41 (0.48, 4.20)
Fondaparinux + GCS	0.29 (0.01, 5.53)
GCS	0.14 (0.00, 2.01)
HD Aspirin	0.33 (0.05, 2.26)
Heparin -	1.29 (0.70, 2.30)
IPC	0.08 (0.00, 2.36)
IPC + LD Aspirin	0.01 (0.00, 0.26)
LY517717	0.86 (0.02, 31.41)
None	0.54 (0.21, 1.28)
Rivaroxaban 🔸	1.55 (0.82, 2.91)
Tinzaparin —	0.91 (0.31, 2.54)
Warfarin -	0.48 (0.23, 0.96)
YM150	0.15 (0.00, 6.37)
.1 1 10. Favors Treatment Favors Enoxapa	arin

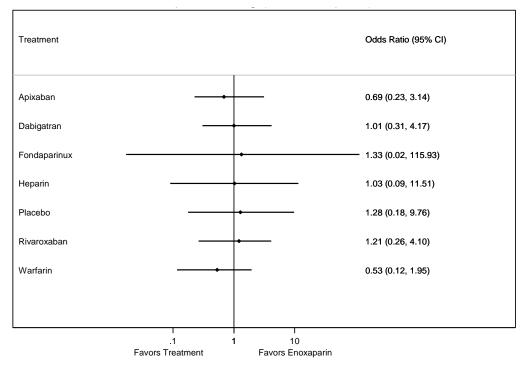
Figure 127. Major Bleeding among Hip Patients - Network Meta-Analysis Resul	lts
rom All Trials (vs. Enoxaparin)	
_	

Treatment	Odds Ratio (95% CI)
Apixaban 🔶	1.24 (0.51, 3.00)
Dabigatran +	1.63 (0.94, 2.89)
Dalteparin	0.65 (0.17, 2.47)
Desirudin -	1.18 (0.54, 2.69)
Enoxaparin + GCS	0.10 (0.00, 7.16)
Fondaparinux	1.39 (0.45, 4.24)
Fondaparinux + GCS	0.16 (0.00, 11.09)
GCS	0.10 (0.00, 26.02)
HD Aspirin	0.23 (0.03, 1.89)
Heparin 🔶	1.27 (0.66, 2.32)
IPC + LD Aspirin	0.01 (0.00, 0.24)
LY517717	0.83 (0.02, 25.76)
None	0.29 (0.07, 1.06)
Rivaroxaban	1.81 (0.71, 4.73)
Tinzaparin	0.70 (0.20, 2.41)
Warfarin	0.33 (0.10, 1.03)
YM150	0.14 (0.00, 5.96)
.1 1 10	
Favors Treatment Favors Er	noxaparin

Figure 128. Major Bleeding among Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

_

Treatment		Odds Ratio (95% Cl)
Apixaban	<u> </u>	0.65 (0.25, 2.05)
Dabigatran	_ + _	0.90 (0.31, 2.85)
Fondaparinux		0.80 (0.01, 45.74)
GCS		0.10 (0.00, 3.71)
Heparin		1.02 (0.11, 9.52)
IPC		0.10 (0.00, 4.04)
None	_	0.77 (0.17, 3.33)
Rivaroxaban	_ -	1.30 (0.38, 3.85)
Warfarin	_	0.56 (0.17, 1.76)
	.1 1 10 Favors Treatment Favors Enoxaparir	


Figure 129. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

		Odds
Treatment		Ratio (95% CI)
Apixaban		0.79 (0.44, 1.43)
Dabigatran	_ +	1.29 (0.79, 2.09)
Dalteparin	•	0.90 (0.31, 2.61)
Desirudin	+	1.21 (0.53, 2.96)
Fondaparinux		1.42 (0.46, 4.34)
HD Aspirin		0.32 (0.04, 2.39)
Heparin	_ -	1.32 (0.69, 2.39)
LY517717	<	0.88 (0.02, 37.83)
None	+	0.56 (0.21, 1.46)
Rivaroxaban	 •_	1.54 (0.81, 2.97)
Tinzaparin		0.89 (0.30, 2.57)
Warfarin	- _	0.46 (0.22, 0.98)
	.1 1 10 Favors Treatment Favors Enoxaparin	

Figure 130. Major Bleeding among Hip Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

_		Odds
Treatment		Ratio (95% CI)
Apixaban		1.22 (0.37, 3.96)
Dabigatran	+	1.63 (0.81, 3.50)
Dalteparin	-	0.64 (0.12, 3.06)
Desirudin		1.20 (0.45, 3.54)
Fondaparinux		1.47 (0.40, 6.01)
HD Aspirin		0.23 (0.02, 2.37)
Heparin	+	1.21 (0.48, 2.47)
LY517717		0.85 (0.02, 30.05)
None	<	0.15 (0.02, 0.83)
Rivaroxaban		1.86 (0.65, 5.58)
Tinzaparin	-	0.68 (0.16, 2.68)
Warfarin		0.33 (0.08, 1.21)
	.1 1 10 Favors Treatment Favors Enoxaparin	I

Figure 131. Major Bleeding among Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Figure 132. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis **Results Without Heparin Trials (vs. Enoxaparin)**

-

Treatment			Odds Ratio (95% Cl)
Apixaban		_	0.80 (0.45, 1.42)
Dabigatran	+	←	1.31 (0.82, 2.11)
Dalteparin			0.92 (0.30, 2.59)
Desirudin			1.00 (0.38, 2.62)
Fondaparinux		- -	1.58 (0.53, 4.80)
HD Aspirin			0.33 (0.05, 2.40)
LY517717	<		0.88 (0.02, 29.64)
None			0.92 (0.30, 2.71)
Rivaroxaban	+		1.55 (0.81, 2.93)
Tinzaparin			0.89 (0.30, 2.51)
Warfarin	_		0.47 (0.22, 0.97)
	.1 1 Favors Treatment	10 Eavors Enovanarin	

Favors Treatment Favors Enoxaparin

Figure 133. Major Bleeding among Hip Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

Treatment		Odds Ratio (95% CI)
Apixaban		1.22 (0.37, 4.10)
Dabigatran	+	1.65 (0.80, 3.49)
Dalteparin		0.66 (0.12, 3.22)
Desirudin		1.01 (0.30, 3.31)
Fondaparinux		1.62 (0.44, 6.61)
HD Aspirin	• • • • • • • • • • • • • • • • • • •	0.23 (0.02, 2.37)
LY517717		0.95 (0.02, 42.35)
None		0.34 (0.03, 2.12)
Rivaroxaban	—	1.83 (0.65, 5.43)
Tinzaparin		0.69 (0.16, 2.77)
Warfarin		0.34 (0.08, 1.23)
	.1 1 10 Favors Treatment Favors Enoxaparin	

Figure 134. Major Bleeding among Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

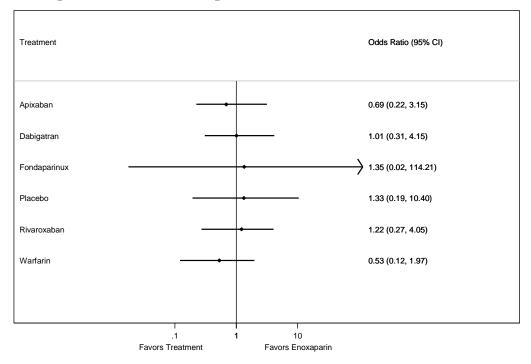


Figure 135. Major Bleeding among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)


Treatment		Odds Ratio (95% CI)
Apixaban	_	0.75 (0.41, 1.33)
Dabigatran	- -	1.32 (0.82, 2.10)
Dalteparin	_	0.95 (0.32, 2.74)
Desirudin		0.98 (0.38, 2.59)
Fondaparinux		1.56 (0.51, 4.84)
HD Aspirin		0.34 (0.04, 2.18)
LY517717		- 0.95 (0.03, 42.69)
None		0.90 (0.30, 2.59)
Rivaroxaban		1.55 (0.81, 2.92)
Tinzaparin		0.92 (0.30, 2.64)
Warfarin	- _	0.48 (0.23, 1.00)
	.1 1 10 Favors Treatment Favors Enoxaparir	

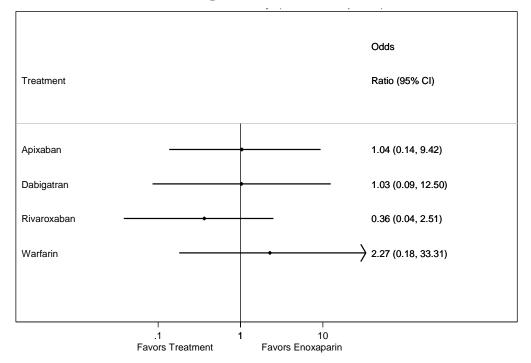
ravors meatment ravors Enovapann

Figure 136. Major Bleeding among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

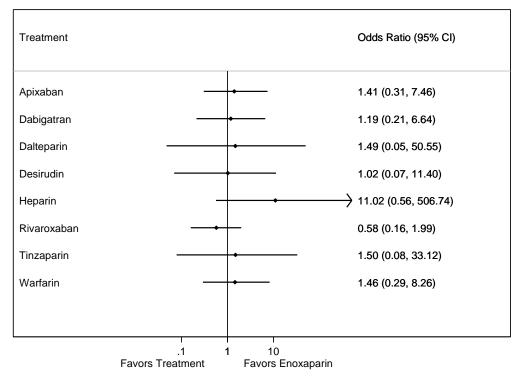
Same as prior model

Figure 137. Major Bleeding among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

ALL CAUSE MORTALITY


Figure 138. All Cause Mortality among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Treatment		Odds Ratio (95% CI)
Apixaban	_ -	1.33 (0.40, 4.95)
Dabigatran	_ -	1.19 (0.31, 4.71)
Dalteparin	-	1.39 (0.07, 27.72)
Desirudin	- _	1.48 (0.20, 11.13)
Enoxaparin + GCS		0.04 (0.00, 8.55)
Fondaparinux		0.17 (0.00, 10.92)
Fondaparinux + GCS		0.04 (0.00, 6.73)
Heparin	+	4.95 (0.53, 59.86)
IPC + GCS		0.17 (0.00, 100.69)
Rivaroxiban		0.61 (0.24, 1.54)
Tinzaparin	+	1.41 (0.15, 15.10)
Warfarin	_ 	1.40 (0.42, 5.41)
Warfarin + GCS		0.18 (0.00, 370.18)
	.1 1 10 Favors Treatment Favors Enoxaparin	


Odds Treatment Ratio (95% CI) Apixaban 3.01 (0.18, 60.28) 1.30 (0.12, 13.56) Dabigatran Dalteparin 1.16 (0.02, 58.91) Desirudin 1.43 (0.12, 15.56) Enoxaparin + GCS 0.04 (0.00, 15.94) 4 Fondaparinux 0.20 (0.00, 15.85) Fondaparinux + GCS 0.05 (0.00, 12.18) Heparin 4.94 (0.36, 85.88) Rivaroxaban 0.86 (0.18, 4.96) 1.15 (0.03, 38.59) Tinzaparin Warfarin 1.14 (0.10, 13.03) .1 1 10 Favors Enoxaparin **Favors Treatment**

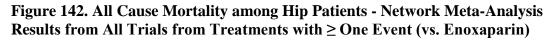

Figure 139. All Cause Mortality among Hip Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 140. All Cause Mortality among Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 141. All Cause Mortality among Hip and Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

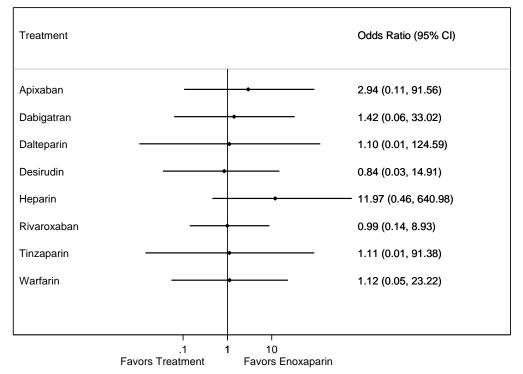


Figure 143. All Cause Mortality among Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Same as prior model

Figure 144. All Cause Mortality among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

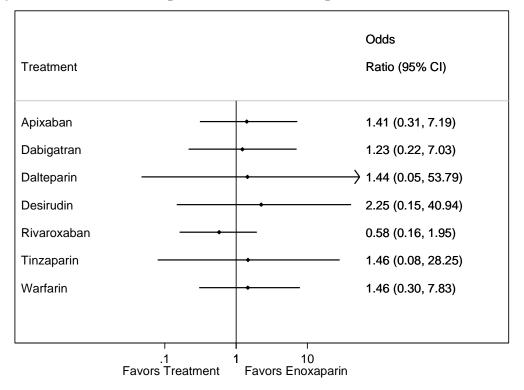


Figure 145. All Cause Mortality among Hip Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

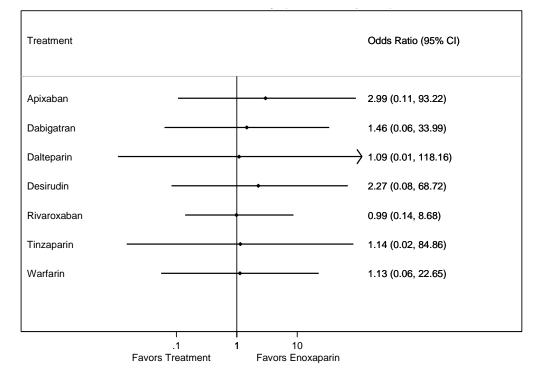


Figure 146. All Cause Mortality among Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

Same as prior model

Figure 147. All Cause Mortality among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Same as prior model

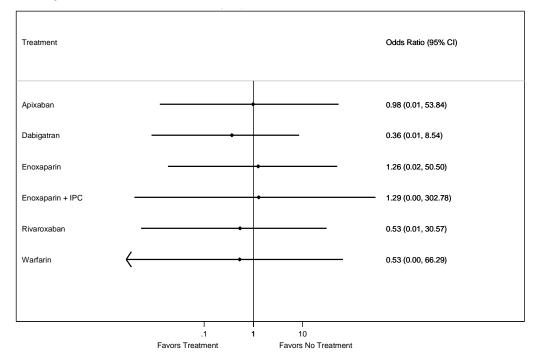
Figure 148. All Cause Mortality among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Same as prior model

Figure 149. All Cause Mortality among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Same as prior model

SYMPTOMATIC DEEP VEIN THROMBOSIS


Figure 150. Symptomatic Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

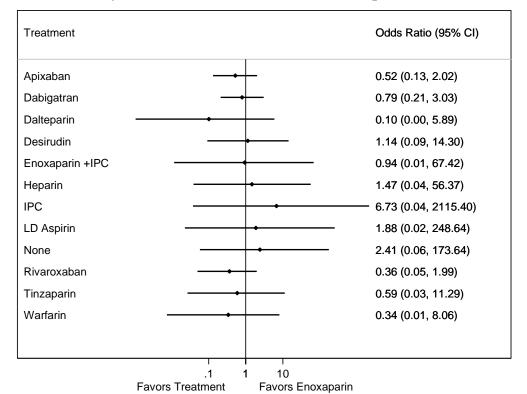

Treatment		Odds Ratio (95% CI)
Apixaban		0.22 (0.00, 11.59)
Dabigatran	-	0.33 (0.01, 10.70)
Dalteparin		0.04 (0.00, 11.42)
Desirudin		0.47 (0.00, 42.52)
Enoxaparin		0.42 (0.01, 17.12)
Enoxaparin +IPC		0.39 (0.00, 121.75)
Heparin		0.61 (0.00, 117.92)
IPC		2.79 (0.08, 130.71)
LD Aspirin		0.78 (0.07, 8.61)
Rivaroxaban		0.15 (0.00, 8.86)
Tinzaparin		0.24 (0.00, 29.28)
Warfarin		0.14 (0.00, 20.49)
	.1 1 10 Favors Treatment Favors No Treatment	

Figure 151. Symptomatic Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

No studies in the model with no treatment as a comparator

Figure 152. Symptomatic Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Figure 153. Symptomatic Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 154. Symptomatic Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

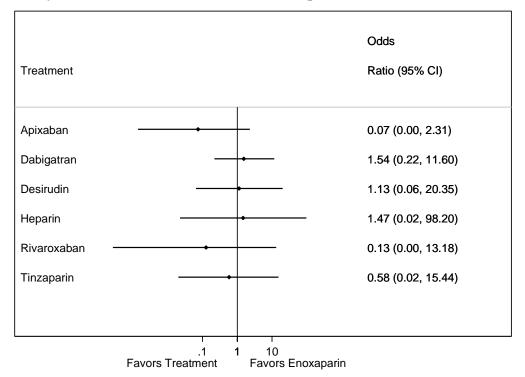


Figure 155. Symptomatic Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

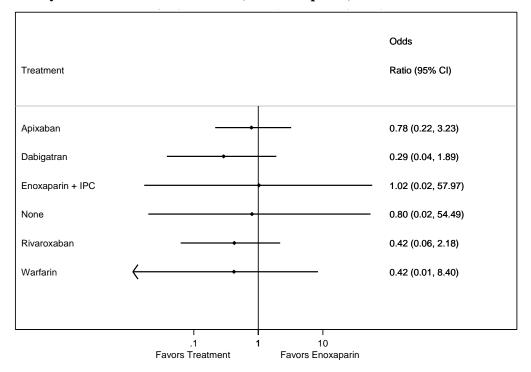


Figure 156. Symptomatic Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Treatment		Odds Ratio (95% CI)
Apixaban	- _	0.52 (0.11, 2.40)
Dabigatran	_	0.80 (0.19, 3.43)
Dalteparin	· · · · · · · · · · · · · · · · · · ·	0.11 (0.00, 8.20)
Desirudin		1.12 (0.07, 18.25)
Enoxaparin +IPC		0.94 (0.01, 73.11)
Heparin		1.43 (0.03, 78.49)
IPC		- 6.20 (0.03, 2219.42)
LD Aspirin		1.76 (0.01, 284.58)
None		2.26 (0.04, 192.48)
Rivaroxaban	-	0.22 (0.02, 1.72)
Tinzaparin		0.58 (0.02, 13.94)
Warfarin		0.35 (0.01, 10.37)
	.1 1 10 Favors Treatment Favors Enoxaparin	

Figure 157. Symptomatic Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

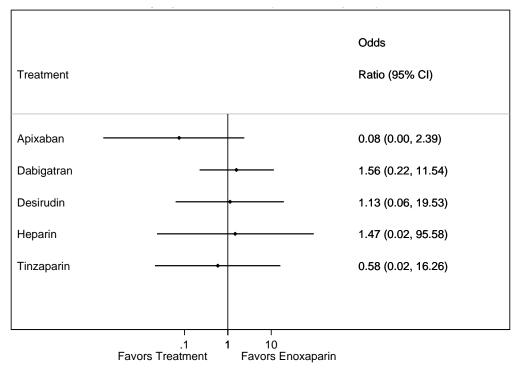
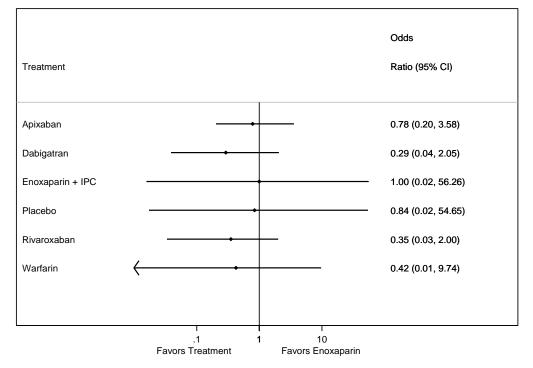



Figure 158. Symptomatic Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Figure 159. Symptomatic Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

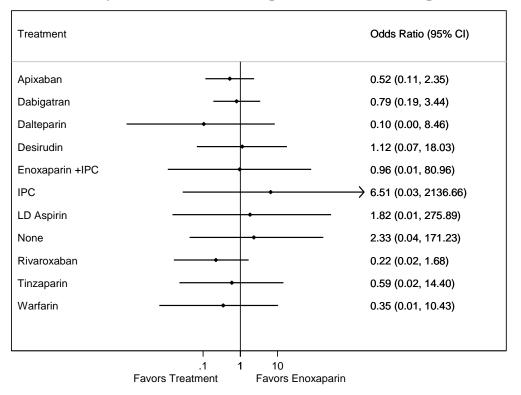


Figure 160. Symptomatic Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

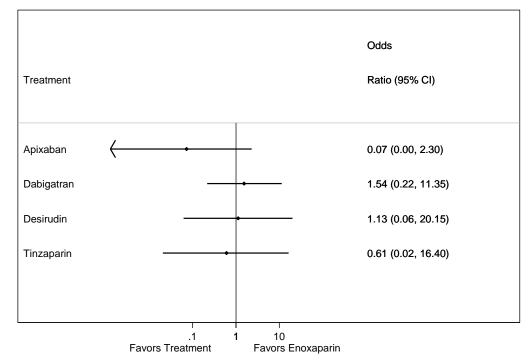


Figure 161. Symptomatic Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

Same as prior model

Figure 162. Symptomatic Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

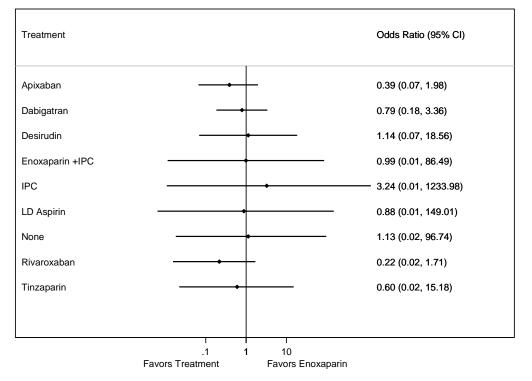
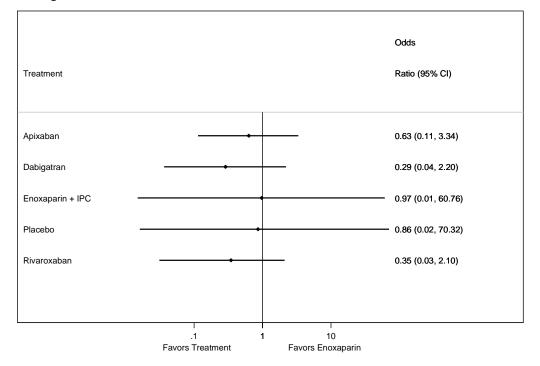



Figure 163. Symptomatic Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Same as prior model

Figure 164. Symptomatic Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

1 DEEP VEIN THROMBOSIS

Table 97. Summary of Network Meta-Analysis Results - DVT

		Hip and H	Knee		Нір		Knee
Agent	All Trials	Without Heparin Trials	Without Heparin or Multi-Arm Trials (Final Model)	All Trials	Without Heparin or Multi-Arm Trials (Final Model)	All Trials	Without Heparin Trials
Apixaban	•	•	0	•	•	•	•
Dabigatran	•	•	0	0	0	•	•
Dalteparin	•	0	0	0	0	n/a	n/a
Desirudin	•	•	0	0	0	n/a	n/a
Enoxaparin	•	•	0	0	0	•	•
Enoxaparin + IPC	•	•	0	n/a	n/a	•	•
Fondaparinux		•	•	n/ u	•	n/a	n/a
GCS	0	0	n/a	n/a	n/a	0	0
HD Aspirin	0	0	0	n/a	n/a n/a	n/a	n/a
Heparin	0	n/a	n/a	0	n/a n/a	0	n/a n/a
IPC		11/ d	11/ a	•	•	•	n/ a
IPC + HD		·	·	•	·	·	•
Aspirin	•	•	0	n/a	n/a	•	•
IPC + LD							
Aspirin	0	0	0	0	0	n/a	n/a
Rivaroxaban	•	•	•	•	•	•	٠
Tinzaparin	0	0	0	0	0	n/a	n/a
Tinzaparin +							
GCS	0	0	n/a	n/a	n/a	n/a	n/a
Warfarin	0	0	0	0	0	0	0
YM150	0	0	0	0	0	n/a	n/a

- $3 \bullet = significantly reduces DVT as compared to no treatment/placebo; <math>\circ = no significant difference between agent and no treatment/placebo;$
- 4 n/a=agent not in model
- 5 Hip model without heparin trials is the same as the final model
- 6 Knee final model lacked a no treatment group

Figure 165. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-
Analysis Results from All Trials (vs. No Treatment)

Treatment		Odds Ratio (95% CI)
Apixaban	_ _	0.24 (0.10, 0.53)
Dabigatran	— •—	0.37 (0.17, 0.80)
Dalteparin		0.34 (0.12, 0.95)
Desirudin		0.28 (0.11, 0.67)
Enoxaparin	_ _	0.41 (0.20, 0.82)
Enoxaparin + IPC		0.12 (0.03, 0.48)
Fondaparinux		0.06 (0.01, 0.33)
GCS	+	0.64 (0.25, 1.60)
HD Aspirin	+	0.20 (0.02, 1.71)
Heparin	- _	0.82 (0.35, 1.89)
IPC	—	0.35 (0.18, 0.68)
IPC + HD Aspirin		0.15 (0.03, 0.88)
IPC + LD Aspirin		0.40 (0.09, 1.65)
Rivaroxaban	→	0.17 (0.08, 0.37)
Tinzaparin	 +	0.54 (0.21, 1.36)
Tinzaparin + GCS		0.35 (0.10, 1.26)
Warfarin	+	0.81 (0.35, 1.85)
YM150	+	0.42 (0.13, 1.38)
L	.1 1 10	
	Favors Treatment Favors No Treat	ment

		Odds
Freatment		Ratio (95% CI)
Apixaban —		0.22 (0.07, 0.69)
Dabigatran	+ _	0.52 (0.20, 1.36)
Dalteparin		0.43 (0.10, 1.89)
Desirudin		0.51 (0.19, 1.41)
Enoxaparin	+	0.71 (0.30, 1.68)
Fondaparinux	<u> </u>	0.09 (0.01, 0.57)
leparin	_ 	1.56 (0.58, 4.45)
PC	→	0.32 (0.15, 0.70)
PC + LD Aspirin	+	0.68 (0.16, 2.92)
Rivaroxaban -	→	0.20 (0.08, 0.56)
Tinzaparin	+	0.78 (0.24, 2.53)
Varfarin		1.03 (0.27, 4.00)

Figure 166. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

.1 1 10 Favors Treatment Favors No Treatment

0.72 (0.21, 2.46)

YM150

Figure 167. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

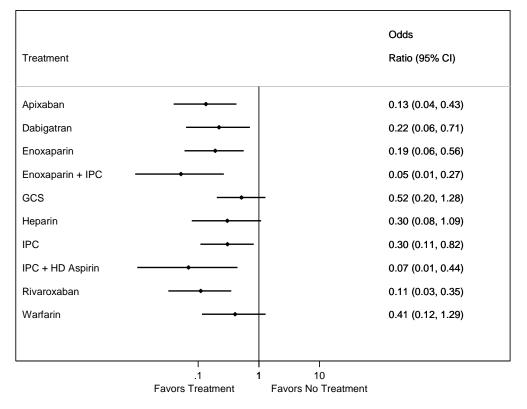
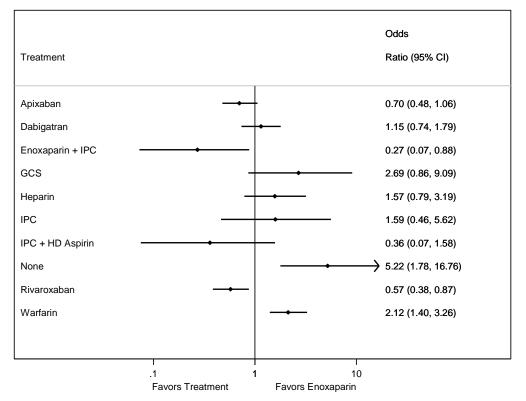


Figure 168. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)


Treatment		Odds Ratio (95% CI)
Apixaban Dabigatran Dalteparin Desirudin Enoxaparin + IPC - Fondaparinux GCS HD Aspirin - Heparin IPC		$\begin{array}{c} 0.58 \ (0.39, \ 0.87) \\ 0.90 \ (0.63, \ 1.27) \\ 0.83 \ (0.40, \ 1.75) \\ 0.68 \ (0.39, \ 1.18) \\ 0.28 \ (0.07, \ 0.96) \\ 0.14 \ (0.02, \ 0.69) \\ 1.55 \ (0.57, \ 4.36) \\ 0.48 \ (0.06, \ 3.68) \\ 2.00 \ (1.26, \ 3.22) \\ 0.86 \ (0.36, \ 2.10) \end{array}$
IPC + HD Aspirin IPC + LD Aspirin None Rivaroxaban Tinzaparin Tinzaparin + GCS Warfarin YM150		0.37 (0.07, 1.82) 0.96 (0.28, 3.31) 2.43 (1.21, 5.00) 0.42 (0.30, 0.59) 1.32 (0.71, 2.41) 0.84 (0.22, 3.33) 1.97 (1.27, 3.07) 1.03 (0.40, 2.65)
Favors	.1 1 10 Treatment Favors Enox	anarin

Favors Treatment Favors Enoxaparin

		Odds
Treatment		Ratio (95% CI)
Apixaban	_	0.31 (0.14, 0.66)
Dabigatran	-+	0.74 (0.48, 1.12)
Dalteparin		0.61 (0.19, 1.96)
Desirudin		0.72 (0.43, 1.24)
Fondaparinux		0.13 (0.02, 0.62)
Heparin		2.21 (1.35, 3.89)
IPC		0.45 (0.14, 1.46)
IPC + LD Aspirin		0.96 (0.30, 3.15)
None		1.41 (0.60, 3.38)
Rivaroxaban	—	0.29 (0.19, 0.46)
Tinzaparin	+	1.11 (0.51, 2.39)
Warfarin		1.45 (0.52, 4.03)
YM150	_	1.02 (0.42, 2.44)
	11 10	
	Favors Treatment Favors Enoxapa	arin

Figure 169. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 170. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Figure 171. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Same as prior model

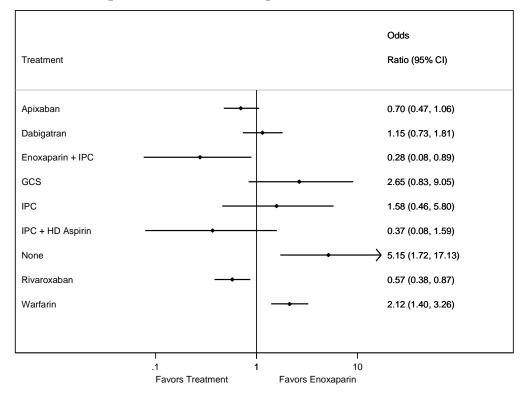
Figure 172. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Same as prior model

Figure 173. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials from Treatments with ≥ One Event (vs. Enoxaparin)

Same as prior model

Figure 174. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-	
Analysis Results Without Heparin Trials (vs. Enoxaparin)	


Treatment	Odds Ratio (95% CI)
Apixaban —	0.58 (0.37, 0.90)
Dabigatran	0.89 (0.61, 1.30)
Dalteparin	- 0.84 (0.37, 1.86)
Desirudin	- 0.66 (0.29, 1.49)
Enoxaparin + IPC	0.28 (0.07, 1.03)
Fondaparinux	0.13 (0.02, 0.69)
GCS	◆ 1.55 (0.53, 4.58)
HD Aspirin	0.48 (0.06, 4.07)
IPC —	- 0.87 (0.35, 2.25)
IPC + HD Aspirin	- 0.38 (0.07, 2.03)
IPC + LD Aspirin	0.97 (0.27, 3.53)
None -	2.44 (1.18, 5.24)
Rivaroxaban -	0.42 (0.29, 0.60)
Tinzaparin	► 1.31 (0.68, 2.52)
Tinzaparin + GCS	0.85 (0.20, 3.64)
Warfarin -	→ 1.97 (1.22, 3.17)
YM150	1.03 (0.37, 2.83)
.1 1	10

Favors Treatment Favors Enoxaparin

Figure 175. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

		Odds
Treatment		Ratio (95% CI)
Apixaban		0.31 (0.11, 0.84)
Dabigatran	_ + _	0.74 (0.42, 1.29)
Dalteparin		0.61 (0.12, 2.87)
Desirudin	+	0.65 (0.25, 1.70)
Fondaparinux		0.14 (0.02, 0.71)
IPC		0.46 (0.10, 2.07)
IPC + LD Aspirin		0.98 (0.26, 3.75)
None	•	1.43 (0.48, 4.29)
Rivaroxaban	—	0.30 (0.17, 0.53)
Tinzaparin	-	1.10 (0.39, 3.00)
Warfarin		1.44 (0.35, 5.68)
YM150		1.02 (0.34, 3.05)
	.1 1 10	
	Favors Treatment Favors Enoxaparin	

Figure 176. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials (vs. Enoxaparin)

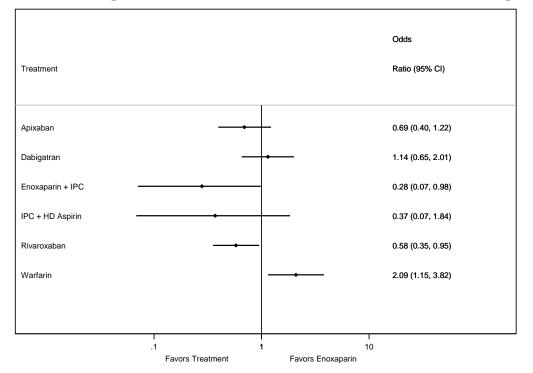

		Odds
Treatment		Ratio (95% CI)
Apixaban		0.56 (0.33, 0.93)
Dabigatran	—	0.89 (0.59, 1.33)
Dalteparin	-	0.82 (0.34, 2.03)
Desirudin	+	0.66 (0.27, 1.57)
Enoxaparin + IPC		0.28 (0.07, 1.03)
Fondaparinux	<	0.13 (0.02, 0.70)
HD Aspirin		0.47 (0.05, 4.22)
IPC + HD Aspirin		0.37 (0.07, 2.00)
IPC + LD Aspirin		0.96 (0.26, 3.62)
None	+ •	1.43 (0.51, 4.07)
Rivaroxaban		0.42 (0.29, 0.61)
Tinzaparin	 +•	1.30 (0.63, 2.65)
Warfarin		1.93 (1.07, 3.50)
YM150		1.02 (0.36, 2.92)
	.1 1 10 Favors Treatment Favors Enoxaparin	

Figure 177. Deep Vein Thrombosis among Hip and Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

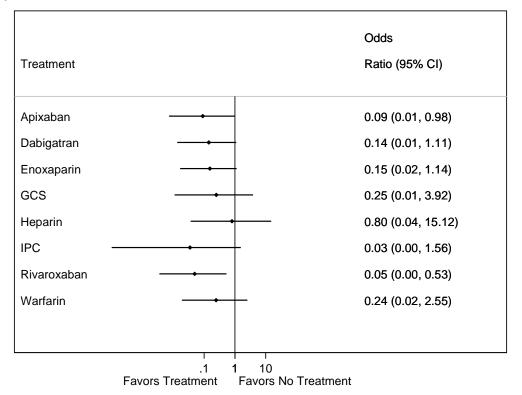
Figure 178. Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Same as prior model

Figure 179. Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

PROXIMAL DEEP VEIN THROMBOSIS

Figure 180. Proximal Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results from All Trials (vs. No Treatment)


		Odds
Treatment		Ratio (95% CI)
Apixaban	_	0.21 (0.06, 0.77)
Dabigatran	—	0.26 (0.08, 0.80)
Dalteparin		0.26 (0.05, 1.46)
Desirudin		0.22 (0.05, 0.92)
Enoxaparin	_	0.43 (0.14, 1.21)
Enoxaparin + GCS		0.13 (0.00, 3.03)
Fondaparinux		0.08 (0.00, 1.20)
Fondaparinux + GCS		0.07 (0.00, 1.48)
GCS	+	0.41 (0.03, 3.68)
Heparin	+ •	1.54 (0.40, 5.70)
IPC	—• – †	0.36 (0.11, 1.16)
IPC + GCS —		0.29 (0.01, 9.08)
IPC + LD Aspirin	+	0.68 (0.06, 8.82)
Rivaroxaban	→	0.08 (0.02, 0.29)
Tinzaparin		0.44 (0.10, 1.87)
Warfarin	+	0.63 (0.17, 2.33)
Warfarin + GCS 🖌 ←		0.05 (0.00, 2.56)
YM150	+	0.49 (0.06, 3.74)
L		
_	.1 1 10	
Favors	Treatment Favors No T	reatment

500

Figure 181. Proximal Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Treatment		Odds Ratio (95% CI)
Apixaban		0.22 (0.02, 2.13)
Dabigatran	_	0.32 (0.05, 2.09)
Dalteparin		0.32 (0.02, 5.19)
Desirudin	-	0.33 (0.04, 2.27)
Enoxaparin	+	0.68 (0.12, 3.58)
Enoxaparin + GCS —	•	0.15 (0.00, 6.46)
Fondaparinux —	•	0.11 (0.00, 2.76)
Fondaparinux + GCS —		0.09 (0.00, 3.34)
Heparin	+	2.14 (0.30, 14.28)
IPC	+ _	0.46 (0.11, 1.89)
IPC + GCS —		0.23 (0.00, 13.38)
IPC + LD Aspirin	-	1.09 (0.06, 21.59)
Rivaroxaban		0.08 (0.01, 0.58)
Tinzaparin		0.60 (0.06, 5.35)
Warfarin		0.76 (0.05, 9.87)
Warfarin + GCS		0.04 (0.00, 3.78)
YM150		0.76 (0.06, 9.12)
	.1 1 10	
Favor	s Treatment Favors No Tre	atment

Figure 182. Proximal Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials (vs. No Treatment)

Treatment	Odds Ratio (95% CI)
Apixaban	0.49 (0.23, 1.07)
Dabigatran	0.61 (0.33, 1.11)
Dalteparin	- 0.61 (0.15, 2.37)
Desirudin	0.52 (0.20, 1.34)
Enoxaparin + GCS	0.29 (0.01, 5.88)
Fondaparinux	- 0.19 (0.01, 2.27)
Fondaparinux + GCS	- 0.16 (0.01, 2.82)
GCS —	0.94 (0.07, 9.02)
Heparin	→ 3.58 (1.63, 7.91)
IPC	0.85 (0.18, 3.70)
IPC + GCS	0.67 (0.02, 18.21)
IPC + LD Aspirin	•
None	→ 2.32 (0.83, 6.92)
Rivaroxaban	0.19 (0.10, 0.38)
Tinzaparin	— 1.02 (0.37, 2.83)
Warfarin -	► 1.47 (0.66, 3.29)
Warfarin + GCS	0.13 (0.00, 5.25)
YM150	1.13 (0.19, 6.69)

Figure 183. Proximal Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Favors Treatment Favors Enoxaparin

Figure 184. Proximal Deep Vein Thrombosis among Hip Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

Treatment	Odds Ratio (95% CI)
Apixaban	0.33 (0.07, 1.52)
Dabigatran	0.48 (0.20, 1.09)
Dalteparin	0.48 (0.05, 4.30)
Desirudin	0.49 (0.17, 1.34)
Enoxaparin + GCS	- 0.22 (0.00, 6.03)
Fondaparinux	0.16 (0.00, 2.34)
Fondaparinux + GCS	0.14 (0.00, 3.05)
Heparin	- 3.17 (1.20, 8.22)
IPC	- 0.68 (0.08, 6.48)
IPC + GCS	
IPC + LD Aspirin	1.62 (0.16, 19.09)
None	- 1.48 (0.28, 8.25)
Rivaroxaban	0.12 (0.05, 0.33)
Tinzaparin —	0.89 (0.22, 3.63)
Warfarin —	- 1.13 (0.16, 7.93)
Warfarin + GCS	0.06 (0.00, 3.83)
YM150	- 1.13 (0.18, 6.97)
.1 1	10
Favors Treatment Fav	ors Enoxaparin

Figure 185. Proximal Deep Vein Thrombosis among Knee Patients - Network Meta-Analysis Results from All Trials (vs. Enoxaparin)

		Odds
Treatment		Ratio (95% CI)
Apixaban	-	0.59 (0.17, 2.10)
Dabigatran	_	0.92 (0.23, 3.40)
GCS		1.61 (0.07, 32.01)
Heparin	+	5.21 (0.63, 44.84)
IPC		0.23 (0.00, 11.74)
None	· · · · · · · · · · · · · · · · · · ·	6.48 (0.88, 59.80)
Rivaroxaban		0.32 (0.08, 1.18)
Warfarin		1.59 (0.46, 5.44)
	.1 1 10	
	Favors Treatment Favors Enoxaparin	

Figure 186. Proximal Deep Vein Thrombosis among Hip and Knee Patients -Network Meta-Analysis Results Without Heparin Trials and Without Trials with > 2 Arms (vs. Enoxaparin)

Treatment			Odds Ratio (95% CI)
Apixaban	- _	-	0.44 (0.16, 1.22)
Dabigatran	-+-	-	0.59 (0.27, 1.24)
Dalteparin	•		0.77 (0.14, 4.44)
Desirudin			0.57 (0.11, 2.98)
Enoxaparin + GCS			0.29 (0.01, 9.27)
Fondaparinux	+		0.19 (0.01, 2.98)
Fondaparinux + GCS			0.16 (0.00, 4.22)
IPC		•	1.43 (0.15, 16.63)
IPC + GCS	+		0.81 (0.01, 37.83)
IPD + LD Aspirin		•	1.60 (0.14, 21.78)
None	-		3.10 (0.64, 17.96)
Rivaroxaban	—		0.19 (0.09, 0.43)
Tinzaparin		•	1.16 (0.31, 4.41)
Warfarin	-		1.88 (0.63, 6.01)
Warfarin + GCS	<→		0.15 (0.00, 12.40)
YM150			1.10 (0.14, 8.64)
	.1 1	10	
	Favors Treatment	Favors Enoxaparin	

NETWORK META-ANALYSIS PAIRWISE COMPARISONS

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
Apixaban vs. Desirudin	1.29 (0.15, 9.03)	0.83 (0.03, 12.29)	2.34 (0.11, 47.23)	2.97 (0.16, 61.13)	2.87 (0.22, 44.26)
Apixaban vs. Enoxaparin	1.10 (0.38, 3.15)	1.04 (0.22, 4.43)	1.05 (0.25, 4.01)	1.33 (0.33, 5.81)	1.29 (0.38, 4.78)
Apixaban vs. Heparin	0.25 (0.04, 1.37)	0.03 (0.00, 0.62)			
Apixaban vs. None	1.09 (0.07, 14.43)				10.55 (0.13, 5843)
Apixaban vs. Warfarin	1.03 (0.22, 4.49)	0.91 (0.10, 7.09)	0.95 (0.11, 6.60)	0.86 (0.08, 6.56)	0.98 (0.14, 5.77)
Dabigatran vs. Apixaban	0.86 (0.18, 3.88)	0.81 (0.09, 6.55)	0.82 (0.11, 5.91)	0.65 (0.08, 4.43)	0.75 (0.12, 3.98)
Dabigatran vs. Desirudin	1.11 (0.12, 7.99)	0.67 (0.02, 10.67)	1.92 (0.09, 38.05)	1.94 (0.09, 34.92)	2.15 (0.16, 29.55)
Dabigatran vs. Enoxaparin	0.95 (0.29, 2.80)	0.84 (0.16, 3.65)	0.86 (0.18, 3.33)	0.87 (0.19, 3.34)	0.97 (0.29, 3.03)
Dabigatran vs. Enoxaparin + IPC	0.99 (0.02, 60.58)	0.87 (0.01, 78.65)	0.85 (0.01, 72.75)	0.88 (0.01, 72.75)	0.96 (0.01, 68.03)
Dabigatran vs. GCS	0.61 (0.02, 17.03)				
Dabigatran vs. Heparin	0.21 (0.03, 1.23)	0.03 (0.00, 0.51)			
Dabigatran vs. IPC Dabigatran vs. IPC + LD	3.31 (0.10, 190.38)				
Aspirin	1.01 (0.05, 19.83)	0.86 (0.02, 30.05)	0.89 (0.03, 27.33)	0.88 (0.03, 24.39)	0.98 (0.04, 22.31)
Dabigatran vs. None	0.94 (0.06, 12.59)				7.90 (0.10, 4,647.11)
Dabigatran vs. Rivaroxaban	1.64 (0.33, 7.49)	1.56 (0.17, 12.30)	1.60 (0.20, 11.09)	1.63 (0.22, 11.18)	1.67 (0.32, 8.45)
Dabigatran vs. Tinzaparin	0.95 (0.05, 15.82)	0.78 (0.03, 20.80)	0.82 (0.03, 19.53)	0.71 (0.03, 15.26)	0.95 (0.01, 69.27)
Dabigatran vs. Warfarin	0.89 (0.16, 4.22)	0.73 (0.07, 6.16)	0.77 (0.08, 5.65)	0.56 (0.05, 4.06)	0.73 (0.12, 3.49)
Desirudin vs. Enoxaparin	0.86 (0.16, 5.01)	1.25 (0.12, 21.26)	0.45 (0.03, 6.32)	0.45 (0.03, 5.86)	0.45 (0.04, 4.44)
Desirudin vs. Heparin	0.19 (0.03, 1.07)	0.04 (0.00, 0.66)			
Desirudin vs. None	0.85 (0.04, 17.13)				3.68 (0.03, 2599)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without Honorin Trick	Without Heparin Trials or Multi-Arm	Final Madel
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
Desirudin vs. Warfarin	0.80 (0.11, 6.58)	1.09 (0.06, 27.06)	0.40 (0.02, 8.23)	0.29 (0.01, 5.38)	0.34 (0.02, 4.45)
Enoxaparin + IPC vs. Apixaban	0.87 (0.01, 49.16)	0.92 (0.01, 91.84) 0.77 (0.00,	0.96 (0.01, 82.68)	0.74 (0.01, 61.37) 2.20 (0.02,	0.78 (0.01, 55.92)
Enoxaparin + IPC vs. Desirudin Enoxaparin + IPC vs.	1.12 (0.01, 75.19)	101.49)	2.25 (0.01, 341.72)	301.57)	2.23 (0.02, 261.39)
Enoxaparin + IFC vs.	0.96 (0.02, 49.01)	0.96 (0.01, 73.11)	1.01 (0.01, 68.24)	0.98 (0.01, 67.02)	1.00 (0.02, 62.43)
Enoxaparin + IPC vs. GCS	0.62 (0.00, 90.56)			0.00 (0.01, 0.1.02)	1100 (0102, 021.0)
Enoxaparin + IPC vs. Heparin	0.21 (0.00, 13.38)	0.03 (0.00, 4.64)			
Enoxaparin + IPC vs. IPC	3.35 (0.02, 805.93)				
Enoxaparin + IPC vs. None	0.95 (0.01, 96.16)				8.19 (0.02, 12,835.88)
Enoxaparin + IPC vs.		1.78 (0.02,		1.85 (0.02,	
Rivaroxaban	1.67 (0.03, 93.50)	175.56)	1.88 (0.02, 165.17)	154.47)	1.73 (0.03, 126.72)
Enoxaparin + IPC vs.		0.90 (0.00,		0.81 (0.00,	
Tinzaparin	0.96 (0.01, 104.27)	172.09)	0.96 (0.01, 162.39)	123.10)	0.98 (0.00, 344.47)
Enoxaparin + IPC vs. Warfarin	0.90 (0.01, 52.72)	0.84 (0.01, 85.37)	0.91 (0.01, 81.70)	0.64 (0.01, 56.71)	0.76 (0.01, 55.59)
Enoxaparin vs. None	0.99 (0.08, 10.67)				8.18 (0.13, 4222)
GCS vs. Apixaban	1.41 (0.05, 38.02)				
GCS vs. Desirudin	1.82 (0.05, 60.40)				
GCS vs. Enoxaparin	1.56 (0.07, 35.41)				
GCS vs. Heparin	0.35 (0.01, 10.74)				
GCS vs. None	1.54 (0.08, 27.19)				
GCS vs. Rivaroxaban	2.70 (0.10, 74.29)				
GCS vs. Warfarin	1.46 (0.05, 39.69)				

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
	7.30 (0.01,				
HD Aspirin vs. Apixaban	38,177.44)				6.12 (0.00, 24,587.66)
	8.51 (0.01,				
HD Aspirin vs. Dabigatran	41,772.77)				8.17 (0.01, 32,859.63)
	9.40 (0.01,				
HD Aspirin vs. Desirudin	48,533.04)				17.57 (0.01, 90,219.42)
	8.05 (0.01,				
HD Aspirin vs. Enoxaparin	38,948.67)				7.89 (0.01, 28,853.89)
HD Aspirin vs. Enoxaparin +	8.39 (0.02,				
IPC	16,531.12)				7.89 (0.02, 10,593.54)
	5.17 (0.00,				
HD Aspirin vs. GCS	35,596.41)				
HD Aspirin vs. Heparin	1.79 (0.00, 9,395.63)				
	28.13 (0.01,				492.26 (0.03,
HD Aspirin vs. IPC	240,385.70)				56,514,059.17)
HD Aspirin vs. IPC + HD					
Aspirin	1.00 (0.02, 53.30)				0.94 (0.01, 53.79)
HD Aspirin vs. IPC + LD	8.60 (0.00,				
Aspirin	56,954.05)				8.04 (0.00, 50,011.09)
	7.98 (0.00,				64.59 (0.01,
HD Aspirin vs. None	56,954.05)				1,411,269.20)
	13.99 (0.01,				
HD Aspirin vs. Rivaroxaban	67,507.91)				13.63 (0.01, 52,575.21)
	8.04 (0.00,				
HD Aspirin vs. Tinzaparin	48,050.12)				7.76 (0.00, 83,283.02)
HD Aspirin vs. Tinzaparin +	5.03 (0.00,				
GCS	58,104.59)				

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
Comparison	7.54 (0.01,			111415	T mai Wiouci
HD Aspirin vs. Warfarin	35,954.16)				5.99 (0.00, 24,343.01)
1 ······		32.56 (2.42,			
Heparin vs. Enoxaparin	4.50 (1.12, 21.28)	1,445.20)			
Heparin vs. None	4.46 (0.25, 78.96)				
1 I		28.45 (1.32,			
Heparin vs. Warfarin	4.21 (0.68, 28.11)	1,589.22)			
	7.32 (0.02,				
IPC + HD Aspirin vs. Apixaban	14,228.47)				6.50 (0.01, 9,818.27)
IPC + HD Aspirin vs.	8.54 (0.02,				
Dabigatran	15,740.62)				8.69 (0.02, 12,900.22)
	9.44 (0.02,				
IPC + HD Aspirin vs. Desirudin	18,977.32)				18.65 (0.02, 37,049.12)
IPC + HD Aspirin vs.	8.08 (0.02,				
Enoxaparin	14,913.17)				8.39 (0.02, 11,778.13)
IPC + HD Aspirin vs.	0 42 (0 12 4 070 00)				0.20 (0.12, 4.411, 62)
Enoxaparin + IPC	8.42 (0.13, 4,979.08) 5.19 (0.01,				8.38 (0.12, 4,411.63)
IPC + HD Aspirin vs. GCS	12,619.52)				
-					
IPC + HD Aspirin vs. Heparin	1.80 (0.00, 3,206.71)				522.70 (0.06,
IDC HD Acpirin ve IDC	28.25 (0.03, 88,432.96)				29,209,366.90)
IPC + HD Aspirin vs. IPC IPC + HD Aspirin vs. IPC + LD	8.63 (0.01,				29,209,500.90)
Aspirin	25,848.30)				8.54 (0.01, 19,341.34)
	8.01 (0.01,				68.58 (0.03,
IPC + HD Aspirin vs. None	21,396.87)				646,934.29)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
IPC + HD Aspirin vs.	14.03 (0.04,				
Rivaroxaban	25,591.10)				14.47 (0.03, 21,290.15)
IPC + HD Aspirin vs.	8.08 (0.01,				
Tinzaparin	19,751.80)				8.25 (0.00, 41,357.13)
IPC + HD Aspirin vs.	5.05 (0.00,				
Tinzaparin + GCS	25,591.10)				
	7.56 (0.02,				
IPC + HD Aspirin vs. Warfarin	14,016.63)				6.37 (0.01, 9,330.09)
IPC + LD Aspirin vs. Apixaban	0.85 (0.04, 16.59)	0.93 (0.03, 35.02)	0.92 (0.03, 30.57)	0.74 (0.02, 21.78) 2.21 (0.04,	0.76 (0.03, 16.98)
IPC + LD Aspirin vs. Desirudin	1.09 (0.04, 27.36)	0.78 (0.01, 40.08)	2.15 (0.04, 145.62)	124.71)	2.19 (0.05, 92.94)
IPC + LD Aspirin vs.					
Enoxaparin	0.94 (0.06, 15.00)	0.97 (0.04, 26.47)	0.96 (0.04, 22.20)	0.99 (0.05, 22.04)	0.98 (0.05, 17.15)
IPC + LD Aspirin vs.		1.01 (0.00,		1.00 (0.01,	
Enoxaparin + IPC	0.98 (0.01, 121.75)	207.47)	0.95 (0.00, 192.48)	179.29)	0.98 (0.01, 141.46)
IPC + LD Aspirin vs. GCS	0.60 (0.01, 41.10)				
IPC + LD Aspirin vs. Heparin	0.21 (0.01, 4.69)	0.03 (0.00, 1.90)			
IPC + LD Aspirin vs. IPC	3.27 (0.04, 317.98)				
IPC + LD Aspirin vs. None	0.93 (0.02, 36.60)				8.04 (0.05, 6,142.58)
IPC + LD Aspirin vs.					
Rivaroxaban	1.63 (0.08, 31.44)	1.81 (0.05, 67.42)	1.79 (0.06, 56.26)	1.86 (0.07, 55.31)	1.70 (0.07, 37.56)
IPC + LD Aspirin vs.					
Tinzaparin	0.94 (0.02, 41.89)	0.91 (0.01, 73.92)	0.92 (0.01, 68.10)	0.81 (0.01, 50.55)	0.97 (0.01, 141.17)
IPC + LD Aspirin vs. Warfarin	0.88 (0.04, 17.71)	0.85 (0.02, 31.44)	0.87 (0.03, 28.11)	0.64 (0.02, 18.65)	0.75 (0.03, 16.20)
IPC vs. Apixaban	0.26 (0.00, 7.99)				0.01 (0.00, 6.21)
IPC vs. Dabigatran	0.30 (0.01, 10.00)				0.02 (0.00, 8.52)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
IPC vs. Desirudin	0.33 (0.00, 13.64)	with 21 Event		1118	0.04 (0.00, 28.02)
IPC vs. Enoxaparin	0.29 (0.01, 7.43)				0.04 (0.00, 28.02)
IPC vs. Enoxaparin IPC vs. Enoxaparin + IPC	0.29 (0.01, 7.43)				0.02 (0.00, 7.13)
IPC vs. Enoxaparin + IPC IPC vs. GCS					0.02 (0.00, 28.33)
	0.18 (0.00, 5.86)				
IPC vs. Heparin	0.06 (0.00, 2.30)				0.00 (0.00, 15.70)
IPC vs. IPC + LD Aspirin	0.31 (0.00, 25.00)				0.02 (0.00, 15.72)
IPC vs. None	0.28 (0.01, 3.88)				0.13 (0.00, 9.63)
IPC vs. Rivaroxaban	0.50 (0.01, 15.66)				0.03 (0.00, 14.32)
IPC vs. Tinzaparin	0.29 (0.00, 20.00)				0.02 (0.00, 28.93)
IPC vs. Warfarin	0.27 (0.00, 8.36)				0.01 (0.00, 6.30)
LD Aspirin vs. Apixaban	0.90 (0.04, 24.02)				0.09 (0.00, 11.85)
LD Aspirin vs. Dabigatran	1.05 (0.04, 29.31)				0.12 (0.00, 16.30)
LD Aspirin vs. Desirudin	1.16 (0.03, 40.61)				0.27 (0.00, 53.79)
LD Aspirin vs. Enoxaparin LD Aspirin vs. Enoxaparin +	0.99 (0.05, 21.76)				0.12 (0.00, 12.83)
IPC	1.04 (0.01, 151.41)				0.12 (0.00, 66.09)
LD Aspirin vs. GCS	0.64 (0.02, 21.74)				
LD Aspirin vs. HD Aspirin	0.12 (0.00, 340.36)				0.02 (0.00, 102.10)
LD Aspirin vs. Heparin	0.22 (0.01, 6.80)				
LD Aspirin vs. IPC LD Aspirin vs. IPC + HD	3.47 (0.13, 152.93)				7.52 (0.06, 5,345.44)
Aspirin LD Aspirin vs. IPC + LD	0.12 (0.00, 92.57)				0.01 (0.00, 40.85)
Aspirin	1.06 (0.02, 66.89)				0.12 (0.00, 32.23)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
LD Aspirin vs. None	0.99 (0.15, 6.53)				0.99 (0.12, 7.97)
LD Aspirin vs. Rivaroxaban	1.73 (0.07, 46.43)				0.21 (0.00, 27.63)
LD Aspirin vs. Tinzaparin LD Aspirin vs. Tinzaparin +	0.99 (0.02, 54.22)				0.12 (0.00, 74.74)
GCS	0.62 (0.00, 116.63)				
LD Aspirin vs. Warfarin	0.93 (0.04, 24.56)				0.09 (0.00, 11.61)
Rivaroxaban vs. Apixaban	0.52 (0.12, 2.34)	0.52 (0.06, 4.31)	0.51 (0.08, 3.69)	0.40 (0.05, 2.68)	0.45 (0.08, 2.37)
Rivaroxaban vs. Desirudin	0.67 (0.08, 4.66)	0.43 (0.02, 6.53)	1.20 (0.06, 24.98)	1.19 (0.06, 22.42)	1.29 (0.10, 17.78)
Rivaroxaban vs. Enoxaparin	0.58 (0.19, 1.67)	0.54 (0.12, 2.26)	0.53 (0.13, 2.06)	0.53 (0.13, 1.97)	0.58 (0.18, 1.81)
Rivaroxaban vs. Heparin	0.13 (0.02, 0.72)	0.02 (0.00, 0.32)			
Rivaroxaban vs. None	0.57 (0.04, 7.69)				4.74 (0.06, 2714)
Rivaroxaban vs. Warfarin	0.54 (0.11, 2.51)	0.47 (0.05, 3.92)	0.48 (0.06, 3.51)	0.34 (0.03, 2.45)	0.44 (0.07, 2.33)
Tinzaparin + GCS vs. Apixaban Tinzaparin + GCS vs.	1.45 (0.01, 241.53)				
Dabigatran	1.69 (0.01, 285.72)				
Tinzaparin + GCS vs. Desirudin Tinzaparin + GCS vs.	1.87 (0.01, 357.45)				
Enoxaparin Tinzaparin + GCS vs.	1.60 (0.01, 237.22)				
Enoxaparin + IPC	1.67 (0.00, 1,085.72)				
Tinzaparin + GCS vs. GCS	1.03 (0.02, 58.15)				
Tinzaparin + GCS vs. Heparin	0.36 (0.00, 65.56)				
Tinzaparin + GCS vs. IPC	5.60 (0.03, 1,647.48)				

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
Tinzaparin + GCS vs. $IPC + LD$	171 (001 594 64)				
Aspirin	1.71 (0.01, 584.64)				
Tinzaparin + GCS vs. None Tinzaparin + GCS vs.	1.59 (0.01, 230.90)				
Rivaroxaban	2.78 (0.02, 472.01)				
Tinzaparin + GCS vs.					
Tinzaparin	1.60 (0.01, 399.41)				
Tinzaparin + GCS vs. Warfarin	1.50 (0.01, 253.66)				
Tinzaparin vs. Apixaban	0.91 (0.06, 14.89)	1.03 (0.04, 28.67)	1.00 (0.04, 26.15)	0.92 (0.04, 22.81) 2.73 (0.06,	0.79 (0.01, 53.62)
Tinzaparin vs. Desirudin	1.17 (0.05, 25.56)	0.86 (0.01, 35.98)	2.34 (0.05, 128.25)	140.89)	2.26 (0.02, 247.89)
Tinzaparin vs. Enoxaparin	1.00 (0.07, 13.28)	1.07 (0.05, 21.24)	1.05 (0.06, 19.38)	1.22 (0.08, 22.35)	1.02 (0.02, 57.05)
Tinzaparin vs. GCS	0.64 (0.01, 38.17)				
Tinzaparin vs. Heparin	0.22 (0.01, 4.25)	0.03 (0.00, 1.77)			
Tinzaparin vs. IPC	3.50 (0.05, 326.69)				
Tinzaparin vs. None	0.99 (0.03, 35.23)				8.32 (0.02, 12,004.06)
Tinzaparin vs. Rivaroxaban	1.74 (0.10, 29.64)	1.99 (0.07, 55.15)	1.96 (0.08, 49.21)	2.29 (0.11, 57.40)	1.76 (0.02, 113.98)
Tinzaparin vs. Warfarin	0.94 (0.07, 12.34)	0.93 (0.05, 18.38)	0.95 (0.05, 17.05)	0.79 (0.04, 13.13)	0.77 (0.01, 53.57)
Warfarin vs. Enoxaparin	1.07 (0.35, 3.55)	1.14 (0.24, 6.25)	1.11 (0.25, 5.45)	1.55 (0.35, 10.01)	1.32 (0.37, 5.78)
Warfarin vs. None	1.06 (0.07, 15.52)				10.78 (0.13, 6349)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
Apixaban vs. Enoxaparin	0.79 (0.45, 1.38)	0.79 (0.44, 1.43)	0.80 (0.45, 1.42)	0.75 (0.41, 1.33)	0.75 (0.41, 1.35)
Apixaban vs. Heparin	0.61 (0.28, 1.42)	0.60 (0.26, 1.48)			
Apixaban vs. None	1.46 (0.52, 4.26)	1.42 (0.46, 4.64)	0.86 (0.26, 3.07)	0.83 (0.25, 2.90)	0.83 (0.25, 2.82)
Apixaban vs. Warfarin	1.65 (0.69, 4.20)	1.71 (0.68, 4.47)	1.70 (0.69, 4.38)	1.56 (0.61, 4.03)	1.55 (0.59, 4.11)
Dabigatran vs. Apixaban	1.63 (0.77, 3.36)	1.62 (0.76, 3.46)	1.65 (0.78, 3.45)	1.75 (0.83, 3.76)	1.75 (0.82, 3.82)
Dabigatran vs. Enoxaparin	1.28 (0.80, 2.04)	1.29 (0.79, 2.09)	1.31 (0.82, 2.11)	1.32 (0.82, 2.10)	1.32 (0.81, 2.14)
Dabigatran vs. Heparin	1.00 (0.48, 2.16)	0.98 (0.46, 2.20)			
Dabigatran vs. None	2.37 (0.93, 6.47)	2.31 (0.82, 6.78)	1.42 (0.46, 4.56)	1.46 (0.48, 4.62)	1.45 (0.50, 4.46)
Dabigatran vs. Warfarin	2.68 (1.15, 6.42)	2.78 (1.16, 6.70)	2.81 (1.19, 6.90)	2.73 (1.15, 6.69)	2.72 (1.13, 6.86)
Dalteparin vs. Apixaban	1.18 (0.35, 3.76)	1.13 (0.33, 3.75)	1.15 (0.33, 3.69)	1.26 (0.37, 4.16)	1.26 (0.36, 4.31)
Dalteparin vs. Dabigatran	0.73 (0.23, 2.25)	0.70 (0.22, 2.23)	0.70 (0.21, 2.16)	0.72 (0.22, 2.28)	0.72 (0.22, 2.30)
Dalteparin vs. Desirudin	0.78 (0.19, 2.84)	0.75 (0.18, 2.87)	0.92 (0.21, 3.70)	0.97 (0.22, 3.99)	0.95 (0.22, 3.92)
Dalteparin vs. Enoxaparin	0.93 (0.32, 2.61)	0.90 (0.31, 2.61)	0.92 (0.30, 2.59)	0.95 (0.32, 2.74)	0.95 (0.31, 2.73)
Dalteparin vs. Fondaparinux	0.66 (0.14, 2.92)	0.63 (0.13, 2.92)	0.58 (0.12, 2.61)	0.61 (0.13, 2.76)	0.58 (0.12, 2.72)
Dalteparin vs. HD Aspirin	2.80 (0.40, 20.86)	2.78 (0.39, 21.71)	2.75 (0.39, 19.16)	2.83 (0.40, 21.50)	2.80 (0.40, 22.00)
Dalteparin vs. Heparin Dalteparin vs. IPC	0.72 (0.22, 2.43) 11.60 (0.33, 5,580.31)	0.68 (0.20, 2.42)			
Daneparin vs. IPC	74.81 (2.90,				63.82 (2.68,
Dalteparin vs. IPC + LD Aspirin	21,590.31)				5,931.31)
Dalteparin vs. LY517717	1.08 (0.03, 56.71)	1.02 (0.02, 54.11)	1.05 (0.03, 60.28)	1.01 (0.02, 39.25)	1.11 (0.03, 45.65)
Dalteparin vs. None	1.73 (0.44, 6.81)	1.62 (0.38, 6.96)	0.99 (0.22, 4.35)	1.05 (0.24, 4.61)	1.04 (0.23, 4.71)
Dalteparin vs. Rivaroxaban	0.60 (0.18, 2.01)	0.58 (0.17, 2.05)	0.59 (0.16, 2.02)	0.62 (0.17, 2.15)	0.61 (0.17, 2.12)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
Dalteparin vs. Tinzaparin	1.02 (0.32, 3.38)	1.02 (0.30, 3.55)	1.03 (0.31, 3.39)	1.03 (0.31, 3.40)	1.05 (0.31, 3.59)
Dalteparin vs. Warfarin	1.95 (0.92, 4.10)	1.94 (0.90, 4.20)	1.96 (0.90, 4.16)	1.97 (0.91, 4.21)	1.96 (0.90, 4.21) 6.57 (0.12,
Dalteparin vs. YM150	6.30 (0.12, 2,038.56)				3,287.89)
Desirudin vs. Apixaban	1.53 (0.57, 4.28)	1.52 (0.55, 4.44)	1.26 (0.41, 3.82)	1.30 (0.43, 4.09)	1.32 (0.42, 4.21)
Desirudin vs. Dabigatran	0.94 (0.37, 2.54)	0.94 (0.36, 2.61)	0.76 (0.26, 2.21)	0.75 (0.26, 2.20)	0.76 (0.25, 2.24)
Desirudin vs. Enoxaparin	1.20 (0.54, 2.88)	1.21 (0.53, 2.96)	1.00 (0.38, 2.62)	0.98 (0.38, 2.59)	1.00 (0.38, 2.63)
Desirudin vs. Heparin	0.93 (0.37, 2.57)	0.92 (0.37, 2.63)			
Desirudin vs. None	2.22 (0.69, 7.80)	2.17 (0.63, 8.17)	1.08 (0.26, 4.60)	1.09 (0.26, 4.62)	1.10 (0.27, 4.68)
Desirudin vs. Warfarin	2.51 (0.87, 7.89)	2.60 (0.86, 8.41)	2.14 (0.65, 7.30)	2.03 (0.61, 7.05)	2.06 (0.62, 7.22)
Enoxaparin + GCS vs. Apixaban	0.18 (0.00, 3.68)				0.18 (0.00, 9.92)
Enoxaparin + GCS vs. Dabigatran	0.11 (0.00, 2.19)				0.10 (0.00, 5.59)
Enoxaparin + GCS vs. Dalteparin	0.16 (0.00, 3.65)				0.14 (0.00, 9.14)
Enoxaparin + GCS vs. Desirudin	0.12 (0.00, 2.56)				0.13 (0.00, 7.83)
Enoxaparin + GCS vs. Enoxaparin	0.14 (0.00, 2.72)				0.13 (0.00, 7.16)
Enoxaparin + GCS vs. Fondaparinux Enoxaparin + GCS vs. Fondaparinux	0.10 (0.00, 1.85)				0.08 (0.00, 3.88)
+ GCS	0.49 (0.25, 0.85)				0.49 (0.24, 0.87)
Enoxaparin + GCS vs. HD Aspirin	0.43 (0.01, 15.77)				0.40 (0.00, 36.38
Enoxaparin + GCS vs. Heparin	0.11 (0.00, 2.27)				
Enoxaparin + GCS vs. IPC	1.80 (0.01, 1,501.17)				
Enoxaparin + GCS vs. IPC + LD	11.60 (0.08,				9.05 (0.01,
Aspirin	6,045.08)				4,750.48)
Enoxaparin + GCS vs. LY517717	0.17 (0.00, 20.78)				0.16 (0.00, 45.38

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
Enoxaparin + GCS vs. None	0.27 (0.01, 5.53)				0.15 (0.00, 9.75)
Enoxaparin + GCS vs. Rivaroxaban	0.09 (0.00, 1.93)				0.09 (0.00, 4.77)
Enoxaparin + GCS vs. Tinzaparin	0.16 (0.00, 3.72)				0.15 (0.00, 9.65)
Enoxaparin + GCS vs. Warfarin	0.30 (0.01, 6.33)				0.28 (0.00, 16.14) 0.93 (0.00,
Enoxaparin + GCS vs. YM150	0.98 (0.00, 809.97)				1,584.46)
Enoxaparin vs. None	1.85 (0.78, 4.69)	1.79 (0.68, 4.87)	1.08 (0.37, 3.32)	1.11 (0.39, 3.32)	1.10 (0.39, 3.17)
Fondaparinux vs. Rivaroxaban	0.91 (0.27, 3.23)	0.92 (0.25, 3.45)	1.02 (0.29, 3.57)	1.01 (0.28, 3.57)	1.05 (0.30, 3.85)
Fondaparinux + GCS vs. Apixaban	0.37 (0.01, 7.49)				0.37 (0.00, 18.99)
Fondaparinux + GCS vs. Dabigatran	0.23 (0.01, 4.46)				0.21 (0.00, 10.55)
Fondaparinux + GCS vs. Dalteparin	0.31 (0.01, 7.40)				0.29 (0.00, 17.73)
Fondaparinux + GCS vs. Desirudin	0.24 (0.01, 5.14)				0.28 (0.00, 15.15)
Fondaparinux + GCS vs. Enoxaparin Fondaparinux + GCS vs.	0.29 (0.01, 5.53)				0.27 (0.00, 13.45)
Fondaparinux	0.21 (0.01, 3.75)				0.17 (0.00, 7.22)
Fondaparinux + GCS vs. HD Aspirin	0.88 (0.02, 32.27)				0.81 (0.00, 71.24)
Fondaparinux + GCS vs. Heparin	0.23 (0.01, 4.61)				
Fondaparinux + GCS vs. IPC	3.64 (0.03, 3,065.60)				18 52 (0.02
Fondaparinux + GCS vs. IPC + LD Aspirin	23.50 (0.18, 12,088.38)				18.52 (0.02, 9,528.09)
Fondaparinux + GCS vs. LY517717	0.34 (0.00, 41.80)				0.32 (0.00, 92.57)
Fondaparinux + GCS vs. None	0.54 (0.01, 11.30)				0.30 (0.00, 17.89)
Fondaparinux + GCS vs. Rivaroxaban	0.19 (0.00, 3.90)				0.18 (0.00, 9.28)
Fondaparinux + GCS vs. Tinzaparin	0.32 (0.01, 7.71)				0.30 (0.00, 19.14)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
Fondaparinux + GCS vs. Warfarin	0.61 (0.02, 12.94)			1 Tuis	0.57 (0.00, 31.19)
Fondaparinux + GCS vs. YM150	1.98 (0.01, 1,659.05)				1.91 (0.00, 3,108.82)
Fondaparinux vs. Apixaban	1.79 (0.54, 6.01)	1.79 (0.51, 6.28)	1.98 (0.58, 6.94)	2.06 (0.60, 7.29)	2.16 (0.63, 7.81)
Fondaparinux vs. Dabigatran	1.10 (0.34, 3.60)	1.10 (0.33, 3.74)	1.20 (0.37, 4.02)	1.18 (0.36, 3.90)	1.24 (0.38, 4.12)
Fondaparinux vs. Desirudin	1.18 (0.30, 4.56)	1.17 (0.28, 4.75)	1.58 (0.37, 7.03)	1.58 (0.37, 6.88)	1.63 (0.38, 7.32)
Fondaparinux vs. Enoxaparin	1.41 (0.48, 4.20)	1.42 (0.46, 4.34)	1.58 (0.53, 4.80)	1.56 (0.51, 4.84)	1.63 (0.55, 4.99)
Fondaparinux vs. Heparin	1.10 (0.33, 3.78) 17.55 (0.52,	1.08 (0.30, 3.96)			
Fondaparinux vs. IPC	8,266.78)				
Fondaparinux vs. None	2.61 (0.77, 9.57)	2.54 (0.69, 9.99)	1.71 (0.46, 6.82)	1.72 (0.46, 6.90)	1.79 (0.48, 6.99)
Fondaparinux vs. Tinzaparin	1.55 (0.36, 7.12)	1.60 (0.35, 7.67)	1.77 (0.40, 8.59)	1.68 (0.37, 8.14)	1.80 (0.39, 8.98)
Fondaparinux vs. Warfarin	2.95 (0.82, 10.84)	3.06 (0.81, 11.75)	3.37 (0.92, 13.04)	3.22 (0.87, 12.44)	3.36 (0.90, 13.40)
GCS vs. Apixaban	0.18 (0.00, 2.72)				0.21 (0.00, 74.51)
GCS vs. Dabigatran	0.11 (0.00, 1.65)				0.12 (0.00, 43.12)
GCS vs. Dalteparin	0.15 (0.00, 2.63)				0.17 (0.00, 65.04)
GCS vs. Desirudin	0.12 (0.00, 1.97)				0.16 (0.00, 57.45)
GCS vs. Enoxaparin	0.14 (0.00, 2.01)				0.16 (0.00, 54.93)
GCS vs. Enoxaparin + GCS	0.97 (0.05, 20.00)				1.18 (0.02, 82.85)
GCS vs. Fondaparinux	0.10 (0.00, 1.56)				0.10 (0.00, 30.39)
GCS vs. Fondaparinux + GCS	0.48 (0.03, 9.09)				0.57 (0.01, 43.03)
GCS vs. HD Aspirin	0.42 (0.01, 12.50)				0.47 (0.00, 211.03)
GCS vs. Heparin	0.11 (0.00, 1.68)				

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
-	,		1		10.64 (0.01,
GCS vs. IPC + LD Aspirin	11.11 (0.08, 100.00)				26,370.47)
GCS vs. LY517717	0.16 (0.00, 16.67)				0.19 (0.00, 219.64)
GCS vs. None	0.26 (0.01, 3.87)				0.17 (0.00, 66.55)
GCS vs. Rivaroxaban	0.09 (0.00, 1.41)				0.10 (0.00, 38.36)
GCS vs. Tinzaparin	0.15 (0.00, 2.86)				0.17 (0.00, 74.89)
GCS vs. Warfarin	0.29 (0.01, 4.57)				0.33 (0.00, 121.51) 1.10 (0.00,
GCS vs. YM150	0.94 (0.00, 100.00)				8,459.12)
HD Aspirin vs. Apixaban	0.42 (0.05, 3.14)	0.41 (0.05, 3.16)	0.42 (0.05, 3.26)	0.45 (0.05, 3.16)	0.45 (0.05, 3.42)
HD Aspirin vs. Dabigatran	0.26 (0.03, 1.89)	0.25 (0.03, 1.98)	0.25 (0.03, 1.97)	0.26 (0.03, 1.73)	0.26 (0.03, 1.90)
HD Aspirin vs. Desirudin	0.28 (0.03, 2.16)	0.27 (0.03, 2.29)	0.33 (0.04, 2.80)	0.34 (0.04, 2.81)	0.34 (0.04, 2.92)
HD Aspirin vs. Enoxaparin	0.33 (0.05, 2.26)	0.32 (0.04, 2.39)	0.33 (0.05, 2.40)	0.34 (0.04, 2.18)	0.34 (0.04, 2.34)
HD Aspirin vs. Fondaparinux	0.24 (0.03, 2.16)	0.23 (0.02, 2.21)	0.21 (0.02, 1.99)	0.22 (0.02, 1.84)	0.21 (0.02, 1.92)
HD Aspirin vs. Heparin	0.26 (0.03, 1.95)	0.25 (0.03, 2.02)			
HD Aspirin vs. IPC	4.14 (0.07, 2,363.74) 26.71 (0.62,				22.78 (0.62,
HD Aspirin vs. IPC + LD Aspirin	8,450.66)				2,844.09)
HD Aspirin vs. LY517717	0.39 (0.01, 29.43)	0.37 (0.00, 25.89)	0.38 (0.01, 27.97)	0.36 (0.00, 18.88)	0.40 (0.01, 24.17)
HD Aspirin vs. None	0.62 (0.07, 5.17)	0.58 (0.06, 5.44)	0.36 (0.04, 3.33)	0.37 (0.04, 3.16)	0.37 (0.04, 3.42)
HD Aspirin vs. Rivaroxaban	0.22 (0.03, 1.58)	0.21 (0.02, 1.75)	0.22 (0.03, 1.77)	0.22 (0.03, 1.59)	0.22 (0.03, 1.67)
HD Aspirin vs. Tinzaparin	0.37 (0.05, 2.80)	0.37 (0.04, 2.94)	0.37 (0.05, 2.73)	0.36 (0.05, 2.62)	0.37 (0.05, 2.82)
HD Aspirin vs. Warfarin	0.70 (0.10, 4.17)	0.70 (0.10, 4.29)	0.71 (0.12, 4.37)	0.70 (0.11, 3.98)	0.70 (0.10, 4.16)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
HD Aspirin vs. YM150	2.25 (0.03, 832.97)				2.35 (0.03, 1,208.34)
Heparin vs. Enoxaparin	1.29 (0.70, 2.30)	1.32 (0.69, 2.39)			1,208.34)
Heparin vs. None	2.38 (0.88, 6.63)	2.36 (0.78, 7.3)			
Heparin vs. Warfarin	2.70 (1.06, 6.86)	2.83 (1.05, 7.41)			
IPC + LD Aspirin vs. Apixaban	0.02 (0.00, 0.35)	2.05 (1.05, 7.41)			0.02 (0.00, 0.38)
IPC + LD Aspirin vs. Dabigatran	0.01 (0.00, 0.21)				0.01 (0.00, 0.21)
IPC + LD Aspirin vs. Desirudin	0.01 (0.00, 0.25)				0.01 (0.00, 0.32)
IPC + LD Aspirin vs. Enoxaparin	0.01 (0.00, 0.26)				0.01 (0.00, 0.26)
IPC + LD Aspirin vs. Fondaparinux	0.01 (0.00, 0.23)				0.01 (0.00, 0.21)
IPC + LD Aspirin vs. Heparin	0.01 (0.00, 0.22)				(,,
IPC + LD Aspirin vs. IPC	0.16 (0.00, 153.39)				
IPC + LD Aspirin vs. None	0.02 (0.00, 0.56)				0.02 (0.00, 0.39)
IPC + LD Aspirin vs. Tinzaparin	0.01 (0.00, 0.36)				0.02 (0.00, 0.38)
IPC + LD Aspirin vs. Warfarin	0.03 (0.00, 0.60)				0.03 (0.00, 0.66)
IPC vs. Apixaban	0.10 (0.00, 3.15)				
IPC vs. Dabigatran	0.06 (0.00, 1.93)				
IPC vs. Desirudin	0.07 (0.00, 2.30)				
IPC vs. Enoxaparin	0.08 (0.00, 2.36)				
IPC vs. GCS	0.57 (0.00, 63.12)				
IPC vs. Heparin	0.06 (0.00, 1.98)				
IPC vs. None	0.15 (0.00, 4.51)				
IPC vs. Warfarin	0.17 (0.00, 5.45)				

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments	Without	Without Heparin Trials or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
LY517717 vs. Apixaban	1.10 (0.02, 42.95)	1.11 (0.02, 48.62)	1.10 (0.02, 38.28)	1.26 (0.04, 60.28)	1.13 (0.03, 42.18)
LY517717 vs. Dabigatran	0.67 (0.01, 25.92)	0.68 (0.01, 30.66)	0.67 (0.01, 23.78)	0.72 (0.02, 33.68)	0.65 (0.02, 24.12)
LY517717 vs. Desirudin	0.72 (0.01, 28.16)	0.73 (0.01, 35.20)	0.88 (0.02, 33.92)	0.96 (0.03, 50.05)	0.86 (0.02, 35.27)
LY517717 vs. Enoxaparin	0.86 (0.02, 31.41)	0.88 (0.02, 37.83)	0.88 (0.02, 29.64)	0.95 (0.03, 42.69)	0.85 (0.02, 31.19)
LY517717 vs. Fondaparinux	0.61 (0.01, 25.46)	0.62 (0.01, 31.47)	0.56 (0.01, 21.50)	0.61 (0.02, 31.94)	0.52 (0.01, 21.52)
LY517717 vs. Heparin LY517717 vs. IPC	0.67 (0.01, 25.84) 10.75 (0.06, 11,114.44)	0.67 (0.01, 30.85)			
	69.34 (0.50,				57.45 (0.48,
LY517717 vs. IPC + LD Aspirin	37,421.47)				14,705.84)
LY517717 vs. None	1.60 (0.03, 67.15)	1.58 (0.03, 78.10)	0.95 (0.01, 37.41)	1.05 (0.03, 55.31)	0.94 (0.02, 38.82)
LY517717 vs. Tinzaparin	0.95 (0.02, 42.61)	0.99 (0.02, 48.57)	0.98 (0.02, 40.61)	1.02 (0.03, 51.57)	0.94 (0.02, 38.05)
LY517717 vs. Warfarin	1.81 (0.04, 71.16)	1.90 (0.04, 87.27)	1.87 (0.03, 70.74)	1.96 (0.06, 92.30)	1.76 (0.05, 67.63)
Rivaroxaban vs. Apixaban	1.96 (0.84, 4.54)	1.94 (0.80, 4.63)	1.95 (0.81, 4.59)	2.05 (0.85, 4.91)	2.05 (0.85, 4.95)
Rivaroxaban vs. Dabigatran	1.21 (0.55, 2.65)	1.20 (0.53, 2.74)	1.18 (0.54, 2.60)	1.18 (0.53, 2.58)	1.17 (0.52, 2.62)
Rivaroxaban vs. Desirudin	1.29 (0.44, 3.60)	1.28 (0.42, 3.61)	1.55 (0.49, 4.87)	1.58 (0.49, 4.95)	1.55 (0.48, 4.91)
Rivaroxaban vs. Enoxaparin	1.55 (0.82, 2.91)	1.54 (0.81, 2.97)	1.55 (0.81, 2.93)	1.55 (0.81, 2.92)	1.54 (0.81, 2.92)
Rivaroxaban vs. Heparin	1.20 (0.51, 2.90) 19.24 (0.63,	1.17 (0.48, 2.95)			
Rivaroxaban vs. IPC	9,499.55) 124.09 (5.55,				103.86 (5.44,
Rivaroxaban vs. IPC + LD Aspirin	31,257.04)		1.77 (0.05,		8,217.32)
Rivaroxaban vs. LY517717	1.79 (0.05, 88.50)	1.75 (0.04, 86.23)	100.58)	1.63 (0.03, 54.00)	1.81 (0.05, 68.72)

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from		Without Heparin Trials	
	Continuity	Treatments	Without	or Multi-Arm	
Comparison	Correction)	with ≥1 Event	Heparin Trials	Trials	Final Model
Rivaroxaban vs. None	2.86 (0.98, 8.63)	2.76 (0.85, 9.57)	1.68 (0.47, 5.79)	1.71 (0.49, 6.10)	1.70 (0.50, 5.87)
Rivaroxaban vs. Tinzaparin	1.70 (0.50, 5.88)	1.74 (0.50, 6.11)	1.74 (0.51, 6.19)	1.68 (0.48, 6.04)	1.71 (0.50, 6.09)
Rivaroxaban vs. Warfarin	3.24 (1.26, 8.58)	3.32 (1.22, 8.94)	3.31 (1.25, 9.04)	3.21 (1.20, 8.77)	3.18 (1.19, 8.68)
Tinzaparin vs. Apixaban	1.16 (0.34, 3.70)	1.11 (0.32, 3.72)	1.12 (0.32, 3.68)	1.23 (0.35, 4.08)	1.20 (0.34, 4.04)
Tinzaparin vs. Dabigatran	0.71 (0.22, 2.18)	0.69 (0.21, 2.20)	0.68 (0.20, 2.11)	0.70 (0.21, 2.20)	0.69 (0.20, 2.18)
Tinzaparin vs. Desirudin	0.76 (0.19, 2.78)	0.73 (0.17, 2.80)	0.89 (0.20, 3.61)	0.94 (0.21, 3.95)	0.91 (0.20, 3.74)
Tinzaparin vs. Enoxaparin	0.91 (0.31, 2.54)	0.89 (0.30, 2.57)	0.89 (0.30, 2.51)	0.92 (0.30, 2.64)	0.90 (0.30, 2.64)
Tinzaparin vs. Heparin	0.71 (0.21, 2.33) 11.31 (0.30,	0.67 (0.19, 2.30)			
Tinzaparin vs. IPC	5,813.86)				
Tinzaparin vs. None	1.68 (0.43, 6.61)	1.59 (0.37, 6.81)	0.96 (0.21, 4.19)	1.02 (0.23, 4.78)	1.00 (0.21, 4.50)
Tinzaparin vs. Warfarin	1.91 (0.75, 4.80)	1.91 (0.72, 4.90)	1.90 (0.74, 4.79)	1.91 (0.73, 4.87)	1.87 (0.72, 4.77)
Warfarin vs. Enoxaparin	0.48 (0.23, 0.96)	0.46 (0.22, 0.98)	0.47 (0.22, 0.97)	0.48 (0.23, 1.00)	0.48 (0.22, 1.01)
Warfarin vs. None	0.88 (0.28, 2.81)	0.83 (0.24, 2.88)	0.51 (0.14, 1.85)	0.53 (0.15, 1.95)	0.53 (0.15, 1.97)
YM150 vs. Apixaban	0.19 (0.00, 8.43)				0.19 (0.00, 9.15)
YM150 vs. Dabigatran	0.12 (0.00, 5.13)				0.11 (0.00, 5.20)
YM150 vs. Desirudin	0.12 (0.00, 6.01)				0.14 (0.00, 7.39)
YM150 vs. Enoxaparin	0.15 (0.00, 6.37)				0.14 (0.00, 6.44)
YM150 vs. Fondaparinux	0.10 (0.00, 5.38)				0.09 (0.00, 4.81)
YM150 vs. Heparin	0.11 (0.00, 5.27)				
YM150 vs. IPC	1.84 (0.00, 2,069.37)				
	11.87 (0.02,				9.71 (0.01,
YM150 vs. IPC + LD Aspirin	9,956.69)				4,105.16)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi-Arm Trials	Final Model
YM150 vs. LY517717	0.17 (0.00, 37.00)				0.17 (0.00, 28.39)
YM150 vs. None	0.27 (0.00, 13.41)				0.16 (0.00, 8.52)
YM150 vs. Rivaroxaban	0.10 (0.00, 4.50)				0.09 (0.00, 4.38)
YM150 vs. Tinzaparin	0.16 (0.00, 8.37)				0.16 (0.00, 8.91)
YM150 vs. Warfarin	0.31 (0.00, 14.70)				0.30 (0.00, 14.75)

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from	Without Heparin Trials	
	Continuity	Treatments with	(No Multi-Arm	
Comparison	Correction)	≥1 Event	Trials)	Final Model
Apixaban vs. Dabigatran	1.12 (0.18, 7.64)	1.19 (0.12, 13.12)	1.15 (0.12, 12.58)	1.14 (0.18, 8.17)
Apixaban vs. Desirudin	0.90 (0.09, 10.05)	1.38 (0.08, 33.65)	0.63 (0.02, 15.17)	0.59 (0.04, 8.62)
Apixaban vs. Enoxaparin	1.33 (0.40, 4.95)	1.41 (0.31, 7.46)	1.41 (0.31, 7.19)	1.36 (0.39, 5.31)
Apixaban vs. Heparin	0.27 (0.02, 3.59)	0.13 (0.00, 4.00)		
Apixaban vs. Warfarin	0.95 (0.15, 5.64)	0.96 (0.10, 9.50)	0.97 (0.10, 9.22)	0.94 (0.15, 6.20)
Dabigatran vs. Enoxaparin	1.19 (0.31, 4.71)	1.19 (0.21, 6.64)	1.23 (0.22, 7.03)	1.19 (0.30, 4.86)
Dabigatran vs. Heparin	0.24 (0.01, 3.36)	0.11 (0.00, 3.30)		
Dabigatran vs. Warfarin	0.85 (0.12, 5.13)	0.81 (0.07, 8.26)	0.84 (0.08, 8.49)	0.83 (0.12, 5.60)
Dalteparin vs. Apixaban	1.05 (0.04, 25.84)	1.06 (0.02, 47.70)	1.02 (0.02, 48.33)	1.10 (0.04, 29.02)
Dalteparin vs. Dabigatran	1.17 (0.05, 32.69)	1.26 (0.03, 61.50)	1.18 (0.03, 65.96)	1.25 (0.04, 36.74)
Dalteparin vs. Desirudin	0.94 (0.03, 33.82)	1.45 (0.02, 131.24)	0.64 (0.01, 64.01)	0.65 (0.01, 28.99)
Dalteparin vs. Enoxaparin	1.39 (0.07, 27.72)	1.49 (0.05, 50.55)	1.44 (0.05, 53.79)	1.49 (0.07, 32.04)
	8.01 (0.05,			6.88 (0.04,
Dalteparin vs. Fondaparinux	5,967.00)			8,928.47)
Dalteparin vs. Heparin	0.28 (0.01, 11.13)	0.13 (0.00, 13.60)		
Dalteparin vs. Rivaroxaban	2.28 (0.10, 50.81)	2.59 (0.07, 109.40)	2.50 (0.07, 114.32)	2.44 (0.10, 61.74)
Dalteparin vs. Tinzaparin	0.99 (0.04, 24.93)	0.99 (0.02, 52.51)	0.99 (0.02, 55.92)	1.02 (0.03, 28.96)
Dalteparin vs. Warfarin	0.99 (0.07, 13.83)	1.02 (0.05, 21.85)	0.99 (0.05, 23.36)	1.03 (0.07, 15.85)
Desirudin vs. Dabigatran	1.24 (0.11, 14.13)	0.86 (0.03, 16.05)	1.83 (0.07, 54.22)	1.92 (0.13, 34.47)
Desirudin vs. Enoxaparin	1.48 (0.20, 11.13)	1.02 (0.07, 11.40)	2.25 (0.15, 40.94)	2.29 (0.23, 29.11)
Desirudin vs. Heparin	0.30 (0.03, 2.09)	0.09 (0.00, 1.75)		
Desirudin vs. Warfarin	1.06 (0.09, 10.82)	0.70 (0.03, 12.15)	1.54 (0.06, 40.49)	1.59 (0.11, 26.82)
Enoxaparin + GCS vs. Apixaban	0.03 (0.00, 7.36)			0.04 (0.00, 8.02)
Enoxaparin + GCS vs. Dabigatran	0.03 (0.00, 8.95)			0.04 (0.00, 9.93)

 Table 100. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from	Without Heparin Trials	
	Continuity	Treatments with	(No Multi-Arm	
Comparison	Correction)	≥1 Event	Trials)	Final Model
Enoxaparin + GCS vs. Dalteparin	0.03 (0.00, 12.53)			0.03 (0.00, 14.54)
Enoxaparin + GCS vs. Desirudin	0.03 (0.00, 9.08)			0.02 (0.00, 7.33)
Enoxaparin + GCS vs. Enoxaparin	0.04 (0.00, 8.55)			0.05 (0.00, 9.08)
Enoxaparin + GCS vs. Fondaparinux Enoxaparin + GCS vs. Fondaparinux +	0.22 (0.01, 5.24)			0.24 (0.01, 5.61)
GCS	1.06 (0.31, 3.71)			1.06 (0.30, 3.89)
Enoxaparin + GCS vs. Heparin	0.01 (0.00, 3.13)			
Enoxaparin + GCS vs. Rivaroxaban	0.06 (0.00, 15.85)			0.08 (0.00, 16.68)
Enoxaparin + GCS vs. Tinzaparin	0.03 (0.00, 9.75)			0.04 (0.00, 11.30)
Enoxaparin + GCS vs. Warfarin	0.03 (0.00, 7.01)			0.04 (0.00, 7.86)
Fondaparinux + GCS vs. Apixaban	0.03 (0.00, 5.94)			0.04 (0.00, 6.29)
Fondaparinux + GCS vs. Dabigatran	0.03 (0.00, 7.19)			0.04 (0.00, 8.23)
Fondaparinux + GCS vs. Dalteparin	0.03 (0.00, 10.16)			0.03 (0.00, 12.18)
Fondaparinux + GCS vs. Desirudin	0.02 (0.00, 7.16)			0.02 (0.00, 5.74)
Fondaparinux + GCS vs. Enoxaparin	0.04 (0.00, 6.73)			0.05 (0.00, 7.34)
Fondaparinux + GCS vs. Fondaparinux	0.21 (0.01, 3.75)			0.23 (0.01, 3.95)
Fondaparinux + GCS vs. Heparin	0.01 (0.00, 2.50)			
Fondaparinux + GCS vs. Rivaroxaban	0.06 (0.00, 12.45)			0.08 (0.00, 13.38)
Fondaparinux + GCS vs. Tinzaparin	0.03 (0.00, 7.71)			0.03 (0.00, 9.35)
Fondaparinux + GCS vs. Warfarin	0.03 (0.00, 5.59)			0.03 (0.00, 6.24)
Fondaparinux vs. Apixaban	0.13 (0.00, 9.35)			0.16 (0.00, 10.73)
Fondaparinux vs. Dabigatran	0.15 (0.00, 11.78)			0.18 (0.00, 13.36)
Fondaparinux vs. Desirudin	0.12 (0.00, 12.86)			0.09 (0.00, 10.60)
Fondaparinux vs. Enoxaparin	0.17 (0.00, 10.92)			0.22 (0.00, 11.94)

 Table 100. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi-Arm Trials)	Final Model
Fondaparinux vs. Heparin	0.04 (0.00, 4.89)			
Fondaparinux vs. Warfarin	0.12 (0.00, 8.98)			0.15 (0.00, 10.61)
Heparin vs. Enoxaparin	4.95 (0.53, 59.86)	11.02 (0.56, 506.74)		
Heparin vs. Warfarin	3.53 (0.26, 56.32)	7.55 (0.26, 482.51)		
IPC + GCS vs. Apixaban	0.13 (0.00, 91.93)			0.16 (0.00, 74.37)
IPC + GCS vs. Dabigatran	0.14 (0.00, 102.31)			0.18 (0.00, 91.74)
IPC + GCS vs. Dalteparin	0.12 (0.00, 123.59)			0.14 (0.00, 141.32)
IPC + GCS vs. Desirudin	0.11 (0.00, 100.99)			0.09 (0.00, 61.99)
IPC + GCS vs. Enoxaparin	0.17 (0.00, 100.69)			0.22 (0.00, 94.82)
IPC + GCS vs. Enoxaparin + GCS	4.36 (0.27, 160.13)			4.17 (0.25, 142.02)
IPC + GCS vs. Fondaparinux	0.98 (0.01, 113.18)			1.00 (0.01, 102.41)
IPC + GCS vs. Fondaparinux + GCS	4.60 (0.22, 201.95)			4.42 (0.21, 186.79)
IPC + GCS vs. Heparin	0.03 (0.00, 35.95)			
IPC + GCS vs. Rivaroxaban	0.28 (0.00, 192.67)			0.35 (0.00, 167.00)
IPC + GCS vs. Tinzaparin	0.12 (0.00, 110.61)			0.15 (0.00, 97.71)
IPC + GCS vs. Warfarin	0.12 (0.00, 81.13)			0.15 (0.00, 72.31)
Rivaroxaban vs. Apixaban	0.46 (0.09, 2.07)	0.41 (0.05, 2.90)	0.41 (0.05, 2.80)	0.45 (0.08, 2.20)
Rivaroxaban vs. Dabigatran	0.51 (0.10, 2.72)	0.49 (0.06, 4.00)	0.47 (0.06, 3.95)	0.51 (0.09, 2.76)
Rivaroxaban vs. Desirudin	0.41 (0.04, 3.72)	0.56 (0.04, 10.76)	0.26 (0.01, 5.09)	0.27 (0.02, 3.18)
Rivaroxaban vs. Enoxaparin	0.61 (0.24, 1.54)	0.58 (0.16, 1.99)	0.58 (0.16, 1.95)	0.61 (0.22, 1.60)
Rivaroxaban vs. Fondaparinux	3.52 (0.05, 1,799)			2.82 (0.05, 2,219)
Rivaroxaban vs. Heparin	0.12 (0.01, 1.41)	0.05 (0.00, 1.29)		
Rivaroxaban vs. Warfarin	0.44 (0.08, 1.97)	0.39 (0.04, 2.91)	0.40 (0.05, 2.83)	0.42 (0.07, 2.10)

 Table 100. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin Trials (No Multi-Arm	
Comparison	Correction)	≥1 Event	Trials)	Final Model
Tinzaparin vs. Apixaban	1.06 (0.08, 14.75)	1.07 (0.04, 31.85)	1.04 (0.04, 27.69)	1.07 (0.07, 15.80)
Tinzaparin vs. Dabigatran	1.18 (0.09, 17.99)	1.27 (0.04, 43.47)	1.19 (0.04, 37.04)	1.22 (0.08, 20.37)
Tinzaparin vs. Desirudin	0.95 (0.05, 21.05)	1.47 (0.04, 93.78)	0.65 (0.01, 36.34)	0.64 (0.02, 18.88)
Tinzaparin vs. Enoxaparin	1.41 (0.15, 15.10) 8.08 (0.07,	1.50 (0.08, 33.12)	1.46 (0.08, 28.25)	1.46 (0.14, 17.01) 6.73 (0.06,
Tinzaparin vs. Fondaparinux	5,234.36)			7,420.49)
Tinzaparin vs. Heparin	0.28 (0.01, 7.25)	0.14 (0.00, 9.78)		
Tinzaparin vs. Rivaroxaban	2.30 (0.21, 29.46)	2.61 (0.11, 75.19)	2.53 (0.11, 63.94)	2.39 (0.19, 34.71)
Tinzaparin vs. Warfarin	1.00 (0.15, 6.86)	1.03 (0.08, 12.83)	1.00 (0.08, 11.65)	1.01 (0.14, 7.46)
Warfarin + GCS vs. Apixaban	0.14 (0.00, 310.75)			0.16 (0.00, 220.08)
Warfarin + GCS vs. Dabigatran	0.15 (0.00, 391.11)			0.18 (0.00, 261.39)
Warfarin + GCS vs. Dalteparin	0.13 (0.00, 418.22)			0.15 (0.00, 383.37)
Warfarin + GCS vs. Desirudin	0.12 (0.00, 333.95)			0.09 (0.00, 171.57)
Warfarin + GCS vs. Enoxaparin	0.18 (0.00, 370.18)			0.22 (0.00, 273.96)
Warfarin + GCS vs. Enoxaparin + GCS	4.62 (0.04, 827.99)			4.21 (0.04, 634.60)
Warfarin + GCS vs. Fondaparinux Warfarin + GCS vs. Fondaparinux +	1.04 (0.00, 509.28) 4.88 (0.04,			1.00 (0.00, 352.13)
GCS	1,063.16)			4.46 (0.03, 763.57)
Warfarin + GCS vs. Heparin	0.04 (0.00, 111.94)			
Warfarin + GCS vs. IPC + GCS	1.06 (0.02, 60.22)			1.01 (0.02, 52.77)
Warfarin + GCS vs. Rivaroxaban	0.29 (0.00, 633.97)			0.36 (0.00, 460.82)
Warfarin + GCS vs. Tinzaparin	0.13 (0.00, 373.90)			0.15 (0.00, 256.21)
Warfarin + GCS vs. Warfarin	0.13 (0.00, 291.49)			0.15 (0.00, 209.14)
Warfarin vs. Enoxaparin	1.40 (0.42, 5.41)	1.46 (0.29, 8.26)	1.46 (0.30, 7.83)	1.44 (0.39, 5.80)

 Table 100. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin	Without Heparin Trials or Multi-	
Comparison	Correction)	≥1 Event	Trials	Arm Trials	Final Model
Apixaban vs. Dabigatran	0.66 (0.10, 4.38)	0.66 (0.08, 5.38)	0.66 (0.08, 5.22)	0.49 (0.05, 4.31)	0.50 (0.06, 3.79)
Apixaban vs. Desirudin	0.46 (0.03, 7.81)	0.47 (0.02, 10.78)	0.46 (0.02, 11.16)	0.34 (0.01, 8.69)	0.36 (0.02, 6.91)
Apixaban vs. Enoxaparin	0.52 (0.13, 2.02)	0.52 (0.11, 2.40)	0.52 (0.11, 2.35)	0.39 (0.07, 1.98)	0.40 (0.08, 1.79)
Apixaban vs. Heparin	0.35 (0.01, 17.13)	0.37 (0.01, 27.94)			
Apixaban vs. None	0.22 (0, 11.59)	0.23 (0, 17.8)	0.22 (0, 15.66)	0.34 (0.01, 14.17)	0.34 (0.01, 12.57)
Apixaban vs. Warfarin	1.56 (0.06, 69.13)	1.49 (0.05, 78.26)	1.51 (0.05, 77.01)		
Dabigatran vs. Desirudin	0.70 (0.04, 11.92)	0.71 (0.03, 16.23)	0.71 (0.03, 16.86)	0.69 (0.03, 16.36)	0.71 (0.04, 13.14)
Dabigatran vs. Enoxaparin	0.79 (0.21, 3.03)	0.80 (0.19, 3.43)	0.79 (0.19, 3.44)	0.79 (0.18, 3.36)	0.79 (0.20, 3.12)
Dabigatran vs. None	0.33 (0.01, 10.7)	0.35 (0.01, 15.23)	0.34 (0.01, 14.04)	0.70 (0.01, 57.69)	0.69 (0.01, 47.85)
Dabigatran vs. Warfarin	2.36 (0.07, 129.28)	2.28 (0.06, 146.94)	2.30 (0.06, 145.62)		
Dalteparin vs. Apixaban	0.19 (0.00, 11.16)	0.20 (0.00, 15.82)	0.20 (0.00, 16.01)		
Dalteparin vs. Dabigatran	0.13 (0.00, 9.13)	0.13 (0.00, 12.91)	0.13 (0.00, 13.56)		
Dalteparin vs. Desirudin	0.09 (0.00, 10.62)	0.09 (0.00, 17.08)	0.09 (0.00, 17.39)		
Dalteparin vs. Enoxaparin Dalteparin vs. Enoxaparin	0.10 (0.00, 5.89)	0.11 (0.00, 8.20)	0.10 (0.00, 8.46)		1.12 (0.08, 14.86)
+IPC	0.11 (0.00, 41.18)	0.11 (0.00, 57.57)	0.11 (0.00, 56.20)		
Dalteparin vs. Heparin	0.07 (0.00, 16.12)	0.07 (0.00, 29.99)			
Dalteparin vs. None	0.04 (0.00, 11.42)	0.05 (0.00, 18.19)	0.04 (0.00, 17.96)		
Dalteparin vs. Rivaroxaban	0.28 (0.00, 26.05)	0.48 (0.00, 84.52)	0.47 (0.00, 90.02)		
Dalteparin vs. Tinzaparin	0.17 (0.00, 27.06)	0.18 (0.00, 44.75)	0.18 (0.00, 42.18)		
Dalteparin vs. Warfarin	0.30 (0.02, 3.71)	0.30 (0.02, 4.80)	0.30 (0.02, 4.83)		
Desirudin vs. Enoxaparin	1.14 (0.09, 14.30)	1.12 (0.07, 18.25)	1.12 (0.07, 18.03)	1.14 (0.07, 18.56)	

Table 101. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials	Without Heparin Trials or Multi- Arm Trials	Final Model
Desirudin vs. None	0.47 (0.00, 42.52)	0.50 (0.00, 68.03)	0.48 (0.00, 64.01)	1.01 (0.01, 151.87)	0.97 (0.01, 117)
Desirudin vs. Warfarin	3.39 (0.06, 312.62)	3.20 (0.04, 369.81)	3.25 (0.04, 372.41)		
Enoxaparin +IPC vs.	5.57 (0.00, 512.02)	5.20 (0.01, 505.01)	5.25 (0.01, 572.11)		2.39 (0.03,
Apixaban	1.79 (0.02, 157.12)	1.79 (0.02, 184.75)	1.84 (0.02, 197.75)	2.58 (0.02, 316.08)	225.88)
Enoxaparin +IPC vs.					1.20 (0.01,
Dabigatran	1.18 (0.01, 102.82)	1.17 (0.01, 116.75)	1.21 (0.01, 125.46)	1.26 (0.01, 135.64)	106.27)
Enoxaparin +IPC vs.					0.85 (0.01,
Desirudin	0.82 (0.00, 111.39)	0.84 (0.00, 147.23)	0.85 (0.00, 148.56)	0.87 (0.00, 165.50)	118.75)
Enoxaparin +IPC vs.	0.04(0.01, 67, 42)	0.04(0.01, 72.11)	0.06(0.01, 00.06)	0.00(0.01.96.40)	0.05 (0.01 (0.49)
Enoxaparin	0.94 (0.01, 67.42)	0.94 (0.01, 73.11)	0.96 (0.01, 80.96)	0.99 (0.01, 86.49)	0.95 (0.01, 69.48)
Enoxaparin +IPC vs. Heparin	0.64 (0.00, 167.17)	0.66 (0.00, 243.96)			0.82 (0.00
Enoxaparin +IPC vs. None	0.39 (0.00, 121.75)	0.42 (0.00, 161.42)	0.41 (0.00, 171.74)	0.88 (0.00, 426.24)	0.82 (0.00, 280.90)
Enoxaparin +IPC vs. None Enoxaparin +IPC vs.	0.37 (0.00, 121.73)	0.42 (0.00, 101.42)	0.41 (0.00, 171.74)	0.00 (0.00, 420.24)	2.67 (0.03,
Rivaroxaban	2.58 (0.02, 288.59)	4.24 (0.03, 702.05)	4.35 (0.03, 738.04)	4.58 (0.03, 872.18)	303.69)
Enoxaparin +IPC vs. Warfarin	2.80 (0.01, 743.97)	2.67 (0.01, 930.76)	2.78 (0.01, 900.54)		,
Enoxaparin vs. None	0.42 (0.01, 17.12)	0.44 (0.01, 25.64)	0.43 (0.01, 23.2)	0.89 (0.01, 55.48)	0.87 (0.01, 47.09)
Heparin vs. Dabigatran	1.86 (0.04, 90.02)	1.79 (0.02, 122.00)			, , , , , , , , , , , , , , , , , , ,
Heparin vs. Desirudin	1.29 (0.09, 18.71)	1.27 (0.07, 23.20)			
Heparin vs. Enoxaparin	1.47 (0.04, 56.37)	1.43 (0.03, 78.49)			
Heparin vs. None	0.61 (0.00, 118)	0.63 (0.00, 190)			
Heparin vs. Warfarin	4.39 (0.03, 810.78)	4.08 (0.02, 1,025.57)			
	12.86 (0.06,	11.82 (0.04,	12.48 (0.04,	8.41 (0.04,	8.23 (0.05,
IPC vs. Apixaban	4,600.87)	5,244.84)	4,769.52)	2,581.17)	2,206.14)

Table 101. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin	Without Heparin Trials or Multi-	
Comparison	Correction)	≥1 Event	Trials	Arm Trials	Final Model
	8.48 (0.06,			4.11 (0.01,	4.12 (0.02,
IPC vs. Dabigatran	2,497.39)	7.74 (0.04, 2,347.25)	8.19 (0.04, 2,316.93)	1,781.12)	1,540.71)
C	66.29 (0.09,	58.38 (0.05,	62.68 (0.06,	, ,	, ,
IPC vs. Dalteparin	76,114.95)	105,873.47)	103,777.04)		
Ĩ	5.90 (0.02,	, ,	. ,	2.85 (0.00,	2.93 (0.01,
IPC vs. Desirudin	2,670.44)	5.51 (0.01, 3,597.52)	5.80 (0.01, 3,547.51)	1,902.64)	1,587.63)
	6.73 (0.04,			3.24 (0.01,	3.27 (0.02,
IPC vs. Enoxaparin	2,115.40)	6.20 (0.03, 2,219.42)	6.51 (0.03, 2,136.66)	1,233.98)	1,050.48)
-	7.16 (0.01,	6.59 (0.01,		3.26 (0.00,	3.45 (0.00,
IPC vs. Enoxaparin +IPC	12,951.93)	10,046.71)	6.79 (0.01, 9,976.62)	5,084.74)	4,019.85)
-	4.56 (0.01,				
IPC vs. Heparin	3,604.72)	4.33 (0.01, 5,244.84)			
_					2.83 (0.08,
IPC vs. None	2.79 (0.08, 130.71)	2.74 (0.07, 156.80)	2.80 (0.07, 164.19)	2.87 (0.07, 178.04)	154.62)
	18.50 (0.08,	27.97 (0.08,	29.52 (0.09,	14.97 (0.04,	9.19 (0.03,
IPC vs. Rivaroxaban	6,946.55)	18,196.78)	18,287.99)	10,604.14)	4,076.52)
	11.43 (0.03,	10.60 (0.02,	10.98 (0.02,	5.41 (0.01,	5.52 (0.01,
IPC vs. Tinzaparin	6,939.60)	8,699.32)	8,308.21)	4,964.16)	3,812.35)
	20.03 (0.04,	17.64 (0.03,	18.86 (0.03,		
IPC vs. Warfarin	14,676.46)	19,633.65)	18,398.05)		
					2.26 (0.03,
LD Aspirin vs. Apixaban	3.59 (0.03, 566.23)	3.36 (0.02, 675.87)	3.49 (0.02, 650.02)	2.29 (0.02, 313.25)	248.89)
_					1.13 (0.01,
LD Aspirin vs. Dabigatran	2.37 (0.04, 262.43)	2.20 (0.02, 291.20)	2.29 (0.02, 289.17)	1.12 (0.01, 222.74)	175.56)
	18.50 (0.04,	16.58 (0.02,	17.50 (0.03,		
LD Aspirin vs. Dalteparin	13,147.67)	16,564.22)	15,229.66)		

 Table 101. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin	Without Heparin Trials or Multi-	
Comparison	Correction)	≥1 Event	Trials	Arm Trials	Final Model
LD Aspirin vs. Desirudin	1.65 (0.01, 376.53)	1.57 (0.01, 493.24)	1.62 (0.01, 520.61)	0.78 (0.00, 257.24)	0.80 (0.00, 197.55) 0.90 (0.01,
LD Aspirin vs. Enoxaparin LD Aspirin vs. Enoxaparin	1.88 (0.02, 248.64) 2.00 (0.00,	1.76 (0.01, 284.58)	1.82 (0.01, 275.89)	0.88 (0.01, 149.01)	117.33) 0.94 (0.00,
+IPC	1,775.79)	1.87 (0.00, 1,486.23)	1.89 (0.00, 1,508.69)	0.89 (0.00, 779.77)	512.35)
LD Aspirin vs. Heparin	1.27 (0.00, 528.48)	1.23 (0.00, 772.78)			
LD Aspirin vs. IPC	0.28 (0.00, 19.55)	0.28 (0.00, 27.39)	0.28 (0.00, 26.74)	0.27 (0.00, 27.36)	0.27 (0.00, 20.66)
LD Aspirin vs. None	0.78 (0.07, 8.61) 5.17 (0.05,	0.78 (0.05, 11.20)	0.78 (0.05, 11.22)	0.78 (0.05, 11.39) 4.06 (0.02,	0.78 (0.07, 9.13) 2.52 (0.02,
LD Aspirin vs. Rivaroxaban	1,021.47) 3.19 (0.01,	7.94 (0.04, 2,662.44)	8.25 (0.05, 2,614.95)	1,420.83)	492.26) 1.51 (0.01,
LD Aspirin vs. Tinzaparin	1,024.54) 5.59 (0.02,	3.01 (0.01, 1,256.39)	3.07 (0.01, 1,187.97)	1.47 (0.00, 657.21)	485.41)
LD Aspirin vs. Warfarin	2,487.42)	5.01 (0.01, 2,858.35)	5.26 (0.01, 2,576.02)		
Rivaroxaban vs. Apixaban	0.69 (0.06, 6.05)	0.42 (0.02, 5.11)	0.42 (0.02, 5.16)	0.56 (0.02, 7.90)	0.90 (0.07, 9.67)
Rivaroxaban vs. Dabigatran	0.46 (0.04, 3.88)	0.28 (0.01, 3.30)	0.28 (0.01, 3.32)	0.27 (0.01, 3.39)	0.45 (0.04, 4.15)
Rivaroxaban vs. Desirudin	0.32 (0.01, 6.33)	0.20 (0.00, 5.60)	0.20 (0.00, 5.63)	0.19 (0.00, 5.65)	0.32 (0.01, 6.92)
Rivaroxaban vs. Enoxaparin	0.36 (0.05, 1.99)	0.22 (0.02, 1.72)	0.22 (0.02, 1.68)	0.22 (0.02, 1.71)	0.36 (0.05, 2.06)
Rivaroxaban vs. Heparin	0.25 (0.00, 13.05)	0.15 (0.00, 12.57)			
Rivaroxaban vs. None	0.15 (0.00, 8.86)	0.10 (0.00, 8.94)	0.09 (0.00, 8.43)	0.19 (0.00, 18.80)	0.31 (0.00, 23.55)
Rivaroxaban vs. Warfarin	1.08 (0.03, 66.89)	0.63 (0.01, 50.30)	0.64 (0.01, 51.73)		
Tinzaparin vs. Apixaban	1.13 (0.04, 29.25)	1.12 (0.03, 37.86)	1.14 (0.03, 39.17)	1.55 (0.04, 60.95)	1.49 (0.05, 46.29)
Tinzaparin vs. Dabigatran	0.74 (0.03, 18.86)	0.73 (0.02, 23.76)	0.75 (0.02, 24.48)	0.76 (0.02, 25.79)	0.75 (0.02, 20.11)
Tinzaparin vs. Desirudin	0.52 (0.01, 24.05)	0.52 (0.01, 35.30)	0.53 (0.01, 36.86)	0.53 (0.01, 38.78)	0.53 (0.01, 27.97)

Table 101. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from		Without Heparin	
	Continuity	Treatments with	Without Heparin Trials	Trials or Multi-	Final Madal
Comparison	Correction)	≥1 Event		Arm Trials	Final Model
Tinzaparin vs. Enoxaparin	0.59 (0.03, 11.29)	0.58 (0.02, 13.94)	0.59 (0.02, 14.40)	0.60 (0.02, 15.18)	0.59 (0.03, 11.86)
Tinzaparin vs. Enoxaparin					0.62 (0.00,
+IPC	0.63 (0.00, 112.39)	0.62 (0.00, 140.61)	0.62 (0.00, 141.17)	0.60 (0.00, 137.69)	111.50)
Tinzaparin vs. Heparin	0.40 (0.00, 42.69)	0.41 (0.00, 68.85)			
Tinzaparin vs. None	0.24 (0.00, 29.28)	0.26 (0.00, 45.56)	0.25 (0.00, 43.12)	0.53 (0.00, 102.51)	0.51 (0.00, 76.63)
Tinzaparin vs. Rivaroxaban	1.62 (0.05, 58.62)	2.64 (0.06, 172.43)	2.69 (0.06, 176.62)	2.76 (0.06, 189.24)	1.66 (0.05, 63.50)
Tinzaparin vs. Warfarin	1.75 (0.02, 211.66)	1.66 (0.01, 251.64)	1.72 (0.02, 257.24)		
Warfarin vs. Enoxaparin	0.34 (0.01, 8.06)	0.35 (0.01, 10.37)	0.35 (0.01, 10.43)		
Warfarin vs. None	0.14 (0.00, 20.49)	0.16 (0.00, 31.66)	0.15 (0.00, 29.9)		

 Table 101. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin	Without Heparin Trials or Multi- Arm Trials
Comparison	All Trials	Trials	(Final Model)
Apixaban vs. Desirudin	0.86 (0.43, 1.70)	0.89 (0.35, 2.24)	0.85 (0.31, 2.29)
Apixaban vs. Enoxaparin	0.58 (0.39, 0.87)	0.58 (0.37, 0.90)	0.55 (0.33, 0.92)
Apixaban vs. Heparin	0.29 (0.15, 0.54)		
Apixaban vs. None	0.24 (0.1, 0.53)	0.24 (0.1, 0.56)	0.39 (0.12, 1.25)
Apixaban vs. Tinzaparin	0.44 (0.22, 0.91)	0.44 (0.20, 0.97)	0.43 (0.18, 1.02)
Apixaban vs. Warfarin	0.30 (0.17, 0.52)	0.30 (0.16, 0.55)	0.29 (0.13, 0.62)
Dabigatran vs. Apixaban	1.54 (0.90, 2.64)	1.53 (0.85, 2.75)	1.61 (0.84, 3.11)
Dabigatran vs. Dalteparin	1.08 (0.47, 2.42)	1.07 (0.44, 2.59)	1.09 (0.40, 2.86)
Dabigatran vs. Desirudin	1.32 (0.68, 2.53)	1.36 (0.55, 3.35)	1.36 (0.52, 3.51)
Dabigatran vs. Enoxaparin	0.90 (0.63, 1.27)	0.89 (0.61, 1.30)	0.89 (0.60, 1.32)
Dabigatran vs. Enoxaparin + IPC	3.21 (0.89, 12.69)	3.16 (0.82, 13.36)	3.25 (0.82, 13.68)
Dabigatran vs. Heparin	0.45 (0.25, 0.80)		
Dabigatran vs. IPC + LD Aspirin	0.93 (0.26, 3.39)	0.92 (0.24, 3.54)	0.92 (0.23, 3.67)
Dabigatran vs. None	0.37 (0.17, 0.8)	0.37 (0.15, 0.83)	0.63 (0.21, 1.93)
Dabigatran vs. Rivaroxaban	2.13 (1.32, 3.46)	2.13 (1.26, 3.59)	2.13 (1.23, 3.66)
Dabigatran vs. Tinzaparin	0.68 (0.34, 1.37)	0.68 (0.32, 1.46)	0.69 (0.30, 1.55)
Dabigatran vs. Warfarin	0.46 (0.26, 0.80)	0.45 (0.24, 0.83)	0.46 (0.23, 0.93)
Dalteparin vs. Apixaban	1.43 (0.63, 3.28)	1.44 (0.59, 3.50)	1.48 (0.53, 4.18)
Dalteparin vs. Desirudin	1.23 (0.49, 3.10)	1.27 (0.41, 3.97)	1.26 (0.37, 4.41)
Dalteparin vs. Enoxaparin	0.83 (0.40, 1.75)	0.84 (0.37, 1.86)	0.82 (0.34, 2.00)
Dalteparin vs. Enoxaparin + IPC	2.98 (0.71, 13.65)	2.96 (0.64, 14.59)	2.99 (0.62, 15.38)
Dalteparin vs. Heparin	0.42 (0.17, 1.00)		

Table 102. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Deep Vein
Thrombosis

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials	Without Heparin Trials or Multi- Arm Trials (Final Model)
•			
Dalteparin vs. IPC	0.97 (0.3, 3.09)	0.97 (0.28, 3.22)	1.8 (0.34, 9.58)
Dalteparin vs. IPC + LD Aspirin	0.87 (0.20, 3.70)	0.86 (0.19, 3.99)	0.85 (0.17, 4.20)
Dalteparin vs. None	0.34 (0.12, 0.95)	0.34 (0.11, 1.01)	0.58 (0.15, 2.28)
Dalteparin vs. Rivaroxaban	1.98 (0.89, 4.49)	1.99 (0.83, 4.81)	1.96 (0.75, 5.14)
Dalteparin vs. Tinzaparin	0.63 (0.28, 1.47)	0.64 (0.26, 1.61)	0.63 (0.24, 1.67)
Dalteparin vs. Warfarin	0.42 (0.23, 0.77)	0.42 (0.22, 0.81)	0.43 (0.22, 0.84)
Dalteparin vs. YM150	0.81 (0.24, 2.7)	0.82 (0.22, 2.95)	0.8 (0.2, 3.22)
Desirudin vs. Enoxaparin	0.68 (0.39, 1.18)	0.66 (0.29, 1.49)	0.65 (0.28, 1.56)
Desirudin vs. Heparin	0.34 (0.20, 0.56)		
Desirudin vs. None	0.28 (0.11, 0.67)	0.27 (0.09, 0.8)	0.46 (0.12, 1.79)
Desirudin vs. Tinzaparin	0.51 (0.23, 1.18)	0.50 (0.18, 1.44)	0.50 (0.16, 1.55)
Desirudin vs. Warfarin	0.34 (0.17, 0.70)	0.33 (0.13, 0.86)	0.34 (0.12, 0.96)
Enoxaparin + IPC vs. Apixaban	0.48 (0.12, 1.77)	0.49 (0.11, 1.91)	0.50 (0.11, 2.07)
Enoxaparin + IPC vs. Desirudin	0.41 (0.10, 1.61)	0.43 (0.09, 1.99)	0.42 (0.08, 2.00)
Enoxaparin + IPC vs. Enoxaparin	0.28 (0.07, 0.96)	0.28 (0.07, 1.03)	0.27 (0.07, 1.03)
Enoxaparin + IPC vs. GCS	0.18 (0.03, 0.88)	0.18 (0.03, 0.97)	
Enoxaparin + IPC vs. Heparin	0.14 (0.03, 0.52)		
Enoxaparin + IPC vs. IPC	0.33 (0.07, 1.51)	0.33 (0.06, 1.59)	0.6 (0.08, 4.24)
Enoxaparin + IPC vs. None	0.12 (0.03, 0.48)	0.12 (0.02, 0.51)	0.19 (0.03, 1.05)
Enoxaparin + IPC vs. Rivaroxaban	0.67 (0.17, 2.41)	0.67 (0.16, 2.59)	0.65 (0.16, 2.59)
Enoxaparin + IPC vs. Tinzaparin	0.21 (0.05, 0.84)	0.22 (0.05, 0.93)	0.21 (0.04, 0.96)
Enoxaparin + IPC vs. Warfarin	0.14 (0.03, 0.53)	0.14 (0.03, 0.58)	0.14 (0.03, 0.60)

Table 102. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Deep Vein	
Thrombosis	

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials	Without Heparin Trials or Multi- Arm Trials (Final Model)
Enoxaparin vs. None	0.41 (0.2, 0.82)	0.41 (0.19, 0.85)	0.71 (0.25, 2)
Fondaparinux vs. Apixaban	0.24 (0.03, 1.25)	0.23 (0.03, 1.26)	0.24 (0.03, 1.38)
Fondaparinux vs. Dabigatran	0.16 (0.02, 0.80)	0.15 (0.02, 0.81)	0.15 (0.02, 0.83)
Fondaparinux vs. Dalteparin	0.17 (0.02, 0.97)	0.16 (0.02, 1.00)	0.16 (0.02, 1.07)
Fondaparinux vs. Desirudin	0.21 (0.03, 1.12)	0.20 (0.02, 1.29)	0.20 (0.02, 1.34)
Fondaparinux vs. Enoxaparin	0.14 (0.02, 0.69)	0.13 (0.02, 0.69)	0.13 (0.02, 0.71)
Fondaparinux vs. Enoxaparin + IPC	0.50 (0.05, 3.93)	0.47 (0.04, 4.22)	0.48 (0.04, 4.31)
Fondaparinux vs. GCS	0.09 (0.01, 0.61)	0.09 (0.01, 0.63)	
Fondaparinux vs. HD Aspirin	0.29 (0.02, 3.99)	0.28 (0.01, 4.34)	0.28 (0.01, 4.64)
Fondaparinux vs. Heparin	0.07 (0.01, 0.37)		
Fondaparinux vs. IPC	0.16 (0.02, 1.01)	0.15 (0.02, 1.04)	0.29 (0.02, 2.66)
Fondaparinux vs. IPC + HD Aspirin	0.37 (0.03, 3.60)	0.35 (0.03, 3.99)	0.36 (0.02, 4.21)
Fondaparinux vs. IPC + LD Aspirin	0.15 (0.01, 1.14)	0.14 (0.01, 1.11)	0.14 (0.01, 1.20)
Fondaparinux vs. None	0.06 (0.01, 0.33)	0.05 (0.01, 0.34)	0.09 (0.01, 0.69)
Fondaparinux vs. Rivaroxaban	0.33 (0.04, 1.70)	0.32 (0.04, 1.71)	0.31 (0.04, 1.76)
Fondaparinux vs. Tinzaparin	0.11 (0.01, 0.58)	0.10 (0.01, 0.61)	0.10 (0.01, 0.63)
Fondaparinux vs. Tinzaparin + GCS	0.17 (0.01, 1.39)	0.16 (0.01, 1.46)	
Fondaparinux vs. Warfarin	0.07 (0.01, 0.37)	0.07 (0.01, 0.38)	0.07 (0.01, 0.40)
Fondaparinux vs. YM150	0.14 (0.02, 0.88)	0.13 (0.01, 0.93)	0.13 (0.01, 0.94)
GCS vs. Apixaban	2.66 (0.90, 8.18)	2.67 (0.85, 8.60)	
GCS vs. Dabigatran	1.73 (0.60, 5.13)	1.74 (0.56, 5.52)	
GCS vs. Dalteparin	1.86 (0.54, 6.54)	1.86 (0.49, 7.21)	

Results expressed as Odds Ratio (95% CI)		Without Heparin	Without Heparin Trials or Multi- Arm Trials
Comparison	All Trials	Trials	(Final Model)
GCS vs. Desirudin	2.29 (0.72, 7.33)	2.37 (0.62, 9.26)	
GCS vs. Enoxaparin	1.55 (0.57, 4.36)	1.55 (0.53, 4.58)	
GCS vs. Heparin	0.77 (0.25, 2.37)		
GCS vs. IPC + LD Aspirin	1.61 (0.33, 8.08)	1.60 (0.30, 8.59)	
GCS vs. None	0.64 (0.25, 1.6)	0.64 (0.24, 1.68)	
GCS vs. Rivaroxaban	3.68 (1.28, 10.95)	3.70 (1.21, 11.66)	
GCS vs. Tinzaparin	1.18 (0.37, 3.88)	1.18 (0.34, 4.23)	
GCS vs. Warfarin	0.79 (0.26, 2.42)	0.79 (0.25, 2.57)	
HD Aspirin vs. Apixaban	0.82 (0.10, 6.57)	0.83 (0.09, 7.30)	0.84 (0.09, 7.71)
HD Aspirin vs. Dabigatran	0.53 (0.07, 4.25)	0.54 (0.06, 4.76)	0.52 (0.06, 4.71)
HD Aspirin vs. Dalteparin	0.57 (0.06, 5.00)	0.58 (0.06, 5.66)	0.56 (0.05, 5.77)
HD Aspirin vs. Desirudin	0.71 (0.08, 5.81)	0.74 (0.07, 7.25)	0.71 (0.07, 7.19)
HD Aspirin vs. Enoxaparin	0.48 (0.06, 3.68)	0.48 (0.06, 4.07)	0.46 (0.05, 3.97)
HD Aspirin vs. Enoxaparin + IPC	1.71 (0.35, 8.47)	1.72 (0.32, 9.22)	1.68 (0.31, 9.23)
HD Aspirin vs. GCS	0.31 (0.03, 2.99)	0.31 (0.03, 3.38)	
HD Aspirin vs. Heparin	0.24 (0.03, 1.91)		
HD Aspirin vs. IPC	0.56 (0.06, 5.16)	0.56 (0.05, 5.67)	1.01 (0.08, 13.48)
HD Aspirin vs. IPC + HD Aspirin	1.28 (0.36, 4.57)	1.28 (0.35, 4.83)	1.27 (0.34, 4.87)
HD Aspirin vs. IPC + LD Aspirin	0.50 (0.04, 5.32)	0.50 (0.04, 6.14)	0.48 (0.04, 6.04)
HD Aspirin vs. None	0.20 (0.02, 1.71)	0.20 (0.02, 1.90)	0.33 (0.03, 3.62)
HD Aspirin vs. Rivaroxaban	1.14 (0.14, 9.02)	1.15 (0.13, 10.06)	1.10 (0.12, 9.80)
HD Aspirin vs. Tinzaparin	0.36 (0.04, 3.06)	0.37 (0.04, 3.45)	0.36 (0.04, 3.44)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials	Without Heparin Trials or Multi- Arm Trials (Final Model)
HD Aspirin vs. Tinzaparin + GCS	0.57 (0.05, 6.42)	0.57 (0.04, 7.46)	× /
HD Aspirin vs. Warfarin	0.24 (0.03, 1.97)	0.25 (0.03, 2.18)	0.24 (0.02, 2.21)
HD Aspirin vs. YM150	0.47 (0.05, 4.41)	0.47 (0.04, 5.04)	0.45 (0.04, 4.87)
Heparin vs. Enoxaparin	2.00 (1.26, 3.22)		
Heparin vs. None	0.82 (0.35, 1.89)		
Heparin vs. Warfarin	1.02 (0.54, 1.95)		
IPC + HD Aspirin vs. Apixaban	0.64 (0.12, 3.30)	0.65 (0.11, 3.71)	0.66 (0.11, 3.92)
IPC + HD Aspirin vs. Dabigatran	0.42 (0.08, 2.12)	0.42 (0.07, 2.38)	0.41 (0.07, 2.33)
IPC + HD Aspirin vs. Dalteparin	0.45 (0.08, 2.57)	0.45 (0.07, 2.96)	0.44 (0.06, 2.98)
IPC + HD Aspirin vs. Desirudin	0.55 (0.10, 2.95)	0.58 (0.08, 3.76)	0.56 (0.08, 3.74)
IPC + HD Aspirin vs. Enoxaparin	0.37 (0.07, 1.82)	0.38 (0.07, 2.03)	0.37 (0.06, 1.98)
IPC + HD Aspirin vs. Enoxaparin + IPC	1.34 (0.51, 3.51)	1.34 (0.48, 3.77)	1.33 (0.46, 3.85)
IPC + HD Aspirin vs. GCS	0.24 (0.04, 1.55)	0.24 (0.03, 1.77)	
IPC + HD Aspirin vs. Heparin	0.19 (0.03, 0.97)		
IPC + HD Aspirin vs. IPC	0.44 (0.07, 2.66)	0.44 (0.06, 2.97)	0.80 (0.09, 7.44)
IPC + HD Aspirin vs. IPC + LD Aspirin	0.39 (0.05, 2.91)	0.39 (0.05, 3.28)	0.38 (0.04, 3.28)
IPC + HD Aspirin vs. None	0.15 (0.03, 0.88)	0.16 (0.02, 0.97)	0.26 (0.03, 1.91)
IPC + HD Aspirin vs. Rivaroxaban	0.89 (0.17, 4.49)	0.90 (0.15, 5.01)	0.87 (0.14, 4.95)
IPC + HD Aspirin vs. Tinzaparin	0.28 (0.05, 1.57)	0.29 (0.05, 1.76)	0.28 (0.04, 1.78)
IPC + HD Aspirin vs. Tinzaparin + GCS	0.45 (0.05, 3.48)	0.45 (0.05, 4.07)	
IPC + HD Aspirin vs. Warfarin	0.19 (0.04, 0.99)	0.19 (0.03, 1.11)	0.19 (0.03, 1.13)
IPC + HD Aspirin vs. YM150	0.37 (0.06, 2.29)	0.37 (0.05, 2.63)	0.36 (0.05, 2.63)

 Table 102. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Deep Vein Thrombosis

Results expressed as Odds Ratio (95% CI)		Without Heparin	Without Heparin Trials or Multi- Arm Trials
Comparison	All Trials	Trials	(Final Model)
IPC + LD Aspirin vs. Apixaban	1.65 (0.45, 6.09)	1.67 (0.43, 6.50)	1.75 (0.42, 7.32)
IPC + LD Aspirin vs. Desirudin	1.42 (0.37, 5.48)	1.48 (0.32, 6.79)	1.48 (0.30, 7.13)
IPC + LD Aspirin vs. Enoxaparin	0.96 (0.28, 3.31)	0.97 (0.27, 3.53)	0.97 (0.26, 3.66)
IPC + LD Aspirin vs. Enoxaparin + IPC	3.43 (0.60, 21.09)	3.43 (0.54, 22.67)	3.52 (0.54, 23.03)
IPC + LD Aspirin vs. Heparin	0.48 (0.13, 1.79)		
IPC + LD Aspirin vs. None	0.4 (0.09, 1.65)	0.4 (0.09, 1.74)	0.68 (0.13, 3.66)
IPC + LD Aspirin vs. Tinzaparin	0.73 (0.18, 2.91)	0.74 (0.17, 3.15)	0.74 (0.17, 3.36)
IPC + LD Aspirin vs. Warfarin	0.49 (0.13, 1.82)	0.49 (0.12, 1.96)	0.50 (0.12, 2.13)
IPC vs. Apixaban	1.47 (0.56, 3.96)	1.49 (0.54, 4.25)	0.83 (0.18, 3.74)
IPC vs. Dabigatran	0.96 (0.37, 2.51)	0.97 (0.36, 2.69)	0.51 (0.12, 2.23)
IPC vs. Desirudin	1.27 (0.45, 3.63)	1.32 (0.39, 4.65)	0.70 (0.13, 3.63)
IPC vs. Enoxaparin	0.86 (0.36, 2.10)	0.87 (0.35, 2.25)	0.46 (0.11, 1.86)
IPC vs. GCS	0.55 (0.20, 1.51)	0.56 (0.20, 1.61)	
IPC vs. Heparin	0.43 (0.16, 1.17)		
IPC vs. IPC + LD Aspirin	0.89 (0.20, 4.10)	0.89 (0.18, 4.47)	0.47 (0.07, 3.25)
IPC vs. None	0.35 (0.18, 0.68)	0.35 (0.18, 0.72)	0.32 (0.12, 0.84)
IPC vs. Rivaroxaban	2.04 (0.80, 5.34)	2.06 (0.77, 5.73)	1.09 (0.25, 4.67)
IPC vs. Tinzaparin	0.65 (0.23, 1.93)	0.66 (0.21, 2.12)	0.35 (0.07, 1.69)
IPC vs. Warfarin	0.44 (0.16, 1.19)	0.44 (0.16, 1.28)	0.24 (0.05, 1.08)
Rivaroxaban vs. Apixaban	0.72 (0.43, 1.23)	0.72 (0.41, 1.27)	0.76 (0.40, 1.44)
Rivaroxaban vs. Desirudin	0.62 (0.33, 1.17)	0.64 (0.26, 1.55)	0.64 (0.25, 1.64)
Rivaroxaban vs. Enoxaparin	0.42 (0.30, 0.59)	0.42 (0.29, 0.60)	0.42 (0.29, 0.61)

Results expressed as Odds Ratio (95% CI)		Without Heparin	Without Heparin Trials or Multi- Arm Trials
Comparison	All Trials	Trials	(Final Model)
Rivaroxaban vs. Heparin	0.21 (0.12, 0.37)		
Rivaroxaban vs. IPC + LD Aspirin	0.44 (0.12, 1.57)	0.43 (0.11, 1.65)	0.43 (0.11, 1.72)
Rivaroxaban vs. None	0.17 (0.08, 0.37)	0.17 (0.07, 0.39)	0.30 (0.10, 0.90)
Rivaroxaban vs. Tinzaparin	0.32 (0.16, 0.64)	0.32 (0.15, 0.68)	0.32 (0.14, 0.72)
Rivaroxaban vs. Warfarin	0.21 (0.12, 0.37)	0.21 (0.12, 0.39)	0.22 (0.11, 0.43)
Tinzaparin + GCS vs. Apixaban	1.45 (0.35, 6.13)	1.45 (0.32, 6.71)	
Tinzaparin + GCS vs. Dabigatran	0.94 (0.23, 3.89)	0.95 (0.21, 4.25)	
Tinzaparin + GCS vs. Dalteparin	1.01 (0.22, 4.79)	1.01 (0.19, 5.35)	
Tinzaparin + GCS vs. Desirudin	1.24 (0.29, 5.44)	1.29 (0.25, 6.89)	
Tinzaparin + GCS vs. Enoxaparin	0.84 (0.22, 3.33)	0.85 (0.20, 3.64)	
Tinzaparin + GCS vs. Enoxaparin + IPC	3.01 (0.49, 19.73)	2.99 (0.44, 22.33)	
Tinzaparin + GCS vs. GCS	0.54 (0.22, 1.35)	0.54 (0.20, 1.45)	
Tinzaparin + GCS vs. Heparin	0.42 (0.10, 1.79)		
Tinzaparin + GCS vs. IPC	0.98 (0.25, 3.76)	0.98 (0.23, 4.12)	
Tinzaparin + GCS vs. IPC + LD Aspirin	0.88 (0.14, 5.66)	0.87 (0.13, 6.05)	
Tinzaparin + GCS vs. None	0.35 (0.10, 1.26)	0.35 (0.09, 1.37)	
Tinzaparin + GCS vs. Rivaroxaban	2.00 (0.50, 8.28)	2.01 (0.46, 9.12)	
Tinzaparin + GCS vs. Tinzaparin	0.64 (0.15, 2.91)	0.64 (0.13, 3.21)	
Tinzaparin + GCS vs. Warfarin	0.43 (0.10, 1.82)	0.43 (0.09, 1.99)	
Tinzaparin vs. Enoxaparin	1.32 (0.71, 2.41)	1.31 (0.68, 2.52)	1.30 (0.64, 2.65)
Tinzaparin vs. Heparin	0.66 (0.30, 1.41)		
Tinzaparin vs. None	0.54 (0.21, 1.36)	0.54 (0.2, 1.43)	0.92 (0.26, 3.21)

Results expressed as Odds Ratio (95% CI)	1		Without Heparin Trials or Multi- Arm Trials	
Comparison	All Trials	Without Heparin Trials	(Final Model)	
Tinzaparin vs. Warfarin	0.67 (0.37, 1.20)	0.67 (0.35, 1.26)	0.67 (0.34, 1.34)	
Warfarin vs. Enoxaparin	1.97 (1.27, 3.07)	1.97 (1.22, 3.17)	1.93 (1.08, 3.46)	
Warfarin vs. None	0.81 (0.35, 1.85)	0.81 (0.33, 1.93)	1.37 (0.42, 4.51)	
YM150 vs. Apixaban	1.76 (0.63, 4.97)	1.76 (0.59, 5.36)	1.85 (0.58, 5.96)	
YM150 vs. Dabigatran	1.14 (0.42, 3.16)	1.15 (0.39, 3.40)	1.15 (0.38, 3.53)	
YM150 vs. Desirudin	1.52 (0.50, 4.55)	1.56 (0.43, 5.75)	1.57 (0.40, 6.07)	
YM150 vs. Enoxaparin	1.03 (0.40, 2.65)	1.03 (0.37, 2.83)	1.03 (0.36, 2.94)	
YM150 vs. Enoxaparin + IPC	3.67 (0.77, 18.82)	3.63 (0.70, 20.35)	3.73 (0.69, 20.88)	
YM150 vs. GCS	0.66 (0.16, 2.68)	0.66 (0.15, 2.86)		
YM150 vs. Heparin	0.51 (0.18, 1.48)			
YM150 vs. IPC	1.20 (0.32, 4.38)	1.18 (0.29, 4.65)	2.24 (0.39, 13.17)	
YM150 vs. IPC + LD Aspirin	1.07 (0.22, 5.07)	1.06 (0.21, 5.50)	1.06 (0.20, 5.77)	
YM150 vs. None	0.42 (0.13, 1.38)	0.42 (0.12, 1.46)	0.73 (0.17, 3.18)	
YM150 vs. Rivaroxaban	2.44 (0.89, 6.70)	2.44 (0.84, 7.19)	2.44 (0.81, 7.46)	
YM150 vs. Tinzaparin	0.78 (0.25, 2.40)	0.78 (0.24, 2.64)	0.79 (0.22, 2.82)	
YM150 vs. Tinzaparin + GCS	1.22 (0.23, 6.34)	1.21 (0.21, 7.05)		
YM150 vs. Warfarin	0.52 (0.18, 1.49)	0.52 (0.17, 1.60)	0.53 (0.16, 1.76)	

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal
DVT

Results expressed as Odds Ratio (95% CI)	Without Heparin Trials or Multi-Arm			
Comparison	All Trials	Trials	Final Model	
Apixaban vs. Enoxaparin	0.49 (0.23, 1.07)	0.44 (0.16, 1.22)	0.44 (0.16, 1.18)	
Apixaban vs. None	0.21 (0.06, 0.77)	0.14 (0.02, 0.91)	0.17 (0.03, 0.97)	
Apixaban vs. Warfarin	0.33 (0.11, 0.99)	0.23 (0.05, 1.05)	0.23 (0.05, 0.97)	
Dabigatran vs. Apixaban	1.25 (0.46, 3.30)	1.34 (0.37, 4.74)	1.38 (0.40, 4.65)	
Dabigatran vs. Enoxaparin	0.61 (0.33, 1.11)	0.59 (0.27, 1.24)	0.60 (0.29, 1.24)	
Dabigatran vs. None	0.26 (0.08, 0.8)	0.19 (0.03, 0.96)	0.23 (0.04, 1.04)	
Dabigatran vs. Warfarin	0.41 (0.15, 1.13)	0.31 (0.08, 1.15)	0.32 (0.08, 1.11)	
Dalteparin vs. Apixaban	1.26 (0.26, 5.77)	1.75 (0.23, 13.34)	1.78 (0.26, 12.37)	
Dalteparin vs. Dabigatran	1.01 (0.22, 4.40)	1.31 (0.20, 9.12)	1.29 (0.22, 8.05)	
Dalteparin vs. Desirudin	1.18 (0.22, 6.13)	1.33 (0.12, 14.82)	1.35 (0.14, 13.25)	
Dalteparin vs. Enoxaparin	0.61 (0.15, 2.37)	0.77 (0.14, 4.44)	0.78 (0.15, 4.15)	
Dalteparin vs. Fondaparinux	3.23 (0.18, 102.82)	4.13 (0.15, 196.17)	4.27 (0.18, 202.35)	
Dalteparin vs. IPC + LD Aspirin	0.39 (0.03, 5.27)	0.48 (0.02, 10.21)	0.48 (0.02, 9.43)	
Dalteparin vs. None	0.26 (0.05, 1.46)	0.25 (0.02, 2.57)	0.29 (0.03, 2.70)	
Dalteparin vs. Rivaroxaban	3.16 (0.68, 14.28)	3.92 (0.57, 27.47)	3.99 (0.65, 25.38)	
Dalteparin vs. Tinzaparin	0.60 (0.13, 2.60)	0.66 (0.10, 4.27)	0.67 (0.11, 3.92)	
Dalteparin vs. Warfarin	0.42 (0.14, 1.24)	0.41 (0.10, 1.52)	0.41 (0.11, 1.44)	
Dalteparin vs. YM150	0.54 (0.06, 4.97)	0.70 (0.05, 10.54)	0.69 (0.05, 9.30)	
Desirudin vs. Apixaban	1.07 (0.31, 3.57)	1.31 (0.19, 9.22)	1.31 (0.21, 8.20)	
Desirudin vs. Dabigatran	0.86 (0.28, 2.67)	0.98 (0.16, 6.22)	0.95 (0.17, 5.34)	
Desirudin vs. Enoxaparin	0.52 (0.20, 1.34)	0.57 (0.11, 2.98)	0.58 (0.12, 2.73)	
Desirudin vs. IPC + LD Aspirin	0.33 (0.03, 3.79)	0.36 (0.02, 6.99)	0.36 (0.02, 6.48)	

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal
DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm	
Comparison	All Trials	Trials	Final Model
Desirudin vs. None	0.22 (0.05, 0.92)	0.19 (0.02, 1.77)	0.22 (0.02, 1.83)
Desirudin vs. Rivaroxaban	2.68 (0.84, 8.56)	2.94 (0.47, 18.60)	2.95 (0.53, 16.71)
Desirudin vs. Tinzaparin	0.51 (0.13, 2.05)	0.50 (0.06, 4.03)	0.50 (0.07, 3.55)
Desirudin vs. Warfarin	0.35 (0.10, 1.23)	0.31 (0.04, 2.16)	0.31 (0.04, 1.91)
Desirudin vs. YM150	0.46 (0.06, 3.43)	0.52 (0.04, 7.19)	0.51 (0.04, 6.13)
Enoxaparin + GCS vs. Apixaban	0.60 (0.02, 13.20)	0.66 (0.01, 24.85)	0.65 (0.01, 21.33)
Enoxaparin + GCS vs. Dabigatran	0.48 (0.01, 10.36)	0.50 (0.01, 17.39)	0.47 (0.01, 14.24)
Enoxaparin + GCS vs. Dalteparin	0.48 (0.01, 13.12)	0.38 (0.01, 18.36)	0.37 (0.01, 15.09)
Enoxaparin + GCS vs. Desirudin	0.57 (0.01, 13.30)	0.51 (0.01, 23.64)	0.50 (0.01, 19.63)
Enoxaparin + GCS vs. Enoxaparin	0.29 (0.01, 5.88)	0.29 (0.01, 9.27)	0.29 (0.01, 7.84)
Enoxaparin + GCS vs. Fondaparinux	1.55 (0.31, 7.74)	1.57 (0.21, 11.70)	1.56 (0.23, 10.64)
Enoxaparin + GCS vs. Fondaparinux + GCS	1.84 (0.80, 4.24)	1.85 (0.66, 5.20)	1.86 (0.70, 5.02)
Enoxaparin + GCS vs. IPC	0.35 (0.01, 9.97)	0.20 (0.00, 12.97)	0.23 (0.00, 12.22)
Enoxaparin + GCS vs. IPC + LD Aspirin	0.19 (0.00, 8.23)	0.18 (0.00, 13.28)	0.18 (0.00, 11.34)
Enoxaparin + GCS vs. None	0.13 (0.00, 3.03)	0.09 (0.00, 4.17)	0.11 (0.00, 4.12)
Enoxaparin + GCS vs. Rivaroxaban	1.52 (0.04, 32.56)	1.49 (0.03, 51.42)	1.46 (0.03, 44.08)
Enoxaparin + GCS vs. Tinzaparin	0.29 (0.01, 6.95)	0.25 (0.00, 10.32)	0.25 (0.00, 8.31)
Enoxaparin + GCS vs. Warfarin	0.20 (0.01, 4.45)	0.15 (0.00, 5.79)	0.15 (0.00, 4.88)
Enoxaparin + GCS vs. YM150	0.26 (0.01, 8.65)	0.26 (0.00, 14.95)	0.25 (0.00, 12.39)
Enoxaparin vs. None	0.43 (0.14, 1.21)	0.32 (0.06, 1.56)	0.38 (0.08, 1.66)
Fondaparinux + GCS vs. Apixaban	0.33 (0.01, 6.35)	0.36 (0.01, 11.40)	0.35 (0.01, 9.55)
Fondaparinux + GCS vs. Dabigatran	0.26 (0.01, 4.92)	0.27 (0.01, 8.04)	0.25 (0.01, 6.53)

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI)

Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm		
Comparison	All Trials	Trials	Final Model	
Fondaparinux + GCS vs. Dalteparin	0.26 (0.01, 6.39)	0.20 (0.00, 8.76)	0.20 (0.00, 6.98)	
Fondaparinux + GCS vs. Desirudin	0.31 (0.01, 6.46)	0.27 (0.00, 11.01)	0.27 (0.00, 9.08)	
Fondaparinux + GCS vs. Enoxaparin	0.16 (0.01, 2.82)	0.16 (0.00, 4.22)	0.15 (0.00, 3.55)	
Fondaparinux + GCS vs. Fondaparinux	0.84 (0.22, 3.31)	0.85 (0.15, 4.81)	0.84 (0.16, 4.36)	
Fondaparinux + GCS vs. IPC	0.19 (0.00, 4.87)	0.11 (0.00, 6.14)	0.12 (0.00, 5.81)	
Fondaparinux + GCS vs. IPC + LD Aspirin	0.10 (0.00, 4.03)	0.10 (0.00, 6.26)	0.10 (0.00, 5.40)	
Fondaparinux + GCS vs. None	0.07 (0.00, 1.48)	0.05 (0.00, 1.97)	0.06 (0.00, 1.91)	
Fondaparinux + GCS vs. Rivaroxaban	0.82 (0.02, 15.47)	0.80 (0.02, 23.93)	0.79 (0.02, 20.09)	
Fondaparinux + GCS vs. Tinzaparin	0.16 (0.00, 3.36)	0.14 (0.00, 4.74)	0.13 (0.00, 3.87)	
Fondaparinux + GCS vs. Warfarin	0.11 (0.00, 2.16)	0.08 (0.00, 2.68)	0.08 (0.00, 2.24)	
Fondaparinux + GCS vs. YM150	0.14 (0.00, 4.13)	0.14 (0.00, 7.11)	0.14 (0.00, 5.74)	
Fondaparinux vs. Apixaban	0.39 (0.01, 5.23)	0.42 (0.01, 8.13)	0.42 (0.01, 7.19)	
Fondaparinux vs. Dabigatran	0.31 (0.01, 4.03)	0.32 (0.01, 5.77)	0.30 (0.01, 4.80)	
Fondaparinux vs. Desirudin	0.36 (0.01, 5.30)	0.32 (0.01, 8.29)	0.32 (0.01, 7.04)	
Fondaparinux vs. Enoxaparin	0.19 (0.01, 2.27)	0.19 (0.01, 2.98)	0.18 (0.01, 2.60)	
Fondaparinux vs. IPC + LD Aspirin	0.12 (0.00, 3.72)	0.12 (0.00, 4.97)	0.11 (0.00, 4.46)	
Fondaparinux vs. None	0.08 (0.00, 1.20)	0.06 (0.00, 1.48)	0.07 (0.00, 1.49)	
Fondaparinux vs. Rivaroxaban	0.98 (0.04, 12.86)	0.95 (0.03, 17.00)	0.94 (0.03, 15.17)	
Fondaparinux vs. Tinzaparin	0.19 (0.01, 2.81)	0.16 (0.00, 3.51)	0.16 (0.00, 2.96)	
Fondaparinux vs. Warfarin	0.13 (0.00, 1.77)	0.10 (0.00, 1.98)	0.10 (0.00, 1.69)	
Fondaparinux vs. YM150	0.17 (0.00, 3.69)	0.17 (0.00, 5.48)	0.16 (0.00, 4.66)	
GCS vs. Apixaban	1.93 (0.12, 21.28)			

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal
DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm	
Comparison	All Trials	Trials	Final Model
GCS vs. Dabigatran	1.55 (0.10, 15.89)		
GCS vs. Dalteparin	1.54 (0.08, 21.67)		
GCS vs. Desirudin	1.81 (0.11, 21.22)		
GCS vs. Enoxaparin	0.94 (0.07, 9.02)		
GCS vs. Enoxaparin + GCS	3.19 (0.06, 217.46)		
GCS vs. Fondaparinux	4.95 (0.13, 262.70)		
GCS vs. Fondaparinux + GCS	5.88 (0.12, 377.66)		
GCS vs. Heparin	0.26 (0.02, 2.92)		
GCS vs. IPC	1.11 (0.07, 11.70)		
GCS vs. IPC + GCS	1.41 (0.02, 109.84)		
GCS vs. IPC + LD Aspirin	0.60 (0.02, 14.98)		
GCS vs. None	0.41 (0.03, 3.68)		
GCS vs. Rivaroxaban	4.85 (0.31, 51.83)		
GCS vs. Tinzaparin	0.92 (0.05, 11.07)		
GCS vs. Warfarin	0.64 (0.04, 7.12)		
GCS vs. Warfarin + GCS	7.52 (0.08, 830.48)		
GCS vs. YM150	0.83 (0.04, 15.30)		
Heparin vs. Apixaban	7.32 (2.40, 22.09)		
Heparin vs. Dabigatran	5.88 (2.19, 15.99)		
Heparin vs. Dalteparin	5.83 (1.22, 28.67)		
Heparin vs. Desirudin	6.87 (2.80, 17.15)		
Heparin vs. Enoxaparin	3.58 (1.63, 7.91)		

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patier	ıts – Proximal
DVT	

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm	L
Comparison	All Trials	Trials	Final Model
Heparin vs. Enoxaparin + GCS	12.13 (0.54, 447.20)		
Heparin vs. Fondaparinux	18.82 (1.38, 506.74)		
Heparin vs. Fondaparinux + GCS	22.35 (1.12, 755.21)		
Heparin vs. IPC	4.22 (0.79, 23.83)		
Heparin vs. IPC + GCS	5.37 (0.18, 229.75)		
Heparin vs. IPC + LD Aspirin	2.26 (0.19, 24.29)		
Heparin vs. None	1.54 (0.40, 5.70)		
Heparin vs. Rivaroxaban	18.41 (6.53, 52.56)		
Heparin vs. Tinzaparin	3.50 (0.97, 12.83)		
Heparin vs. Warfarin	2.44 (0.79, 7.53) 28.56 (0.61,		
Heparin vs. Warfarin + GCS	1,788.26)		
Heparin vs. YM150	3.16 (0.45, 22.07)		
IPC + GCS vs. Apixaban	1.36 (0.03, 39.81)	1.85 (0.03, 100.48)	1.56 (0.02, 71.16)
IPC + GCS vs. Dabigatran	1.09 (0.03, 31.53)	1.38 (0.02, 72.10)	1.13 (0.02, 48.76)
IPC + GCS vs. Dalteparin	1.09 (0.02, 39.45)	1.05 (0.01, 74.51)	0.88 (0.01, 50.15)
IPC + GCS vs. Desirudin	1.28 (0.03, 40.45)	1.41 (0.02, 95.49)	1.19 (0.01, 66.75)
IPC + GCS vs. Enoxaparin	0.67 (0.02, 18.21)	0.81 (0.01, 37.83)	0.68 (0.01, 27.30)
IPC + GCS vs. Enoxaparin + GCS	2.26 (0.69, 8.14)	2.78 (0.65, 14.85)	2.40 (0.62, 10.57)
IPC + GCS vs. Fondaparinux	3.50 (0.48, 27.83)	4.35 (0.39, 60.34)	3.75 (0.36, 44.04)
IPC + GCS vs. Fondaparinux + GCS	4.16 (0.98, 19.16)	5.14 (0.89, 37.68)	4.46 (0.83, 27.28)
IPC + GCS vs. IPC	0.79 (0.02, 29.70)	0.56 (0.00, 50.65)	0.55 (0.01, 39.88)
IPC + GCS vs. IPC + LD Aspirin	0.42 (0.01, 23.78)	0.50 (0.00, 50.91)	0.42 (0.00, 36.13)

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal	
DVT	

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm	n
Comparison	All Trials	Trials	Final Model
IPC + GCS vs. None	0.29 (0.01, 9.08)	0.26 (0.00, 16.58)	0.26 (0.00, 13.68)
IPC + GCS vs. Rivaroxaban	3.42 (0.08, 98.69)	4.14 (0.06, 208.51)	3.51 (0.05, 148.71)
IPC + GCS vs. Tinzaparin	0.65 (0.01, 20.86)	0.70 (0.01, 42.14)	0.59 (0.01, 28.47)
IPC + GCS vs. Warfarin	0.45 (0.01, 13.52)	0.43 (0.01, 23.52)	0.36 (0.00, 16.31)
IPC + GCS vs. YM150	0.59 (0.01, 25.41)	0.73 (0.01, 59.26)	0.61 (0.01, 39.77)
IPC + LD Aspirin vs. Apixaban	3.24 (0.30, 38.67)	3.67 (0.25, 60.64)	3.68 (0.26, 57.97)
IPC + LD Aspirin vs. Dabigatran	2.60 (0.25, 30.36)	2.74 (0.21, 41.68)	2.67 (0.21, 38.86)
IPC + LD Aspirin vs. Enoxaparin	1.58 (0.17, 16.83)	1.60 (0.14, 21.78)	1.61 (0.14, 21.50)
IPC + LD Aspirin vs. None	0.68 (0.06, 8.82)	0.52 (0.02, 10.57)	0.61 (0.03, 11.80)
IPC + LD Aspirin vs. Warfarin	1.08 (0.10, 13.07)	0.85 (0.05, 14.14)	0.86 (0.06, 13.68)
IPC vs. Apixaban	1.73 (0.31, 9.02)	3.27 (0.27, 47.61)	2.81 (0.27, 32.95)
IPC vs. Dabigatran	1.39 (0.28, 6.60)	2.44 (0.24, 30.57)	2.04 (0.23, 21.05)
IPC vs. Dalteparin	1.38 (0.18, 10.35)	1.87 (0.11, 37.04)	1.58 (0.10, 25.79)
IPC vs. Desirudin	1.63 (0.27, 9.25)	2.49 (0.15, 48.23)	2.14 (0.15, 34.47)
IPC vs. Enoxaparin	0.85 (0.18, 3.70)	1.43 (0.15, 16.63)	1.23 (0.14, 12.03)
IPC vs. Fondaparinux	4.45 (0.24, 154.78)	7.71 (0.21, 504.72)	6.75 (0.21, 413.23)
IPC vs. IPC + LD Aspirin	0.54 (0.03, 7.79)	0.89 (0.03, 30.20)	0.76 (0.03, 21.56)
IPC vs. None	0.36 (0.11, 1.16)	0.46 (0.09, 2.50)	0.47 (0.09, 2.30)
IPC vs. Rivaroxaban	4.36 (0.82, 21.80)	7.32 (0.65, 98.30)	6.32 (0.63, 70.11)
IPC vs. Tinzaparin	0.83 (0.13, 4.92)	1.23 (0.09, 20.01)	1.06 (0.09, 14.08)
IPC vs. Warfarin	0.58 (0.10, 3.05)	0.76 (0.06, 11.15)	0.66 (0.06, 7.78)
IPC vs. YM150	0.75 (0.07, 7.55)	1.30 (0.06, 32.52)	1.09 (0.06, 21.87)

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal
DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm	
Comparison	All Trials	Trials	Final Model
Rivaroxaban vs. Apixaban	0.40 (0.14, 1.12)	0.45 (0.12, 1.65)	0.45 (0.13, 1.56)
Rivaroxaban vs. Dabigatran	0.32 (0.13, 0.80)	0.33 (0.11, 1.03)	0.32 (0.11, 0.93)
Rivaroxaban vs. Enoxaparin	0.19 (0.10, 0.38)	0.19 (0.09, 0.43)	0.20 (0.09, 0.42)
Rivaroxaban vs. IPC + LD Aspirin	0.12 (0.01, 1.31)	0.12 (0.01, 1.63)	0.12 (0.01, 1.56)
Rivaroxaban vs. None	0.08 (0.02, 0.29)	0.06 (0.01, 0.37)	0.07 (0.01, 0.39)
Rivaroxaban vs. Warfarin	0.13 (0.05, 0.38)	0.10 (0.02, 0.40)	0.10 (0.03, 0.38)
Tinzaparin vs. Apixaban	2.09 (0.58, 7.32)	2.65 (0.50, 14.34)	2.65 (0.54, 13.29)
Tinzaparin vs. Dabigatran	1.68 (0.51, 5.54)	1.98 (0.44, 9.58)	1.92 (0.47, 8.47)
Tinzaparin vs. Enoxaparin	1.02 (0.37, 2.83)	1.16 (0.31, 4.41)	1.16 (0.34, 4.11)
Tinzaparin vs. IPC + LD Aspirin	0.65 (0.05, 7.66)	0.72 (0.04, 11.94)	0.72 (0.04, 11.30)
Tinzaparin vs. None	0.44 (0.10, 1.87)	0.37 (0.04, 2.90)	0.44 (0.06, 3.04)
Tinzaparin vs. Rivaroxaban	5.25 (1.54, 17.78)	5.94 (1.29, 28.65)	5.95 (1.40, 26.29)
Tinzaparin vs. Warfarin	0.70 (0.25, 1.88)	0.62 (0.17, 2.21)	0.62 (0.18, 2.08)
Tinzaparin vs. YM150	0.90 (0.12, 6.96)	1.05 (0.09, 12.44)	1.03 (0.10, 10.69)
Warfarin + GCS vs. Apixaban	0.26 (0.00, 11.80)	0.35 (0.00, 32.01)	0.29 (0.00, 22.13)
Warfarin + GCS vs. Dabigatran	0.21 (0.00, 9.19)	0.26 (0.00, 23.38)	0.21 (0.00, 15.55)
Warfarin + GCS vs. Dalteparin	0.20 (0.00, 11.36)	0.20 (0.00, 23.13)	0.16 (0.00, 14.97)
Warfarin + GCS vs. Desirudin	0.24 (0.00, 11.75)	0.26 (0.00, 30.72)	0.22 (0.00, 20.43)
Warfarin + GCS vs. Enoxaparin	0.13 (0.00, 5.25)	0.15 (0.00, 12.40)	0.13 (0.00, 8.75)
Warfarin + GCS vs. Enoxaparin + GCS	0.42 (0.05, 3.78)	0.52 (0.04, 7.54)	0.45 (0.04, 5.49)
Warfarin + GCS vs. Fondaparinux	0.66 (0.04, 10.09)	0.82 (0.03, 24.22)	0.70 (0.03, 17.18)
Warfarin + GCS vs. Fondaparinux + GCS	0.78 (0.07, 8.10)	0.96 (0.06, 17.41)	0.83 (0.06, 12.47)

Table 103. Network Meta-Analysis - Pairwise Comparisons among Hip and Knee Patients – Proximal	
DVT	

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arr	
Comparison	All Trials	Trials	Final Model
Warfarin + GCS vs. IPC	0.15 (0.00, 8.56)	0.11 (0.00, 14.91)	0.10 (0.00, 11.58)
Warfarin + GCS vs. IPC + GCS	0.19 (0.03, 1.08)	0.19 (0.02, 1.45)	0.19 (0.02, 1.35)
Warfarin + GCS vs. IPC + LD Aspirin	0.08 (0.00, 6.33)	0.09 (0.00, 15.21)	0.08 (0.00, 10.79)
Warfarin + GCS vs. None	0.05 (0.00, 2.56)	0.05 (0.00, 5.20)	0.05 (0.00, 4.17)
Warfarin + GCS vs. Rivaroxaban	0.64 (0.01, 28.99)	0.77 (0.01, 67.56)	0.66 (0.01, 47.23)
Warfarin + GCS vs. Tinzaparin	0.12 (0.00, 6.25)	0.13 (0.00, 13.22)	0.11 (0.00, 8.74)
Warfarin + GCS vs. Warfarin	0.09 (0.00, 3.95)	0.08 (0.00, 7.44)	0.07 (0.00, 5.11)
Warfarin + GCS vs. YM150	0.11 (0.00, 7.14)	0.14 (0.00, 17.76)	0.11 (0.00, 11.95)
Warfarin vs. Enoxaparin	1.47 (0.66, 3.29)	1.88 (0.63, 6.01)	1.88 (0.67, 5.66)
Warfarin vs. None	0.63 (0.17, 2.33)	0.61 (0.08, 4.21)	0.71 (0.11, 4.47)
YM150 vs. Apixaban	2.32 (0.33, 15.93)	2.52 (0.25, 25.33)	2.58 (0.29, 23.57)
YM150 vs. Dabigatran	1.86 (0.29, 12.17)	1.88 (0.21, 17.15)	1.87 (0.23, 15.58)
YM150 vs. Enoxaparin	1.13 (0.19, 6.69)	1.10 (0.14, 8.64)	1.13 (0.16, 8.25)
YM150 vs. IPC + LD Aspirin	0.72 (0.04, 12.54)	0.69 (0.02, 17.51)	0.70 (0.03, 16.46)
YM150 vs. None	0.49 (0.06, 3.74)	0.36 (0.02, 4.65)	0.43 (0.03, 5.11)
YM150 vs. Rivaroxaban	5.84 (0.88, 38.90)	5.65 (0.63, 51.83)	5.80 (0.70, 48.28)
YM150 vs. Warfarin	0.77 (0.11, 5.34)	0.59 (0.05, 6.03)	0.60 (0.06, 5.61)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Apixaban vs. Desirudin	0.33 (0.01, 7.16)	0.25 (0.00, 10.10)	0.66 (0.01, 31.94)	0.66 (0.02, 28.16)
Apixaban vs. Enoxaparin	0.29 (0.02, 3.62)	0.30 (0.01, 5.45)	0.29 (0.02, 4.25)	0.29 (0.02, 3.82)
Apixaban vs. Heparin	0.07 (0.00, 1.34)	0.01 (0.00, 0.60)		
Apixaban vs. None	2.45 (0.01, 2492)			2.44 (0.01, 1691)
Apixaban vs. Warfarin	0.36 (0.01, 9.18)	0.36 (0.01, 15.94)	0.35 (0.01, 11.63)	0.36 (0.01, 10.24)
Dabigatran vs. Apixaban	3.21 (0.14, 78.41)	3.17 (0.08, 122.36)	3.23 (0.11, 93.22)	3.19 (0.13, 82.93)
Dabigatran vs. Desirudin	1.05 (0.06, 14.14)	0.80 (0.02, 17.76)	2.12 (0.07, 62.99)	2.12 (0.08, 56.26)
Dabigatran vs. Enoxaparin	0.93 (0.14, 6.03)	0.94 (0.11, 7.84)	0.95 (0.13, 6.80)	0.94 (0.14, 6.38)
Dabigatran vs. Heparin Dabigatran vs. IPC + LD	0.21 (0.01, 2.65)	0.04 (0.00, 1.16)		
Aspirin	0.99 (0.03, 35.3)	0.96 (0.02, 51.9)	0.97 (0.02, 40.2)	0.99 (0.03, 35.6)
Dabigatran vs. None	7.86 (0.07, 6045)			7.79 (0.06, 3996)
Dabigatran vs. Rivaroxaban	1.00 (0.07, 12.13)	0.93 (0.04, 16.25)	0.96 (0.05, 13.45)	1.01 (0.07, 13.09)
Dabigatran vs. Tinzaparin	1.02 (0.03, 34.3)	1.04 (0.02, 48.5)	1.04 (0.03, 39.1)	1.02 (0.03, 34.6)
Dabigatran vs. Warfarin	1.14 (0.07, 18.05)	1.13 (0.04, 29.20)	1.14 (0.05, 22.07)	1.13 (0.06, 20.09)
Desirudin vs. Enoxaparin	0.88 (0.13, 7.68)	1.17 (0.10, 22.26)	0.45 (0.03, 6.98)	0.44 (0.03, 6.12)
Desirudin vs. Heparin	0.20 (0.03, 1.50)	0.05 (0.00, 0.84)		
Desirudin vs. None	7.47 (0.06, 6641)			3.68 (0.02, 2411)
Desirudin vs. Warfarin	1.08 (0.07, 22.65)	1.41 (0.05, 70.67)	0.54 (0.01, 18.60)	0.53 (0.02, 15.77)
Enoxaparin vs. None	8.46 (0.1, 6081)			8.31 (0.1, 3547)
Heparin vs. Enoxaparin	4.41 (0.80, 31.28)	25.43 (1.70, 1,032.77)		
Heparin vs. None	37.3 (0.33, 30946)	-,,		

Table 104. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Pulmonary Embolism

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Comparison		30.72 (0.87,		
Heparin vs. Warfarin	5.40 (0.38, 95.30)	2,573.44)		
IPC vs. Apixaban	0.06 (0.00, 51.32)			0.06 (0.00, 66.69)
IPC vs. Dabigatran	0.02 (0.00, 14.89)			0.02 (0.00, 17.48)
IPC vs. Desirudin	0.02 (0.00, 13.97)			0.04 (0.00, 46.11)
IPC vs. Enoxaparin	0.02 (0.00, 9.61)			0.02 (0.00, 12.40)
IPC vs. Heparin	0.00 (0.00, 2.87)			
IPC vs. IPC + LD Aspirin	0.02 (0.00, 20.15)			0.02 (0.00, 26.71)
IPC vs. None	0.14 (0.00, 10.05)			0.14 (0.00, 11.35)
IPC vs. Rivaroxaban	0.02 (0.00, 12.26)			0.02 (0.00, 16.58)
IPC vs. Tinzaparin	0.02 (0.00, 21.26)			0.02 (0.00, 26.55)
IPC vs. Warfarin	0.02 (0.00, 16.43)			0.02 (0.00, 20.27)
IPC + LD Aspirin vs.				
Tinzaparin	1.04 (0.02, 72.5)	1.08 (0.01, 109.4)	1.07 (0.01, 82.2)	1.03 (0.01, 75.9)
IPC + LD Aspirin vs. Apixaban IPC + LD Aspirin vs.	3.25 (0.06, 174.34)	3.29 (0.04, 296.49)	3.32 (0.05, 219.86)	3.23 (0.06, 181.64)
Desirudin	1.07 (0.03, 37.94)	0.83 (0.01, 51.83)	2.18 (0.03, 143.88)	2.14 (0.04, 127.23)
IPC + LD Aspirin vs.				
Enoxaparin	0.94 (0.05, 21.14)	0.97 (0.03, 29.73)	0.97 (0.04, 22.60)	0.95 (0.04, 21.05)
IPC + LD Aspirin vs. Heparin	0.21 (0.01, 6.90) 7.98 (0.04,	0.04 (0.00, 3.07)		7.89 (0.03,
IPC + LD Aspirin vs. None	9,946.74)			5,931.31)
IPC + LD Aspirin vs.				
Rivaroxaban	1.01 (0.03, 35.23)	0.97 (0.02, 47.51)	0.99 (0.02, 35.87)	1.02 (0.03, 34.67)

 Table 104. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Pulmonary Embolism

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin Trials (No Multi-	
Comparison	Correction)	≥1 Event	Arm Trials)	Final Model
IPC + LD Aspirin vs. Warfarin	1.16 (0.03, 45.92)	1.18 (0.02, 74.00)	1.17 (0.02, 54.54)	1.15 (0.03, 47.66)
LD Aspirin vs. Apixaban	0.41 (0.00, 116.51)			0.41 (0.00, 129.15)
LD Aspirin vs. Dabigatran	0.13 (0.00, 26.15)			0.13 (0.00, 31.47)
LD Aspirin vs. Desirudin	0.13 (0.00, 26.21)			0.27 (0.00, 83.76)
LD Aspirin vs. Enoxaparin	0.12 (0.00, 17.48)			0.12 (0.00, 20.37)
LD Aspirin vs. Heparin LD Aspirin vs. IPC	0.03 (0.00, 5.33) 7.01 (0.05, 4,307.01)			7.21 (0.04, 5,014.05)
LD Aspirin vs. IPC + LD				
Aspirin	0.12 (0.00, 47.66)			0.13 (0.00, 47.70)
LD Aspirin vs. None	0.99 (0.09, 10.70)			1.00 (0.09, 11.67)
LD Aspirin vs. Rivaroxaban	0.13 (0.00, 24.95)			0.13 (0.00, 30.42)
LD Aspirin vs. Tinzaparin	0.13 (0.00, 42.39)			0.13 (0.00, 50.05)
LD Aspirin vs. Warfarin	0.14 (0.00, 33.05)			0.15 (0.00, 35.98)
Rivaroxaban vs. Apixaban	3.22 (0.16, 74.6)	3.41 (0.11, 145)	3.36 (0.14, 109.2)	3.15 (0.15,77.6)
Rivaroxaban vs. Desirudin	1.05 (0.07, 13.65)	0.86 (0.03, 20.13)	2.21 (0.08, 71.81)	2.09 (0.09, 52.93)
Rivaroxaban vs. Enoxaparin	0.93 (0.17, 5.48)	1.01 (0.14, 8.78)	0.99 (0.16, 7.52)	0.92 (0.16, 5.61)
Rivaroxaban vs. Heparin	0.21 (0.02, 2.45)	0.04 (0.00, 1.23)		
Rivaroxaban vs. None	7.89 (0.07, 6516)			7.69 (0.06, 4159)
Rivaroxaban vs. Warfarin	1.14 (0.08, 17.98)	1.22 (0.06, 34.30)	1.19 (0.07, 25.38)	1.12 (0.07, 18.60)
Tinzaparin vs. Apixaban	3.14 (0.07, 158.70)	3.05 (0.04, 236.75)	3.11 (0.06, 180.91)	3.13 (0.06, 154.78)
Tinzaparin vs. Desirudin	1.03 (0.03, 33.41)	0.77 (0.01, 37.68)	2.05 (0.03, 124.96)	2.08 (0.04, 106.80)
Tinzaparin vs. Enoxaparin	0.91 (0.05, 17.57)	0.90 (0.04, 22.11)	0.91 (0.04, 18.93)	0.92 (0.05, 16.66)

 Table 104. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Pulmonary Embolism

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Tinzaparin vs. Heparin	0.21 (0.01, 6.30)	0.04 (0.00, 2.36)		
	7.70 (0.04,			7.66 (0.03,
Tinzaparin vs. None	8,518.54)			5,558.04)
Tinzaparin vs. Rivaroxaban	0.98 (0.03, 29.52)	0.89 (0.02, 36.67)	0.93 (0.02, 29.64)	1.00 (0.03, 28.62)
Tinzaparin vs. Warfarin	1.12 (0.06, 21.31)	1.09 (0.04, 26.26)	1.10 (0.05, 22.35)	1.11 (0.06, 20.49
Warfarin vs. Enoxaparin	0.82 (0.10, 6.75)	0.83 (0.07, 9.68)	0.83 (0.09, 7.94)	0.83 (0.10, 7.21)
Warfarin vs. None	6.9 (0.05, 6167)			6.88 (0.05, 3831)

Table 104. Network Meta-Analysis	– Pairwise Comparisons ar	nong Hip Patients – P	ulmonary Embolism
----------------------------------	---------------------------	-----------------------	-------------------

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event (No Heparin Trials)	Without Heparin or Multi-Arm Trials	Final Model
Apixaban vs. Enoxaparin	1.79 (0.35, 9.07)	1.68 (0.21, 12.00)	2.77 (0.38, 26.60)	2.60 (0.49, 19.34)
Apixaban vs. Heparin	0.13 (0.00, 11.20)			
Apixaban vs. None	0.21 (0, 26.79)			
Apixaban vs. Warfarin	1.09 (0.10, 12.21)	0.92 (0.04, 20.03)	0.34 (0.00, 15.04)	0.62 (0.02, 15.20)
Dabigatran vs. Apixaban	0.47 (0.03, 6.01)	0.38 (0.01, 9.77)	0.25 (0.01, 4.81)	0.33 (0.02, 3.91)
Dabigatran vs. Enoxaparin	0.84 (0.09, 6.17)	0.64 (0.03, 7.93)	0.68 (0.04, 6.81)	0.86 (0.10, 5.82)
Dabigatran vs. Enoxaparin + IPC	0.92 (0.01, 94)	0.65 (0.003, 112)	0.72 (0.004, 93.2)	0.91 (0.01, 85.7)
Dabigatran vs. GCS	0.1 (0.0001, 14.1)			
Dabigatran vs. Heparin	0.06 (0.00, 6.07)			
Dabigatran vs. None	0.1 (0.0001, 14.8)			
Dabigatran vs. Rivaroxaban	2.64 (0.14, 52.6)	3.04 (0.08, 134)	2.96 (0.09, 101)	2.66 (0.16, 47.4)
Dabigatran vs. Warfarin	0.51 (0.03, 8.46)	0.35 (0.01, 12.01)	0.08 (0.00, 3.84)	0.21 (0.01, 4.54)
Enoxaparin + IPC vs. Apixaban	0.51 (0.01, 48.72)	0.58 (0.00, 90.56)	0.34 (0.00, 37.83)	0.36 (0.00, 34.06)
Enoxaparin + IPC vs. Enoxaparin	0.92 (0.01, 64.07)	0.98 (0.01, 96.25)	0.95 (0.01, 71.52)	0.94 (0.01, 67.56)
Enoxaparin + IPC vs. GCS	0.11 (0.00, 66.42)			
Enoxaparin + IPC vs. Heparin	0.07 (0.00, 28.13)			
Enoxaparin + IPC vs. IPC	0.97 (0.00, 4,234.41)			
Enoxaparin + IPC vs. None	0.11 (0.00, 68.17)			
-		4.65 (0.03,		
Enoxaparin + IPC vs. Rivaroxaban	2.88 (0.03, 357.45)	1,000.24)	4.12 (0.03, 697.85)	2.92 (0.03, 329.64)
Enoxaparin + IPC vs. Warfarin	0.56 (0.01, 61.93)	0.53 (0.00, 99.88)	0.12 (0.00, 23.95)	0.23 (0.00, 31.72)
Enoxaparin vs. None	0.12 (0, 11.05)			
GCS vs. Apixaban	4.58 (0.04, 3,733.12)			

Table 105. Network Meta-Analysis – Pairwise Comparisons among Knee Patients – Pulmonary Embolism

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event (No Heparin Trials)	Without Heparin or Multi-Arm Trials	Final Model
GCS vs. Enoxaparin	8.17 (0.09, 5,907.63)			
GCS vs. Heparin	0.61 (0.00, 1,307.67)			
GCS vs. None	0.97 (0.03, 33.48) 25.66 (0.19,			
GCS vs. Rivaroxaban	23,388.51)			
GCS vs. Warfarin	4.98 (0.04, 4,628.55)			
HD Aspirin + IPC vs. Apixaban	4.05 (0.01, 7,435.34) 8.60 (0.01,			2.87 (0.00, 5,597.08) 8.71 (0.01,
HD Aspirin + IPC vs. Dabigatran	18,251.45) 7.24 (0.01,			19,653.29) 7.47 (0.02,
HD Aspirin + IPC vs. Enoxaparin HD Aspirin + IPC vs. Enoxaparin +	11,418.61)			12,733.61)
IPC	7.90 (0.10, 3,648.24)			7.92 (0.09, 4,242.89)
HD Aspirin + IPC vs. GCS	0.89 (0.00, 5,161.59)			
HD Aspirin + IPC vs. Heparin	0.54 (0.00, 2,591.52) 7.70 (0.00,			
HD Aspirin + IPC vs. IPC	189,094.09)			
HD Aspirin + IPC vs. None	0.86 (0.00, 4,979.08) 22.74 (0.03,			23.15 (0.04,
HD Aspirin + IPC vs. Rivaroxaban	52,052.08)			52,575.21)
HD Aspirin + IPC vs. Warfarin	4.41 (0.01, 8,982.20) 13.45 (0.22,			1.79 (0.00, 4,812.63)
Heparin vs. Enoxaparin	5,356.15)			
Heparin vs. None	1.6 (0, 2697)			
Heparin vs. Warfarin	8.20 (0.08, 4,345.95)			

 Table 105. Network Meta-Analysis – Pairwise Comparisons among Knee Patients – Pulmonary Embolism

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event (No Heparin Trials)	Without Heparin or Multi-Arm Trials	Final Model
IPC vs. Apixaban	0.53 (0.00, 873.06)	•		
IPC vs. Dabigatran	1.12 (0.00, 2,102.75)			
IPC vs. Enoxaparin	0.94 (0.00, 1,371.97)			
IPC vs. GCS	0.12 (0.00, 10.72)			
IPC vs. Heparin	0.07 (0.00, 348.97)			
IPC vs. None	0.11 (0.00, 10.48)			
IPC vs. Rivaroxaban	2.95 (0.00, 5,630.76)			
IPC vs. Warfarin	0.57 (0.00, 1,166.78)			
Rivaroxaban vs. Apixaban	0.18 (0.01, 2.08)	0.13 (0.00, 2.74)	0.08 (0.00, 1.46)	0.12 (0.01, 1.36)
Rivaroxaban vs. Enoxaparin	0.32 (0.03, 2.10)	0.21 (0.01, 2.18)	0.23 (0.02, 1.98)	0.32 (0.04, 1.98)
Rivaroxaban vs. Heparin	0.02 (0.00, 2.27)			
Rivaroxaban vs. None	0.04 (0, 5.35)			
Rivaroxaban vs. Warfarin	0.19 (0.01, 2.90)	0.11 (0.00, 3.59)	0.03 (0.00, 1.23)	0.08 (0.00, 1.67)
Warfarin vs. Enoxaparin	1.64 (0.22, 11.87)	1.83 (0.14, 24.17)	8.09 (0.37, 390.33)	4.17 (0.35, 81.29)
Warfarin vs. None	0.19 (0, 28.9)			

 Table 105. Network Meta-Analysis – Pairwise Comparisons among Knee Patients – Pulmonary Embolism

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from	Without Heparin	
Comparison	Continuity Correction)	Treatments with ≥1 Event	Trials (No Multi- Arm Trials)	Final Model
Apixaban vs. Enoxaparin	1.24 (0.51, 3.00)	1.22 (0.37, 3.96)	1.22 (0.37, 4.10)	1.23 (0.49, 3.13)
Apixaban vs. Heparin	0.98 (0.34, 2.97)	1.00 (0.27, 4.86)		
Apixaban vs. None	4.28 (0.91, 23.08)	7.98 (1.07, 108.31)	3.59 (0.40, 48.28)	2.45 (0.41, 16.54)
Apixaban vs. Warfarin	3.73 (0.89, 15.80)	3.71 (0.61, 22.49)	3.63 (0.63, 22.20)	3.63 (0.86, 17.25)
Dabigatran vs. Apixaban	1.31 (0.48, 3.83)	1.34 (0.34, 5.62)	1.34 (0.33, 5.67)	1.33 (0.45, 4.01)
Dabigatran vs. Enoxaparin	1.63 (0.94, 2.89)	1.63 (0.81, 3.50)	1.65 (0.80, 3.49)	1.63 (0.92, 2.99)
Dabigatran vs. Heparin	1.28 (0.57, 3.16)	1.35 (0.52, 4.66)		
Dabigatran vs. None	5.62 (1.35, 26.82)	10.71 (1.76, 121)	4.83 (0.67, 53.20)	3.26 (0.65, 18.73)
Dabigatran vs. Warfarin	4.89 (1.39, 17.67)	4.98 (1.13, 23.67)	4.88 (1.11, 23.43)	4.83 (1.34, 19.22)
Dalteparin vs. Apixaban	0.52 (0.11, 2.57)	0.52 (0.07, 3.79)	0.54 (0.07, 3.84)	0.54 (0.10, 2.76)
Dalteparin vs. Dabigatran	0.40 (0.09, 1.70)	0.39 (0.06, 2.17)	0.40 (0.06, 2.26)	0.41 (0.08, 1.76)
Dalteparin vs. Desirudin	0.55 (0.11, 2.55)	0.53 (0.07, 3.32)	0.65 (0.09, 4.79)	0.67 (0.12, 3.48)
Dalteparin vs. Enoxaparin	0.65 (0.17, 2.47)	0.64 (0.12, 3.06)	0.66 (0.12, 3.22)	0.67 (0.16, 2.55)
Dalteparin vs. Fondaparinux	0.46 (0.08, 2.63)	0.43 (0.05, 3.18)	0.41 (0.04, 3.10)	0.45 (0.07, 2.57)
Dalteparin vs. HD Aspirin	2.86 (0.43, 19.67)	2.73 (0.33, 23.97)	2.83 (0.33, 24.39)	2.76 (0.38, 19.24)
Dalteparin vs. Heparin	0.51 (0.12, 2.24)	0.52 (0.09, 3.40)		
Dalteparin vs. IPC + LD Aspirin	72.46 (1.84, 131,926)			51.52 (1.75, 11,743)
Dalteparin vs. LY517717	0.78 (0.02, 34.50)	0.75 (0.01, 41.14)	0.70 (0.01, 38.90)	0.77 (0.01, 46.15)
Dalteparin vs. None	2.23 (0.34, 16.01)	4.17 (0.42, 66.02)	1.93 (0.16, 29.61)	1.33 (0.16, 12.06)
Dalteparin vs. Rivaroxaban	0.36 (0.07, 1.85)	0.34 (0.05, 2.23)	0.36 (0.05, 2.35)	0.36 (0.07, 1.83)
Dalteparin vs. Tinzaparin	0.93 (0.30, 2.92)	0.94 (0.22, 4.09)	0.96 (0.22, 4.21)	0.96 (0.30, 3.13)
Dalteparin vs. Warfarin	1.94 (0.97, 3.85)	1.94 (0.76, 4.79)	1.96 (0.76, 4.84)	1.97 (0.94, 4.06)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin Trials (No Multi-	
Comparison	Correction)	≥1 Event	Arm Trials)	Final Model
Dalteparin vs. YM150	4.73 (0.08, 1,588)			4.59 (0.07, 3,456)
Desirudin vs. Apixaban	0.95 (0.3, 3.23)	0.99 (0.22, 5.14)	0.83 (0.15, 4.46)	0.81 (0.22, 3.05)
Desirudin vs. Dabigatran	0.72 (0.28, 1.95)	0.74 (0.22, 2.66)	0.61 (0.15, 2.44)	0.61 (0.20, 1.81)
Desirudin vs. Enoxaparin	1.18 (0.54, 2.69)	1.20 (0.45, 3.54)	1.01 (0.30, 3.31)	1.00 (0.39, 2.54)
Desirudin vs. Heparin	0.93 (0.38, 2.54)	0.99 (0.35, 3.85)		
Desirudin vs. None	4.07 (0.95, 20.99)	7.89 (1.17, 93.88)	2.96 (0.33, 36.27)	2.00 (0.34, 13.63)
Desirudin vs. Warfarin	3.54 (0.89, 15.36)	3.67 (0.73, 20.80)	2.99 (0.51, 18.25)	2.96 (0.68, 13.94)
Enoxaparin + GCS vs. Apixaban	0.08 (0.00, 6.41)			0.08 (0.00, 6.26)
Enoxaparin + GCS vs. Dabigatran	0.06 (0.00, 4.36)			0.06 (0.00, 4.15)
Enoxaparin + GCS vs. Dalteparin	0.15 (0.00, 14.03)			0.16 (0.00, 13.07)
Enoxaparin + GCS vs. Desirudin	0.08 (0.00, 6.28)			0.10 (0.00, 7.71)
Enoxaparin + GCS vs. Enoxaparin	0.10 (0.00, 7.16)			0.10 (0.00, 6.71)
Enoxaparin + GCS vs. Fondaparinux Enoxaparin + GCS vs. Fondaparinux +	0.07 (0.00, 4.34)			0.07 (0.00, 3.60)
GCS	0.62 (0.33, 1.11)			0.62 (0.32, 1.17)
Enoxaparin + GCS vs. HD Aspirin	0.44 (0.00, 58.79)			0.43 (0.00, 54.43)
Enoxaparin + GCS vs. Heparin	0.08 (0.00, 5.79)			
Enoxaparin + GCS vs. IPC+LDAspirin	11.07 (0.01, 91,126)			8.01 (0.01, 6,816)
Enoxaparin + GCS vs. LY517717	0.12 (0.00, 35.62)			0.12 (0.00, 42.35)
Enoxaparin + GCS vs. None	0.34 (0.00, 25.51)			0.21 (0.00, 17.17)
Enoxaparin + GCS vs. Rivaroxaban	0.05 (0.00, 3.94)			0.06 (0.00, 4.11)
Enoxaparin + GCS vs. Tinzaparin	0.14 (0.00, 13.14)			0.15 (0.00, 11.92)
Enoxaparin + GCS vs. Warfarin	0.30 (0.00, 25.71)			0.31 (0.00, 24.26)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Enoxaparin + GCS vs. YM150	0.72 (0.00, 750.70)			0.71 (0.00, 1,618.09)
Enoxaparin vs. None	3.46 (0.95, 14.53)	6.56 (1.21, 66.1)	2.93 (0.47, 28.88)	2.00 (0.44, 10.35)
Fondaparinux + GCS vs. Apixaban	0.13 (0.00, 9.68)			0.14 (0.00, 9.39)
Fondaparinux + GCS vs. Dabigatran	0.10 (0.00, 6.62)			0.10 (0.00, 6.45)
Fondaparinux + GCS vs. Dalteparin	0.25 (0.00, 21.82)			0.25 (0.00, 19.99)
Fondaparinux + GCS vs. Desirudin	0.13 (0.00, 9.56)			0.17 (0.00, 11.91)
Fondaparinux + GCS vs. Enoxaparin Fondaparinux + GCS vs.	0.16 (0.00, 11.09)			0.17 (0.00, 10.14)
Fondaparinux	0.11 (0.00, 6.61)			0.11 (0.00, 5.42)
Fondaparinux + GCS vs. HD Aspirin	0.70 (0.00, 91.29)			0.69 (0.00, 84.52)
Fondaparinux + GCS vs. Heparin Fondaparinux + GCS vs. IPC + LD	0.12 (0.00, 8.79)			
Aspirin	17.78 (0.01, 138,690)			12.85 (0.02, 10,446)
Fondaparinux + GCS vs. LY517717	0.19 (0.00, 55.53)			0.19 (0.00, 62.43)
Fondaparinux + GCS vs. None	0.55 (0.00, 39.25)			0.33 (0.00, 26.71)
Fondaparinux + GCS vs. Rivaroxaban	0.09 (0.00, 5.99)			0.09 (0.00, 6.36)
Fondaparinux + GCS vs. Tinzaparin	0.23 (0.00, 20.17)			0.24 (0.00, 18.32)
Fondaparinux + GCS vs. Warfarin	0.48 (0.00, 40.65)			0.49 (0.00, 37.37)
Fondaparinux + GCS vs. YM150	1.16 (0.00, 1,155)			1.15 (0.00, 2,507)
Fondaparinux vs. Apixaban	1.12 (0.26, 4.60)	1.21 (0.22, 8.03)	1.32 (0.23, 8.75)	1.22 (0.28, 5.28)
Fondaparinux vs. Dabigatran	0.86 (0.24, 2.97)	0.90 (0.20, 4.34)	0.98 (0.22, 4.82)	0.91 (0.25, 3.28)
Fondaparinux vs. Desirudin	1.18 (0.29, 4.49)	1.22 (0.23, 6.79)	1.60 (0.29, 10.98)	1.49 (0.35, 6.63)
Fondaparinux vs. Enoxaparin	1.39 (0.45, 4.24)	1.47 (0.40, 6.01)	1.62 (0.44, 6.61)	1.49 (0.48, 4.69)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Fondaparinux vs. Heparin	1.10 (0.31, 3.94)	1.21 (0.30, 7.05)		
Fondaparinux vs. None	4.82 (1.07, 24.24)	9.65 (1.37, 124.59)	4.74 (0.62, 56.43)	2.98 (0.58, 19.22)
Fondaparinux vs. Rivaroxaban	0.77 (0.17, 3.13)	0.79 (0.15, 4.48)	0.88 (0.17, 5.01)	0.81 (0.19, 3.57)
Fondaparinux vs. Tinzaparin	2.00 (0.38, 11.29)	2.18 (0.34, 16.79)	2.34 (0.34, 18.63)	2.14 (0.40, 12.34)
Fondaparinux vs. Warfarin	4.19 (0.84, 21.16)	4.49 (0.74, 31.75)	4.79 (0.77, 34.88)	4.41 (0.90, 24.05)
GCS vs. Apixaban	0.08 (0.00, 24.46)			0.08 (0.00, 31.16)
GCS vs. Dabigatran	0.06 (0.00, 16.95)			0.06 (0.00, 20.88)
GCS vs. Dalteparin	0.15 (0.00, 46.43)			0.14 (0.00, 62.93)
GCS vs. Desirudin	0.08 (0.00, 23.90)			0.10 (0.00, 36.67)
GCS vs. Enoxaparin	0.10 (0.00, 26.02)			0.10 (0.00, 33.08)
GCS vs. Enoxaparin + GCS	0.99 (0.02, 35.34)			0.93 (0.02, 43.64)
GCS vs. Fondaparinux	0.07 (0.00, 14.92)			0.06 (0.00, 19.55)
GCS vs. Fondaparinux + GCS	0.62 (0.01, 22.53)			0.58 (0.01, 25.13)
GCS vs. HD Aspirin	0.43 (0.00, 178.22)			0.40 (0.00, 255.70)
GCS vs. Heparin	0.08 (0.00, 22.29)			
GCS vs. IPC + LD Aspirin	10.94 (0.00, 108,012)			7.46 (0.01, 13,643)
GCS vs. LY517717	0.12 (0.00, 78.65)			0.11 (0.00, 135.91)
GCS vs. None	0.34 (0.00, 99.58)			0.19 (0.00, 65.76)
GCS vs. Rivaroxaban	0.05 (0.00, 15.12)			0.05 (0.00, 19.61)
GCS vs. Tinzaparin	0.14 (0.00, 40.94)			0.14 (0.00, 64.33)
GCS vs. Warfarin	0.29 (0.00, 83.68)			0.29 (0.00, 121.15)
GCS vs. YM150	0.71 (0.00, 1,531.50)			0.66 (0.00, 3,428.92)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin Trials (No Multi-	
Comparison	Correction)	≥1 Event	Arm Trials)	Final Model
HD Aspirin vs. Apixaban	0.18 (0.02, 1.81)	0.19 (0.01, 2.64)	0.19 (0.01, 2.62)	0.20 (0.02, 2.04)
HD Aspirin vs. Dabigatran	0.14 (0.02, 1.24)	0.14 (0.01, 1.62)	0.14 (0.01, 1.61)	0.15 (0.02, 1.44)
HD Aspirin vs. Desirudin	0.19 (0.02, 1.89)	0.19 (0.01, 2.46)	0.23 (0.02, 3.23)	0.24 (0.02, 2.49)
HD Aspirin vs. Enoxaparin	0.23 (0.03, 1.89)	0.23 (0.02, 2.37)	0.23 (0.02, 2.37)	0.24 (0.03, 2.20)
HD Aspirin vs. Fondaparinux	0.16 (0.01, 1.87)	0.16 (0.01, 2.28)	0.14 (0.01, 2.05)	0.16 (0.01, 1.80)
HD Aspirin vs. Heparin	0.18 (0.02, 1.67)	0.19 (0.02, 2.40)		
HD Aspirin vs. IPC + LD Aspirin	25.33 (0.42, 46,630)			18.69 (0.40, 6,254)
HD Aspirin vs. LY517717	0.27 (0.00, 17.78)	0.27 (0.00, 20.37)	0.25 (0.00, 20.80)	0.28 (0.00, 22.69)
HD Aspirin vs. None	0.78 (0.06, 9.80)	1.52 (0.09, 39.21)	0.68 (0.04, 16.91)	0.48 (0.03, 7.59)
HD Aspirin vs. Rivaroxaban	0.12 (0.01, 1.31)	0.12 (0.01, 1.66)	0.13 (0.01, 1.65)	0.13 (0.01, 1.36)
HD Aspirin vs. Tinzaparin	0.32 (0.04, 2.39)	0.34 (0.04, 3.19)	0.34 (0.04, 3.36)	0.35 (0.04, 2.76)
HD Aspirin vs. Warfarin	0.68 (0.11, 3.94)	0.71 (0.10, 4.78)	0.69 (0.09, 4.63)	0.72 (0.11, 4.49)
HD Aspirin vs. YM150	1.65 (0.02, 614.62)			1.67 (0.02, 1,187.97)
Heparin vs. Enoxaparin	1.27 (0.66, 2.32)	1.21 (0.48, 2.47)		
Heparin vs. None	4.39 (1.19, 18.39)	7.96 (1.33, 80.4)		
Heparin vs. Warfarin	3.82 (1.03, 14.27)	3.70 (0.73, 16.69)		
IPC + LD Aspirin vs. Apixaban	0.01 (0.00, 0.23)			0.01 (0.00, 0.25)
IPC + LD Aspirin vs. Dabigatran	0.01 (0.00, 0.15)			0.01 (0.00, 0.17)
IPC + LD Aspirin vs. Desirudin	0.01 (0.00, 0.23)			0.01 (0.00, 0.32)
IPC + LD Aspirin vs. Enoxaparin	0.01 (0.00, 0.24)			0.01 (0.00, 0.26)
IPC + LD Aspirin vs. Fondaparinux	0.01 (0.00, 0.24)			0.01 (0.00, 0.24)
IPC + LD Aspirin vs. Heparin	0.01 (0.00, 0.21)			

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from	Without Heparin	
	Continuity	Treatments with	Trials (No Multi-	
Comparison	Correction)	≥1 Event	Arm Trials)	Final Model
IPC + LD Aspirin vs. None	0.03 (0.00, 1.21)			0.03 (0.00, 0.85)
IPC + LD Aspirin vs. Tinzaparin	0.01 (0.00, 0.48)			0.02 (0.00, 0.50)
IPC + LD Aspirin vs. Warfarin	0.03 (0.00, 0.95)			0.04 (0.00, 1.01)
LY517717 vs. Apixaban	0.67 (0.02, 23.20)	0.70 (0.02, 31.88)	0.77 (0.02, 44.04)	0.71 (0.01, 34.99)
LY517717 vs. Dabigatran	0.51 (0.01, 16.36)	0.52 (0.01, 19.81)	0.58 (0.01, 27.99)	0.53 (0.01, 25.10)
LY517717 vs. Desirudin	0.70 (0.02, 23.55)	0.71 (0.02, 28.47)	0.94 (0.02, 54.05)	0.87 (0.02, 44.30)
LY517717 vs. Enoxaparin	0.83 (0.02, 25.76)	0.85 (0.02, 30.05)	0.95 (0.02, 42.35)	0.87 (0.02, 38.74)
LY517717 vs. Fondaparinux	0.59 (0.01, 22.22)	0.58 (0.01, 25.51)	0.59 (0.01, 32.85)	0.58 (0.01, 29.64)
LY517717 vs. Heparin	0.65 (0.02, 22.11)	0.70 (0.02, 28.28)		
LY517717 vs. IPC + LD Aspirin	92.76 (0.58, 58,689)			66.89 (0.44, 34,544)
LY517717 vs. None	2.86 (0.07, 111.72)	5.56 (0.10, 331.62)	2.78 (0.04, 235.33)	1.73 (0.03, 108.64)
LY517717 vs. Tinzaparin	1.18 (0.03, 48.47)	1.25 (0.03, 67.69)	1.37 (0.03, 79.04)	1.25 (0.02, 69.13)
LY517717 vs. Warfarin	2.49 (0.06, 95.68)	2.59 (0.05, 118.87)	2.81 (0.05, 151.11)	2.56 (0.05, 136.18)
Rivaroxaban vs. Apixaban	1.46 (0.41, 5.35)	1.53 (0.32, 7.65)	1.5 (0.32, 7.67)	1.49 (0.41, 5.63)
Rivaroxaban vs. Dabigatran	1.11 (0.37, 3.37)	1.14 (0.31, 4.17)	1.11 (0.31, 4.08)	1.12 (0.35, 3.54)
Rivaroxaban vs. Desirudin	1.54 (0.45, 5.16)	1.55 (0.35, 6.53)	1.81 (0.39, 9.12)	1.83 (0.49, 7.06)
Rivaroxaban vs. Enoxaparin	1.81 (0.71, 4.73)	1.86 (0.65, 5.58)	1.83 (0.65, 5.43)	1.83 (0.72, 4.91)
Rivaroxaban vs. Heparin	1.43 (0.48, 4.49)	1.53 (0.43, 6.40)		
Rivaroxaban vs. IPC + LD Aspirin	203 (6.47, 245242)			141 (6.24, 42193)
Rivaroxaban vs. LY517717	2.19 (0.07, 89.3)	2.19 (0.06, 105)	1.93 (0.04, 89.1)	2.11 (0.04, 126.2)
Rivaroxaban vs. None	6.26 (1.35, 36.71)	12.19 (1.64, 152)	5.37 (0.64, 68.99)	3.66 (0.61, 26.76)
Rivaroxaban vs. Tinzaparin	2.6 (0.58, 12.7)	2.75 (0.49, 18)	2.65 (0.47, 16.9)	2.63 (0.53, 13.1)

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Rivaroxaban vs. Warfarin	5.45 (1.25, 23.93)	5.67 (1.06, 32.43)	5.43 (1.04, 30.51)	5.42 (1.26, 25.58)
Tinzaparin vs. Apixaban	0.56 (0.12, 2.48)	0.56 (0.08, 3.49)	0.56 (0.08, 3.44)	0.57 (0.11, 2.60)
Tinzaparin vs. Dabigatran	0.43 (0.11, 1.63)	0.41 (0.08, 1.93)	0.42 (0.08, 1.99)	0.43 (0.10, 1.67)
Tinzaparin vs. Desirudin	0.59 (0.12, 2.62)	0.56 (0.09, 3.06)	0.68 (0.10, 4.25)	0.70 (0.14, 3.22)
Tinzaparin vs. Enoxaparin	0.70 (0.20, 2.41)	0.68 (0.16, 2.68)	0.69 (0.16, 2.77)	0.69 (0.18, 2.42)
Tinzaparin vs. Heparin	0.55 (0.13, 2.19)	0.56 (0.11, 3.03)		
Tinzaparin vs. None	2.41 (0.39, 15.72)	4.43 (0.48, 69.41)	2.02 (0.19, 27.39)	1.39 (0.19, 11.40)
Tinzaparin vs. Warfarin	2.10 (0.83, 5.16)	2.06 (0.64, 6.23)	2.05 (0.63, 6.28)	2.06 (0.80, 5.26)
Warfarin vs. Enoxaparin	0.33 (0.10, 1.03)	0.33 (0.08, 1.21)	0.34 (0.08, 1.23)	0.34 (0.10, 1.05)
Warfarin vs. None	1.15 (0.20, 7.07)	2.15 (0.26, 30.23)	0.99 (0.10, 12.67)	0.68 (0.10, 5.46)
YM150 vs. Apixaban	0.11 (0.00, 5.49)			0.12 (0.00, 6.93)
YM150 vs. Dabigatran	0.08 (0.00, 3.78)			0.09 (0.00, 4.87)
YM150 vs. Desirudin	0.12 (0.00, 5.67)			0.15 (0.00, 9.17)
YM150 vs. Enoxaparin	0.14 (0.00, 5.96)			0.15 (0.00, 7.77)
YM150 vs. Fondaparinux	0.10 (0.00, 5.07)			0.10 (0.00, 5.89)
YM150 vs. Heparin	0.11 (0.00, 5.10)			
YM150 vs. IPC + LD Aspirin	15.33 (0.01, 12,810)			11.22 (0.01, 7,738)
YM150 vs. LY517717	0.17 (0.0002, 29.1)			0.17 (0.0001, 58.8)
YM150 vs. None	0.47 (0.00, 27.63)			0.29 (0.00, 22.60)
YM150 vs. Rivaroxaban	0.08 (0.00, 3.59)			0.08 (0.00, 5.04)
YM150 vs. Tinzaparin	0.20 (0.00, 10.48)			0.21 (0.00, 13.46)
YM150 vs. Warfarin	0.41 (0.00, 21.65)			0.43 (0.00, 27.44)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin	Without Heparin Trials or Multi-	
Comparison	Correction)	≥1 Event	Trials	Arm Trials	Final Model
Apixaban vs. Enoxaparin	0.65 (0.25, 2.05)	0.69 (0.23, 3.14)	0.69 (0.22, 3.15)	0.55 (0.15, 2.00)	0.55 (0.16, 1.87)
Apixaban vs. Heparin	0.63 (0.06, 7.92)	0.67 (0.05, 12.15)			
Apixaban vs. None	0.84 (0.15, 5.99)	0.53 (0.06, 6.61)	0.52 (0.05, 6.22)	0.42 (0.04, 4.14)	0.42 (0.04, 3.76)
Apixaban vs. Warfarin	1.16 (0.28, 5.89)	1.29 (0.25, 11.43)	1.29 (0.25, 11.57)	0.93 (0.14, 6.42)	0.92 (0.15, 5.71)
Dabigatran vs. Apixaban	1.39 (0.29, 6.09)	1.47 (0.21, 8.26)	1.47 (0.22, 8.43)	1.81 (0.34, 12.40)	1.81 (0.37, 11.00)
Dabigatran vs. Enoxaparin	0.90 (0.31, 2.85)	1.01 (0.31, 4.17)	1.01 (0.31, 4.15)	1.00 (0.32, 3.94)	0.99 (0.34, 3.55)
Dabigatran vs. Heparin	0.88 (0.08, 10.98)	0.98 (0.07, 16.74)			
Dabigatran vs. None	1.17 (0.25, 6.61)	0.78 (0.11, 6.06)	0.76 (0.11, 5.85)	0.77 (0.11, 5.9)	0.76 (0.11, 5.23)
Dabigatran vs. Warfarin	1.61 (0.34, 8.65)	1.89 (0.33, 16.04)	1.90 (0.34, 15.99)	1.69 (0.29, 12.55)	1.67 (0.31, 11.21)
Enoxaparin vs. None	1.31 (0.3, 6.04)	0.78 (0.1, 5.67)	0.75 (0.1, 5.16)	0.77 (0.11, 5.22)	0.77 (0.11, 4.87)
Fondaparinux vs. Apixaban	1.24 (0.02, 77.48)	1.94 (0.02, 187.35)	1.96 (0.02, 182.73)	2.45 (0.03, 256.72)	2.70 (0.04, 240.57)
Fondaparinux vs. Dabigatran	0.89 (0.01, 51.57)	1.32 (0.02, 105.85)	1.34 (0.02, 109.40)	1.36 (0.02, 111.94)	1.49 (0.02, 110.39)
Fondaparinux vs. Enoxaparin	0.80 (0.01, 45.74)	1.33 (0.02, 115.93)	1.35 (0.02, 114.21)	1.35 (0.02, 116.40)	1.48 (0.02, 113.41)
Fondaparinux vs. Heparin	0.79 (0.01, 80.16) 7.94 (0.03,	1.30 (0.01, 200.54)			
Fondaparinux vs. IPC	7,093.97)				
Fondaparinux vs. None Fondaparinux vs.	1.05 (0.02, 45.15)	1.04 (0.02, 57.11)	1.02 (0.02, 54.43)	1.04 (0.02, 55.59)	1.13 (0.03, 59.44)
Rivaroxaban	0.61 (0.01, 43.21)	1.10 (0.01, 122.85)	1.11 (0.01, 123.10)	1.10 (0.01, 124.21)	1.16 (0.02, 105.21)
Fondaparinux vs. Warfarin	1.44 (0.02, 96.83)	2.50 (0.03, 267.20)	2.54 (0.03, 279.78)	2.29 (0.02, 242.02)	2.49 (0.03, 225.65)
GCS vs. Apixaban	0.16 (0.00, 6.53)				
GCS vs. Dabigatran	0.12 (0.00, 4.71)				

Results expressed as Odds Ratio (95% CI)	All Trials (with	All Trials from		Without Heparin	
Comparison	Continuity Correction)	Treatments with ≥1 Event	Without Heparin Trials	Trials or Multi- Arm Trials	Final Model
GCS vs. Enoxaparin	0.10 (0.00, 3.71)				
GCS vs. Fondaparinux	0.13 (0.0002, 32)				
GCS vs. Heparin	0.10 (0.00, 7.64)				
GCS vs. None	0.14 (0.00, 5.42)				
GCS vs. Rivaroxaban	0.08 (0.00, 3.74)				
GCS vs. Warfarin	0.19 (0.00, 8.22)				
Heparin vs. Enoxaparin	1.02 (0.11, 9.52)	1.03 (0.09, 11.51)			
Heparin vs. None	1.33 (0.09, 20.64)	0.41 (0.03, 4.19)			
Heparin vs. Warfarin	1.83 (0.15, 23.43)	1.93 (0.12, 35.06)			
IPC vs. Apixaban	0.16 (0.00, 7.33)				
IPC vs. Dabigatran	0.11 (0.00, 4.97)				
IPC vs. Enoxaparin	0.10 (0.00, 4.04)				
IPC vs. GCS	0.98 (0.00, 697.85)				
IPC vs. Heparin	0.10 (0.00, 8.11)				
IPC vs. None	0.13 (0.00, 5.49)				
IPC vs. Warfarin	0.18 (0.00, 9.66)				
Rivaroxaban vs. Apixaban	2.02 (0.34, 8.38)	1.76 (0.18, 9.04)	1.77 (0.18, 8.70)	2.22 (0.30, 11.48)	2.33 (0.37, 11.42)
Rivaroxaban vs. Dabigatran	1.45 (0.26, 6.26)	1.20 (0.14, 6.39)	1.21 (0.14, 6.23)	1.23 (0.15, 6.01)	1.29 (0.19, 5.91)
Rivaroxaban vs. Enoxaparin	1.30 (0.38, 3.85)	1.21 (0.26, 4.10)	1.22 (0.27, 4.05)	1.23 (0.29, 3.91)	1.28 (0.35, 3.88)
Rivaroxaban vs. Heparin	1.28 (0.10, 15.30)	1.18 (0.06, 16.91)			
Rivaroxaban vs. IPC	12.9 (0.25, 5094)				
Rivaroxaban vs. None	1.7 (0.25, 10.7)	0.94 (0.07, 9.14)	0.92 (0.07, 8.52)	0.94 (0.08, 8.69)	0.98 (0.09, 8.28)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with	Without Heparin	Without Heparin Trials or Multi-	
Comparison	Correction)	≥1 Event	Trials	Arm Trials	Final Model
Rivaroxaban vs. Warfarin	2.34 (0.43, 11.68)	2.28 (0.31, 14.70)	2.29 (0.31, 14.88)	2.08 (0.27, 12.33)	2.15 (0.32, 11.99)
Warfarin vs. Enoxaparin	0.56 (0.17, 1.76)	0.53 (0.12, 1.95)	0.53 (0.12, 1.97)	0.59 (0.14, 2.33)	0.60 (0.15, 2.24)
Warfarin vs. None	0.73 (0.11, 4.95)	0.8 (0.03, 18.1)	0.4 (0.03, 4.1)	0.45 (0.04, 4.69)	0.46 (0.04, 4.32)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity Correction)	All Trials from Treatments with	Without Heparin Trials (No Multi- Arm Trials)	Final Madel
Comparison	· · · · · · · · · · · · · · · · · · ·	\geq 1 Event	,	Final Model
Apixaban vs. Dabigatran	2.32 (0.06, 102)	2.08 (0.02, 206)	2.05 (0.02, 214)	2.22 (0.05, 112)
Apixaban vs. Desirudin	2.10 (0.05, 104.90)	3.49 (0.05, 393.86)	1.32 (0.01, 152.32)	1.29 (0.02, 95.11)
Apixaban vs. Enoxaparin	3.01 (0.18, 60.28)	2.94 (0.11, 91.56)	2.99 (0.11, 93.22)	2.86 (0.15, 64.01)
Apixaban vs. Heparin	0.61 (0.01, 31.25)	0.25 (0.00, 27.74)		
Apixaban vs. Warfarin	2.64 (0.06, 125.96)	2.64 (0.03, 254.68)	2.64 (0.03, 245.18)	2.51 (0.05, 143.74)
Dabigatran vs. Enoxaparin	1.30 (0.12, 13.56)	1.42 (0.06, 33.02)	1.46 (0.06, 33.99)	1.29 (0.11, 14.97)
Dabigatran vs. Heparin	0.26 (0.01, 8.72)	0.12 (0.00, 10.94)		
Dabigatran vs. Warfarin	1.14 (0.04, 33.58)	1.27 (0.02, 96.64)	1.29 (0.02, 96.35)	1.13 (0.03, 40.81)
Dalteparin vs. Apixaban	0.38 (0.00, 50.05)	0.37 (0.00, 120.06)	0.37 (0.00, 108.53)	0.41 (0.00, 65.76)
Dalteparin vs. Dabigatran	0.89 (0.01, 88.59)	0.78 (0.00, 214.86)	0.75 (0.00, 212.72)	0.91 (0.01, 113.07)
Dalteparin vs. Desirudin	0.81 (0.01, 89.48)	1.31 (0.01, 394.26)	0.48 (0.00, 144.75)	0.53 (0.00, 86.83)
Dalteparin vs. Enoxaparin	1.16 (0.02, 58.91)	1.10 (0.01, 124.59)	1.09 (0.01, 118.16)	1.17 (0.02, 76.25)
Dalteparin vs. Fondaparinux	5.77 (0.01, 6,581.38)			5.46 (0.01, 8,070.74)
Dalteparin vs. Heparin	0.23 (0.00, 26.79)	0.09 (0.00, 26.71)		
Dalteparin vs. Rivaroxaban	1.34 (0.02, 86.83)	1.11 (0.01, 166.50)	1.10 (0.01, 168.34)	1.34 (0.01, 116.16)
Dalteparin vs. Tinzaparin	1.01 (0.02, 56.4)	0.99 (0.01, 119)	0.96 (0.01, 108)	1.02 (0.01, 74.7)
Dalteparin vs. Warfarin	1.02 (0.04, 23.69)	0.99 (0.03, 37.00)	0.97 (0.03, 33.95)	1.03 (0.04, 27.44)
Desirudin vs. Dabigatran	1.1 (0.04, 30.5)	0.6 (0.01, 37.8)	1.56 (0.02, 157)	1.72 (0.04, 90.2)
Desirudin vs. Enoxaparin	1.43 (0.12, 15.56)	0.84 (0.03, 14.91)	2.27 (0.08, 68.72)	2.22 (0.11, 51.42)
Desirudin vs. Heparin	0.29 (0.02, 2.72)	0.07 (0.00, 1.83)		
Desirudin vs. Warfarin	1.26 (0.04, 36.23)	0.76 (0.01, 42.35)	2.01 (0.02, 182.91)	1.95 (0.04, 115.47)
Enoxaparin + GCS vs. Apixaban	0.01 (0.00, 11.23)			0.02 (0.00, 14.17)

Table 108. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Enoxaparin + GCS vs. Dabigatran	0.03 (0.00, 20.59)		· · ·	0.04 (0.00, 26.29)
Enoxaparin + GCS vs. Dalteparin	0.04 (0.00, 50.20)			0.04 (0.00, 68.79)
Enoxaparin + GCS vs. Desirudin	0.03 (0.00, 18.56)			0.02 (0.00, 19.03)
Enoxaparin + GCS vs. Enoxaparin	0.04 (0.00, 15.94)			0.05 (0.00, 20.49)
Enoxaparin + GCS vs. Fondaparinux	0.21 (0.00, 9.79)			0.22 (0.00, 12.03)
Enoxaparin + GCS vs. Fondaparinux + GCS	0.93 (0.14, 6.71)			0.94 (0.13, 7.60)
Enoxaparin + GCS vs. Heparin	0.01 (0.00, 6.26)			
Enoxaparin + GCS vs. Rivaroxaban	0.05 (0.00, 22.78)			0.05 (0.00, 28.45)
Enoxaparin + GCS vs. Tinzaparin	0.04 (0.00, 36.78)			0.04 (0.00, 53.14)
Enoxaparin + GCS vs. Warfarin	0.04 (0.00, 23.59)			0.04 (0.00, 29.84)
Fondaparinux + GCS vs. Apixaban	0.02 (0.00, 8.76)			0.02 (0.00, 10.49)
Fondaparinux + GCS vs. Dabigatran	0.03 (0.00, 16.88)			0.04 (0.00, 19.38)
Fondaparinux + GCS vs. Dalteparin	0.04 (0.00, 40.21)			0.04 (0.00, 53.84)
Fondaparinux + GCS vs. Desirudin	0.03 (0.00, 14.45)			0.02 (0.00, 13.86)
Fondaparinux + GCS vs. Enoxaparin	0.05 (0.00, 12.18)			0.05 (0.00, 14.41)
Fondaparinux + GCS vs. Fondaparinux	0.23 (0.00, 6.00)			0.23 (0.00, 7.01)
Fondaparinux + GCS vs. Heparin	0.01 (0.00, 5.10)			
Fondaparinux + GCS vs. Rivaroxaban	0.05 (0.00, 17.73)			0.06 (0.00, 19.99)
Fondaparinux + GCS vs. Tinzaparin	0.04 (0.00, 30.69)			0.04 (0.00, 41.14)
Fondaparinux + GCS vs. Warfarin	0.04 (0.00, 18.36)			0.04 (0.00, 22.58)
Fondaparinux vs. Apixaban	0.07 (0.0001, 14.2)			0.08 (0.0001, 16.7)
Fondaparinux vs. Dabigatran	0.15 (0.0003, 25)			0.17 (0.0002, 27.4)

Table 108. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials from Treatments with ≥1 Event	Without Heparin Trials (No Multi- Arm Trials)	Final Model
Fondaparinux vs. Desirudin	0.14 (0.00, 23.17)	≥1 Event	Ariii Iriais)	0.10 (0.00, 20.70)
Fondaparinux vs. Enoxaparin	0.14 (0.00, 25.17) 0.20 (0.00, 15.85)			0.21 (0.00, 17.98)
Fondaparinux vs. Lenoxaparin Fondaparinux vs. Heparin	0.04 (0.00, 7.57)			0.21 (0.00, 17.90)
Fondaparinux vs. Warfarin	0.18 (0.00, 28.22)			0.19 (0.00, 33.25)
Heparin vs. Enoxaparin	4.94 (0.36, 85.88)	11.97 (0.46, 640.98)		0.17 (0.00, 55.25)
Heparin vs. Warfarin	4.35 (0.12, 181.27)	10.72 (0.13, 1,506)		
Rivaroxaban vs. Apixaban	0.29 (0.01, 8.44)	0.34 (0.01, 20)	0.33 (0.01, 18.7)	0.31 (0.01, 10.2)
Rivaroxaban vs. Dabigatran	0.66 (0.04, 13)	0.7 (0.02, 32.5)	0.68 (0.02, 32.3)	0.68 (0.04, 15.2)
Rivaroxaban vs. Desirudin	0.60 (0.04, 13.33)	1.18 (0.04, 61.37)	0.44 (0.01, 24.17)	0.39 (0.01, 13.44)
Rivaroxaban vs. Enoxaparin	0.86 (0.18, 4.96)	0.99 (0.14, 8.93)	0.99 (0.14, 8.68)	0.87 (0.16, 5.40)
Rivaroxaban vs. Fondaparinux	4.31 (0.04, 2,069.37)			4.07 (0.04, 2,591.52)
Rivaroxaban vs. Heparin	0.17 (0.01, 4.13)	0.08 (0.00, 4.31)		
Rivaroxaban vs. Warfarin	0.76 (0.04, 16.01)	0.89 (0.03, 39.21)	0.87 (0.03, 37.23)	0.77 (0.03, 19.73)
Tinzaparin vs. Apixaban	0.38 (0.00, 35.80)	0.38 (0.00, 97.13)	0.38 (0.00, 91.74)	0.40 (0.00, 48.47)
Tinzaparin vs. Dabigatran	0.88 (0.01, 63.69)	0.78 (0.00, 172.26)	0.78 (0.00, 158.38)	0.89 (0.01, 80.88)
Tinzaparin vs. Desirudin	0.80 (0.01, 64.59)	1.32 (0.01, 328.98)	0.50 (0.00, 117.92)	0.52 (0.00, 65.56)
Tinzaparin vs. Enoxaparin	1.15 (0.03, 38.59)	1.11 (0.01, 91.38)	1.14 (0.02, 84.86)	1.15 (0.03, 50.96)
Tinzaparin vs. Fondaparinux	5.72 (0.02, 5,059.38)			5.36 (0.01, 7,030.41)
Tinzaparin vs. Heparin	0.23 (0.00, 19.22)	0.09 (0.00, 20.97)		
Tinzaparin vs. Rivaroxaban	1.33 (0.02, 61.81)	1.12 (0.01, 132.82)	1.15 (0.01, 122.36)	1.32 (0.02, 80.64)
Tinzaparin vs. Warfarin	1.01 (0.07, 13.86)	1.00 (0.04, 22.87)	1.01 (0.04, 22.69)	1.01 (0.06, 15.91)
Warfarin vs. Enoxaparin	1.14 (0.10, 13.03)	1.12 (0.05, 23.22)	1.13 (0.06, 22.65)	1.14 (0.08, 15.88)

Table 108. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – All Cause Mortality

Table 109. Network Meta-Analysis – Pairwise Comparisons among Knee Patients – All Cause Mortality

Results expressed as Odds Ratio (95% CI) Comparison	All Trials (with Continuity Correction)	All Trials (without Continuity Correction)
Apixaban vs. Dabigatran	1.01 (0.04, 27.8)	1.01 (0.03, 33)
Apixaban vs. Enoxaparin	1.04 (0.14, 9.42)	1.06 (0.12, 10.62)
Apixaban vs. Warfarin	0.46 (0.02, 13.5)	0.49 (0.02, 16.4)
Dabigatran vs. Enoxaparin	1.03 (0.09, 12.50)	1.04 (0.08, 14.53)
Dabigatran vs. Warfarin	0.45 (0.01, 16)	0.48 (0.01, 20)
Rivaroxaban vs. Apixaban	0.35 (0.01, 5.60)	0.26 (0.01, 4.88)
Rivaroxaban vs. Dabigatran	0.35 (0.01, 8.31)	0.26 (0.01, 6.90)
Rivaroxaban vs. Enoxaparin	0.36 (0.04, 2.51)	0.27 (0.02, 2.18)
Rivaroxaban vs. Warfarin	0.16 (0.00, 3.78)	0.13 (0.00, 3.54)
Warfarin vs. Enoxaparin	2.27 (0.18, 33.31)	2.18 (0.15, 33.58)

Results expressed as Odds Ratio (95% CI)	All Trials (with Continuity	All Trials from Treatments with ≥1	Without Heparin Trials	
Comparison	Correction)	Event	(No Multi-Arm Trials)	Final Model
Apixaban vs. Dabigatran	0.05 (0.00, 2.62)	0.05 (0.00, 2.59)	0.05 (0.00, 2.51)	0.05 (0.00, 2.52)
Apixaban vs. Desirudin	0.07 (0.00, 6.09)	0.07 (0.00, 6.12)	0.06 (0.00, 6.31)	0.06 (0.00, 5.93)
Apixaban vs. Enoxaparin	0.07 (0.00, 2.31)	0.08 (0.00, 2.39)	0.07 (0.00, 2.30)	0.07 (0.00, 2.32)
Apixaban vs. Heparin	0.05 (0.0002, 11.7)	0.05 (0.0002, 11.6)		
Dabigatran vs. Desirudin	1.36 (0.04, 45.24)	1.39 (0.04, 47.09)	1.37 (0.04, 47.37)	1.40 (0.04, 46.90)
Dabigatran vs. Enoxaparin	1.54 (0.22, 11.60)	1.56 (0.22, 11.54)	1.54 (0.22, 11.35)	1.57 (0.22, 11.72)
Desirudin vs. Enoxaparin	1.13 (0.06, 20.35)	1.13 (0.06, 19.53)	1.13 (0.06, 20.15)	1.12 (0.06, 20.11)
Heparin vs. Dabigatran	0.95 (0.01, 93.88)	0.94 (0.01, 91.29)		
Heparin vs. Desirudin	1.30 (0.06, 26.23)	1.30 (0.06, 27.11)		
Heparin vs. Enoxaparin	1.47 (0.02, 98.20)	1.47 (0.02, 95.58)		
Rivaroxaban vs. Apixaban	1.70 (0.00, 795.52)			1.80 (0.00, 921.50)
Rivaroxaban vs. Dabigatran	0.08 (0.00, 13.20)			0.08 (0.00, 13.69)
Rivaroxaban vs. Desirudin	0.11 (0.00, 27.83)			0.12 (0.00, 30.45)
Rivaroxaban vs. Enoxaparin	0.13 (0.00, 13.18)			0.13 (0.00, 14.30)
Rivaroxaban vs. Heparin	0.09 (0.00, 47.6)			
Tinzaparin vs. Apixaban	7.85 (0.06, 1,283)	7.77 (0.06, 1,342)	8.36 (0.07, 1,519.29)	8.22 (0.07, 1,369.22)
Tinzaparin vs. Dabigatran	0.38 (0.01, 17.39)	0.37 (0.01, 18.25)	0.39 (0.01, 18.39)	0.38 (0.01, 17.76)
Tinzaparin vs. Desirudin	0.52 (0.01, 39.49)	0.52 (0.01, 42.35)	0.54 (0.01, 42.31)	0.53 (0.01, 41.55)
Tinzaparin vs. Enoxaparin	0.58 (0.02, 15.44)	0.58 (0.02, 16.26)	0.61 (0.02, 16.40)	0.59 (0.02, 16.17)
Tinzaparin vs. Heparin	0.4 (0.002, 80.6)	0.4 (0.002, 80.8)		
Tinzaparin vs. Rivaroxaban	4.62 (0.01, 4523)			4.57 (0.01, 4420)

Table 110. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI)		All Trials from Treatments with ≥1 Event (No	Without Heparin Trials or Multi-	
Comparison	All Trials	Heparin Trials)	Arm Trials	Final Model
Apixaban vs. Dabigatran	2.7 (0.28, 30.7)	2.67 (0.25, 33.3)	2.19 (0.16, 30.1)	2.22 (0.18, 29.1)
Apixaban vs. Enoxaparin	0.78 (0.22, 3.23)	0.78 (0.20, 3.58)	0.63 (0.11, 3.34)	0.63 (0.13, 3.00)
Apixaban vs. None	0.98 (0.01, 53.8)	0.93 (0.01, 62.05)	0.74 (0.01, 52.67)	0.80 (0.01, 50.81)
Apixaban vs. Warfarin	1.87 (0.09, 68.92)	1.85 (0.09, 82.43)		
Dabigatran vs. Enoxaparin	0.29 (0.04, 1.89)	0.29 (0.04, 2.05)	0.29 (0.04, 2.20)	0.28 (0.04, 1.96)
Dabigatran vs. None	0.36 (0.01, 8.54)	0.35 (0.01, 9.74)	0.34 (0.01, 10.17)	0.36 (0.01, 9.32)
Dabigatran vs. Warfarin	0.69 (0.02, 38.98)	0.69 (0.02, 49.30)		
Enoxaparin + IPC vs. Apixaban	1.31 (0.02, 87.36)	1.28 (0.02, 88.23)	1.54 (0.02, 133.75)	1.51 (0.02, 108.31)
Enoxaparin + IPC vs. Dabigatran Enoxaparin + IPC vs.	3.53 (0.04, 324.41)	3.41 (0.03, 299.17)	3.38 (0.03, 330.30)	3.36 (0.04, 297.97)
Enoxaparin	1.02 (0.02, 57.97)	1.00 (0.02, 56.26)	0.97 (0.01, 60.76)	0.95 (0.02, 53.68)
Enoxaparin + IPC vs. None Enoxaparin + IPC vs.	1.29 (0.00, 303)	1.19 (0.00, 307)	1.14 (0.00, 334)	1.21 (0.00, 307)
Rivaroxaban	2.41 (0.03, 208.93)	2.84 (0.03, 311.38)	2.81 (0.03, 330.96)	2.26 (0.03, 195.00)
Enoxaparin + IPC vs. Warfarin	2.45 (0.01, 535.93)	2.36 (0.01, 536.46)		
Enoxaparin vs. None	1.26 (0.02, 50.5)	1.19 (0.02, 58.21)	1.17 (0.01, 62.12)	1.27 (0.02, 60.58)
Rivaroxaban vs. Apixaban	0.54 (0.05, 4.13)	0.45 (0.02, 3.82)	0.55 (0.03, 6.10)	0.67 (0.05, 6.44)
Rivaroxaban vs. Dabigatran	1.46 (0.10, 19.18)	1.20 (0.05, 18.21)	1.21 (0.05, 18.05)	1.48 (0.09, 20.29)
Rivaroxaban vs. Enoxaparin	0.42 (0.06, 2.18)	0.35 (0.03, 2.00)	0.35 (0.03, 2.10)	0.42 (0.06, 2.28)
Rivaroxaban vs. None	0.53 (0.01, 30.6)	0.42 (0.00, 29.2)	0.40 (0.00, 30.5)	0.54 (0.00, 33.4)
Rivaroxaban vs. Warfarin	1.01 (0.03, 52.61)	0.83 (0.02, 47.66)		
Warfarin vs. Enoxaparin	0.42 (0.01, 8.40)	0.42 (0.01, 9.74)		
Warfarin vs. None	0.53 (0.00, 66.29)	0.50 (0.00, 81.53)		

Table 111. Network Meta-Analysis – Pairwise Comparisons among Knee Patients – Symptomatic DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials – Final Model
Comparison	All Trials	(No Multi-Arm Trials)
Apixaban vs. Desirudin	0.43 (0.16, 1.06)	0.47 (0.11, 1.89)
Apixaban vs. Enoxaparin	0.31 (0.14, 0.66)	0.31 (0.11, 0.84)
Apixaban vs. Heparin	0.14 (0.05, 0.34)	
Apixaban vs. None	0.22 (0.07, 0.69)	0.21 (0.05, 0.95)
Apixaban vs. Tinzaparin	0.28 (0.09, 0.82)	0.28 (0.07, 1.19)
Apixaban vs. Warfarin	0.21 (0.06, 0.76)	0.21 (0.04, 1.21)
Dabigatran vs. Apixaban	2.42 (1.00, 5.79)	2.41 (0.75, 7.79)
Dabigatran vs. Dalteparin	1.21 (0.35, 4.12)	1.21 (0.23, 6.48)
Dabigatran vs. Desirudin	1.03 (0.51, 1.96)	1.13 (0.37, 3.39)
Dabigatran vs. Enoxaparin	0.74 (0.48, 1.12)	0.74 (0.42, 1.29)
Dabigatran vs. Heparin	0.33 (0.16, 0.63)	
Dabigatran vs. IPC + LD Aspirin	0.77 (0.22, 2.64)	0.75 (0.18, 3.25)
Dabigatran vs. None	0.52 (0.2, 1.36)	0.52 (0.15, 1.74)
Dabigatran vs. Rivaroxaban	2.56 (1.34, 4.57)	2.49 (1.08, 5.28)
Dabigatran vs. Tinzaparin	0.67 (0.28, 1.61)	0.67 (0.21, 2.15)
Dabigatran vs. Warfarin	0.51 (0.17, 1.55)	0.51 (0.12, 2.34)
Dalteparin vs. Apixaban	2.01 (0.50, 8.04)	2.00 (0.30, 12.88)
Dalteparin vs. Desirudin	0.86 (0.24, 2.98)	0.93 (0.15, 5.86)
Dalteparin vs. Enoxaparin	0.61 (0.19, 1.96)	0.61 (0.12, 2.87)
Dalteparin vs. Heparin	0.28 (0.08, 0.95)	
Dalteparin vs. IPC	1.35 (0.26, 7.02)	1.32 (0.15, 11.38)
Dalteparin vs. IPC + LD Aspirin	0.64 (0.12, 3.20)	0.63 (0.08, 4.81)

Odds Ratio (95% CI)		Without Heparin Trials – Final Model
Comparison	All Trials	(No Multi-Arm Trials)
Dalteparin vs. None	0.43 (0.10, 1.89)	0.43 (0.06, 2.89)
Dalteparin vs. Rivaroxaban	2.12 (0.60, 7.11)	2.06 (0.37, 10.34)
Dalteparin vs. Tinzaparin	0.55 (0.24, 1.31)	0.56 (0.17, 1.83)
Dalteparin vs. Warfarin	0.42 (0.25, 0.73)	0.42 (0.21, 0.87)
Dalteparin vs. YM150	0.60 (0.14, 2.57)	0.60 (0.09, 3.99)
Desirudin vs. Enoxaparin	0.72 (0.43, 1.24)	0.65 (0.25, 1.70)
Desirudin vs. Heparin	0.32 (0.20, 0.52)	
Desirudin vs. None	0.51 (0.19, 1.41)	0.46 (0.11, 1.95)
Desirudin vs. Tinzaparin	0.65 (0.26, 1.69)	0.59 (0.15, 2.43)
Desirudin vs. Warfarin	0.49 (0.16, 1.58)	0.45 (0.09, 2.54)
Enoxaparin vs. None	0.71 (0.3, 1.68)	0.70 (0.23, 2.08)
Fondaparinux vs. Apixaban	0.44 (0.05, 2.50)	0.44 (0.05, 3.17)
Fondaparinux vs. Dabigatran	0.18 (0.03, 0.89)	0.18 (0.02, 1.08)
Fondaparinux vs. Dalteparin	0.22 (0.02, 1.49)	0.22 (0.02, 2.24)
Fondaparinux vs. Desirudin	0.19 (0.03, 0.95)	0.21 (0.02, 1.39)
Fondaparinux vs. Enoxaparin	0.13 (0.02, 0.62)	0.14 (0.02, 0.71)
Fondaparinux vs. Heparin	0.06 (0.01, 0.31)	
Fondaparinux vs. IPC	0.29 (0.03, 2.07)	0.29 (0.02, 2.78)
Fondaparinux vs. IPC + LD Aspirin	0.14 (0.01, 0.97)	0.14 (0.01, 1.20)
Fondaparinux vs. None	0.09 (0.01, 0.57)	0.09 (0.01, 0.71)
Fondaparinux vs. Rivaroxaban	0.46 (0.06, 2.29)	0.46 (0.05, 2.62)
Fondaparinux vs. Tinzaparin	0.12 (0.02, 0.68)	0.12 (0.01, 0.90)

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials – Final Model
Comparison	All Trials	(No Multi-Arm Trials)
Fondaparinux vs. Warfarin	0.09 (0.01, 0.58)	0.09 (0.01, 0.84)
Fondaparinux vs. YM150	0.13 (0.02, 0.80)	0.13 (0.01, 0.98)
Heparin vs. Enoxaparin	2.21 (1.35, 3.89)	
Heparin vs. None	1.56 (0.58, 4.45)	
Heparin vs. Warfarin	1.52 (0.50, 5.00)	
IPC + LD Aspirin vs. Apixaban	3.16 (0.79, 12.83)	3.19 (0.60, 17.08)
IPC + LD Aspirin vs. Desirudin	1.35 (0.37, 4.81)	1.49 (0.29, 7.68)
IPC + LD Aspirin vs. Enoxaparin	0.96 (0.30, 3.15)	0.98 (0.26, 3.75)
IPC + LD Aspirin vs. Heparin	0.44 (0.12, 1.55)	
IPC + LD Aspirin vs. None	0.68 (0.16, 2.92)	0.68 (0.12, 3.85)
IPC + LD Aspirin vs. Tinzaparin	0.87 (0.22, 3.56)	0.89 (0.17, 4.84)
IPC + LD Aspirin vs. Warfarin	0.67 (0.15, 3.13)	0.68 (0.1, 4.7)
IPC vs. Apixaban	1.49 (0.37, 6.00)	1.51 (0.25, 9.35)
IPC vs. Dabigatran	0.61 (0.18, 2.12)	0.63 (0.13, 3.15)
IPC vs. Desirudin	0.63 (0.18, 2.24)	0.71 (0.12, 4.17)
IPC vs. Enoxaparin	0.45 (0.14, 1.46)	0.46 (0.10, 2.07)
IPC vs. Heparin	0.21 (0.06, 0.71)	
IPC vs. IPC + LD Aspirin	0.47 (0.09, 2.38)	0.47 (0.06, 3.45)
IPC vs. None	0.32 (0.15, 0.70)	0.32 (0.12, 0.91)
IPC vs. Rivaroxaban	1.57 (0.44, 5.29)	1.56 (0.31, 7.42)
IPC vs. Tinzaparin	0.41 (0.10, 1.67)	0.42 (0.07, 2.61)
IPC vs. Warfarin	0.31 (0.07, 1.5)	0.32 (0.04, 2.52)

Odds Ratio (95% CI)		Without Heparin Trials – Final Model
Comparison	All Trials	(No Multi-Arm Trials)
Rivaroxaban vs. Apixaban	0.95 (0.40, 2.39)	0.97 (0.31, 3.23)
Rivaroxaban vs. Desirudin	0.40 (0.21, 0.81)	0.45 (0.16, 1.42)
Rivaroxaban vs. Enoxaparin	0.29 (0.19, 0.46)	0.30 (0.17, 0.53)
Rivaroxaban vs. Heparin	0.13 (0.07, 0.26)	
Rivaroxaban vs. IPC + LD Aspirin	0.3 (0.09, 1.07)	0.3 (0.07, 1.32)
Rivaroxaban vs. None	0.20 (0.08, 0.56)	0.21 (0.06, 0.72)
Rivaroxaban vs. Tinzaparin	0.26 (0.11, 0.66)	0.27 (0.09, 0.9)
Rivaroxaban vs. Warfarin	0.20 (0.07, 0.63)	0.21 (0.05, 0.97)
Tinzaparin vs. Enoxaparin	1.11 (0.51, 2.39)	1.10 (0.39, 3.00)
Tinzaparin vs. Heparin	0.50 (0.19, 1.23)	
Tinzaparin vs. None	0.78 (0.24, 2.53)	0.77 (0.17, 3.39)
Tinzaparin vs. Warfarin	0.76 (0.39, 1.49)	0.76 (0.3, 1.97)
Warfarin vs. Enoxaparin	1.45 (0.52, 4.03)	1.44 (0.35, 5.68)
Warfarin vs. None	1.03 (0.27, 4.00)	1.01 (0.17, 5.88)
YM150 vs. Apixaban	3.35 (1.03, 10.71)	3.34 (0.76, 14.92)
YM150 vs. Dabigatran	1.38 (0.53, 3.62)	1.39 (0.41, 4.77)
YM150 vs. Desirudin	1.43 (0.50, 3.88)	1.56 (0.37, 6.65)
YM150 vs. Enoxaparin	1.02 (0.42, 2.44)	1.02 (0.34, 3.05)
YM150 vs. Heparin	0.46 (0.16, 1.24)	
YM150 vs. IPC	2.25 (0.52, 9.41)	2.21 (0.35, 13.9)
YM150 vs. IPC + LD Aspirin	1.06 (0.24, 4.55)	1.05 (0.19, 5.91)
YM150 vs. None	0.72 (0.21, 2.46)	0.72 (0.15, 3.32)

Table 112. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Deep	
Vein Thrombosis	

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials – Final Model
Comparison	All Trials	(No Multi-Arm Trials)
YM150 vs. Rivaroxaban	3.54 (1.29, 9.29)	3.45 (0.98, 11.50)
YM150 vs. Tinzaparin	0.93 (0.29, 2.98)	0.93 (0.21, 4.17)
YM150 vs. Warfarin	0.71 (0.18, 2.73)	0.71 (0.12, 4.21)

Table 113. Network Meta-Analysis – Pa Vein Thrombosis	airwise Comparisons among Knee Patients – Deep
Results expressed as	Without Heparin

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials	Without Heparin Trials or Multi- Arm Trials (Final Model)
Apixaban vs. Enoxaparin	0.70 (0.48, 1.06)	0.70 (0.47, 1.06)	0.69 (0.40, 1.22)
Apixaban vs. Heparin	0.45 (0.20, 1.01)		
Apixaban vs. None	0.13 (0.04, 0.43)	0.14 (0.04, 0.44)	
Apixaban vs. Warfarin	0.33 (0.19, 0.57)	0.33 (0.19, 0.57)	0.33 (0.15, 0.75)
Dabigatran vs. Apixaban	1.64 (0.89, 2.94)	1.64 (0.88, 2.94)	1.65 (0.74, 3.62)
Dabigatran vs. Enoxaparin	1.15 (0.74, 1.79)	1.15 (0.73, 1.81)	1.14 (0.65, 2.01)
Dabigatran vs. Enoxaparin + IPC	4.24 (1.21, 16.78)	4.17 (1.18, 16.3)	4.10 (1.04, 17.96)
Dabigatran vs. Heparin	0.73 (0.32, 1.68)		
Dabigatran vs. None	0.22 (0.06, 0.71)	0.22 (0.06, 0.73)	
Dabigatran vs. Rivaroxaban	2.00 (1.08, 3.62)	1.99 (1.08, 3.66)	1.99 (0.93, 4.15)
Dabigatran vs. Warfarin	0.54 (0.29, 0.99)	0.54 (0.29, 1.00)	0.55 (0.24, 1.24)
Enoxaparin + IPC vs. Apixaban	0.39 (0.10, 1.32)	0.39 (0.10, 1.35)	0.40 (0.09, 1.58)
Enoxaparin + IPC vs. Enoxaparin	0.27 (0.07, 0.88)	0.28 (0.08, 0.89)	0.28 (0.07, 0.98)
Enoxaparin + IPC vs. GCS	0.10 (0.02, 0.55)	0.10 (0.02, 0.55)	
Enoxaparin + IPC vs. Heparin	0.17 (0.04, 0.68)		
Enoxaparin + IPC vs. IPC	0.17 (0.03, 0.99)	0.17 (0.03, 0.97)	
Enoxaparin + IPC vs. None	0.05 (0.01, 0.27)	0.05 (0.01, 0.27)	
Enoxaparin + IPC vs. Rivaroxaban	0.47 (0.12, 1.63)	0.48 (0.12, 1.65)	0.48 (0.11, 1.85)
Enoxaparin + IPC vs. Warfarin	0.13 (0.03, 0.44)	0.13 (0.03, 0.45)	0.13 (0.03, 0.54)
Enoxaparin vs. None	0.19 (0.06, 0.56)	0.19 (0.06, 0.58)	
GCS vs. Apixaban	3.83 (1.13, 13.71)	3.79 (1.10, 13.74)	

Results expressed as Odds Ratio (95% CI)			Without Heparin Trials or Multi-
Comparison	All Trials	Without Heparin Trials	Arm Trials (Final Model)
GCS vs. Dabigatran	2.34 (0.69, 8.53)	2.31 (0.67, 8.52)	
GCS vs. Enoxaparin	2.69 (0.86, 9.09)	2.65 (0.83, 9.05)	
GCS vs. Heparin	1.71 (0.45, 6.90)		
GCS vs. None	0.52 (0.20, 1.28)	0.51 (0.20, 1.29)	
GCS vs. Rivaroxaban	4.68 (1.39, 16.88)	4.61 (1.34, 16.74)	
GCS vs. Warfarin	1.27 (0.37, 4.60)	1.25 (0.37, 4.55)	
HD Aspirin + IPC vs. Apixaban	0.51 (0.10, 2.35)	0.52 (0.11, 2.37)	0.53 (0.09, 2.90)
HD Aspirin + IPC vs. Dabigatran	0.31 (0.06, 1.47)	0.32 (0.06, 1.48)	0.32 (0.05, 1.76)
HD Aspirin + IPC vs. Enoxaparin	0.36 (0.07, 1.58)	0.37 (0.08, 1.59)	0.37 (0.07, 1.84)
HD Aspirin + IPC vs. Enoxaparin + IPC	1.33 (0.55, 3.20)	1.33 (0.56, 3.20)	1.33 (0.49, 3.56)
HD Aspirin + IPC vs. GCS	0.13 (0.02, 0.91)	0.14 (0.02, 0.91)	
HD Aspirin + IPC vs. Heparin	0.23 (0.04, 1.19)		
HD Aspirin + IPC vs. IPC	0.23 (0.03, 1.61)	0.23 (0.03, 1.60)	
HD Aspirin + IPC vs. None	0.07 (0.01, 0.44)	0.07 (0.01, 0.45)	
HD Aspirin + IPC vs. Rivaroxaban	0.63 (0.12, 2.90)	0.64 (0.13, 2.93)	0.64 (0.11, 3.41)
HD Aspirin + IPC vs. Warfarin	0.17 (0.03, 0.77)	0.17 (0.03, 0.81)	0.18 (0.03, 0.98)
Heparin vs. Enoxaparin	1.57 (0.79, 3.19)		
Heparin vs. None	0.30 (0.08, 1.09)		
Heparin vs. Warfarin	0.74 (0.33, 1.68)		
IPC vs. Apixaban	2.27 (0.62, 8.51)	2.25 (0.61, 8.78)	
IPC vs. Dabigatran	1.38 (0.37, 5.32)	1.38 (0.37, 5.42)	

Results expressed as Odds Ratio (95% CI)			Without Heparin Trials or Multi-
Comparison	All Trials	Without Heparin Trials	Arm Trials (Final Model)
IPC vs. Enoxaparin	1.59 (0.46, 5.62)	1.58 (0.46, 5.80)	
IPC vs. GCS	0.59 (0.20, 1.70)	0.60 (0.20, 1.69)	
IPC vs. Heparin	1.01 (0.24, 4.30)		
IPC vs. None	0.30 (0.11, 0.82)	0.31 (0.11, 0.82)	
IPC vs. Rivaroxaban	2.76 (0.75, 10.37)	2.74 (0.74, 10.69)	
IPC vs. Warfarin	0.75 (0.20, 2.86)	0.74 (0.20, 2.91)	
Rivaroxaban vs. Apixaban	0.82 (0.46, 1.44)	0.82 (0.46, 1.44)	0.83 (0.39, 1.77)
Rivaroxaban vs. Enoxaparin	0.57 (0.38, 0.87)	0.57 (0.38, 0.87)	0.58 (0.35, 0.95)
Rivaroxaban vs. Heparin	0.37 (0.16, 0.83)		
Rivaroxaban vs. None	0.11 (0.03, 0.35)	0.11 (0.03, 0.36)	
Rivaroxaban vs. Warfarin	0.27 (0.15, 0.49)	0.27 (0.15, 0.49)	0.28 (0.13, 0.60)
Warfarin vs. Enoxaparin	2.12 (1.40, 3.26)	2.12 (1.40, 3.26)	2.09 (1.15, 3.82)
Warfarin vs. None	0.41 (0.12, 1.29)	0.41 (0.12, 1.34)	

Table 113. Network Meta-Analysis – Pairwise Comparisons among Knee Patients – Deep Vein Thrombosis

Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm Trials
Comparison	All Trials	(Final Model)
Apixaban vs. Enoxaparin	0.33 (0.07, 1.52)	0.33 (0.04, 2.87)
Apixaban vs. None	0.22 (0.02, 2.13)	0.22 (0.01, 5.02)
Apixaban vs. Warfarin	0.29 (0.02, 3.61)	0.29 (0.01, 10.78)
Dabigatran vs. Apixaban	1.45 (0.25, 8.47)	1.44 (0.12, 16.66)
Dabigatran vs. Enoxaparin	0.48 (0.20, 1.09)	0.47 (0.14, 1.56)
Dabigatran vs. None	0.32 (0.05, 2.09)	0.31 (0.02, 3.94)
Dabigatran vs. Warfarin	0.43 (0.05, 3.59)	0.42 (0.02, 9.66)
Dalteparin vs. Apixaban	1.44 (0.09, 20.99)	1.41 (0.03, 68.31)
Dalteparin vs. Dabigatran	0.99 (0.09, 10.70)	0.98 (0.03, 31.66)
Dalteparin vs. Desirudin	0.97 (0.08, 11.37)	0.81 (0.02, 37.94)
Dalteparin vs. Enoxaparin	0.48 (0.05, 4.30)	0.46 (0.02, 12.26)
Dalteparin vs. Fondaparinux	2.91 (0.08, 196.37)	2.47 (0.03, 304.90)
Dalteparin vs. IPC + LD Aspirin	0.29 (0.01, 6.99)	0.29 (0.00, 20.70)
Dalteparin vs. None	0.32 (0.02, 5.19)	0.31 (0.01, 16.10)
Dalteparin vs. Rivaroxaban	3.90 (0.30, 40.85)	3.68 (0.10, 116.63)
Dalteparin vs. Tinzaparin	0.54 (0.09, 3.01)	0.52 (0.04, 6.51)
Dalteparin vs. Warfarin	0.42 (0.13, 1.28)	0.41 (0.08, 1.88)
Dalteparin vs. YM150	0.42 (0.02, 7.52)	0.42 (0.01, 23.08)
Desirudin vs. Apixaban	1.49 (0.23, 9.46)	1.75 (0.09, 33.68)
Desirudin vs. Dabigatran	1.03 (0.27, 3.87)	1.22 (0.12, 13.26)
Desirudin vs. Enoxaparin	0.49 (0.17, 1.34)	0.58 (0.08, 4.38)
Desirudin vs. IPC + LD Aspirin	0.30 (0.02, 3.78)	0.36 (0.01, 10.69)

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials or Multi-Arm Trials (Final Model)
Desirudin vs. None	0.33 (0.04, 2.27)	0.38 (0.02, 7.91)
Desirudin vs. None Desirudin vs. Rivaroxaban		
	4.04 (0.9, 15.89)	4.55 (0.41, 47.75)
Desirudin vs. Tinzaparin	0.56 (0.09, 3.1)	0.65 (0.04, 11.82)
Desirudin vs. Warfarin	0.44 (0.05, 3.97)	0.51 (0.01, 17.34)
Desirudin vs. YM150	0.44 (0.05, 3.53)	0.52 (0.02, 11.08)
Enoxaparin + GCS vs. Apixaban	0.68 (0.01, 26.26)	0.80 (0.01, 76.55)
Enoxaparin + GCS vs. Dabigatran	0.47 (0.01, 14.28)	0.56 (0.01, 36.49)
Enoxaparin + GCS vs. Dalteparin	0.47 (0.00, 28.53)	0.57 (0.00, 102.10)
Enoxaparin + GCS vs. Desirudin	0.46 (0.01, 14.94)	0.46 (0.00, 39.69)
Enoxaparin + GCS vs. Enoxaparin	0.22 (0.00, 6.03)	0.26 (0.00, 14.21)
Enoxaparin + GCS vs. Fondaparinux	1.37 (0.23, 8.48)	1.40 (0.11, 18.77)
Enoxaparin + GCS vs. Fondaparinux + GCS	1.64 (0.56, 4.75)	1.65 (0.37, 7.55)
Enoxaparin + GCS vs. IPC	0.33 (0.00, 18.19)	0.38 (0.00, 56.60)
Enoxaparin + GCS vs. IPC + LD Aspirin	0.14 (0.00, 8.15)	0.17 (0.00, 21.93)
Enoxaparin + GCS vs. None	0.15 (0.00, 6.46)	0.17 (0.00, 17.65)
Enoxaparin + GCS vs. Rivaroxaban	1.84 (0.03, 56.71)	2.08 (0.02, 135.78)
Enoxaparin + GCS vs. Tinzaparin	0.25 (0.00, 9.19)	0.29 (0.00, 26.05)
Enoxaparin + GCS vs. Warfarin	0.20 (0.00, 9.48)	0.23 (0.00, 32.46)
Enoxaparin + GCS vs. YM150	0.20 (0.00, 8.77)	0.24 (0.00, 24.73)
Enoxaparin vs. None	0.68 (0.12, 3.58)	0.66 (0.07, 6.26)
Fondaparinux + GCS vs. Apixaban	0.42 (0.01, 13.45)	0.48 (0.00, 34.43)
Fondaparinux + GCS vs. Dabigatran	0.29 (0.01, 7.19)	0.34 (0.00, 16.04)

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials or Multi-Arm Trials (Final Model)
Fondaparinux + GCS vs. Dalteparin	0.29 (0, 14.53)	0.34 (0, 50.2)
Fondaparinux + GCS vs. Desirudin	0.28 (0.01, 7.52)	0.28 (0.00, 17.92)
Fondaparinux + GCS vs. Enoxaparin	0.14 (0.00, 3.05)	0.16 (0.00, 6.16)
Fondaparinux + GCS vs. Fondaparinux	0.84 (0.20, 3.59)	0.85 (0.10, 6.86)
Fondaparinux + GCS vs. IPC	0.20 (0.00, 9.30)	0.23 (0.00, 27.47)
Fondaparinux + GCS vs. IPC + LD Aspirin	0.08 (0.00, 4.31)	0.10 (0.00, 10.25)
Fondaparinux + GCS vs. None	0.09 (0.00, 3.34)	0.11 (0.00, 8.10)
Fondaparinux + GCS vs. Rivaroxaban	1.12 (0.02, 28.08)	1.26 (0.02, 60.82)
Fondaparinux + GCS vs. Tinzaparin	0.15 (0.00, 4.60)	0.18 (0.00, 12.07)
Fondaparinux + GCS vs. Warfarin	0.12 (0.00, 4.79)	0.14 (0.00, 15.29)
Fondaparinux + GCS vs. YM150	0.12 (0.00, 4.42)	0.14 (0.00, 11.44)
Fondaparinux vs. Apixaban	0.50 (0.01, 11.11)	0.57 (0.01, 22.62)
Fondaparinux vs. Dabigatran	0.34 (0.01, 5.74)	0.40 (0.01, 9.93)
Fondaparinux vs. Desirudin	0.33 (0.01, 5.98)	0.33 (0.01, 11.91)
Fondaparinux vs. Enoxaparin	0.16 (0.00, 2.34)	0.19 (0.00, 3.67)
Fondaparinux vs. IPC + LD Aspirin	0.10 (0.00, 3.81)	0.12 (0.00, 7.11)
Fondaparinux vs. None	0.11 (0.00, 2.76)	0.12 (0.00, 5.57)
Fondaparinux vs. Rivaroxaban	1.34 (0.03, 23.27)	1.49 (0.03, 37.30)
Fondaparinux vs. Tinzaparin	0.18 (0.00, 3.86)	0.21 (0.00, 7.98)
Fondaparinux vs. Warfarin	0.15 (0, 4.15)	0.17 (0, 10.63)
Heparin vs. Apixaban	9.60 (1.57, 58.62)	
Heparin vs. Dabigatran	6.60 (1.83, 23.52)	

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials or Multi-Arm Trials (Final Model)
Heparin vs. Dalteparin	6.65 (0.59, 81.45)	
Heparin vs. Desirudin	6.42 (2.52, 17.37)	
Heparin vs. Enoxaparin	3.17 (1.20, 8.22)	
Heparin vs. Enoxaparin + GCS	14.1 (0.45, 950)	
Heparin vs. Fondaparinux	19.34 (1.12, 852.35)	
Heparin vs. Fondaparinux + GCS	23.1 (0.9, 1269)	
Heparin vs. IPC	4.63 (0.4, 48.3)	
Heparin vs. IPC + GCS	9.31 (0.22, 778)	
Heparin vs. IPC + LD Aspirin	1.96 (0.14, 23.95)	
Heparin vs. None	2.14 (0.30, 14.28)	
Heparin vs. Rivaroxaban	25.95 (6.30, 99.98)	
Heparin vs. Tinzaparin	3.57 (0.63, 19.43)	
Heparin vs. Warfarin	2.81 (0.32, 24.95)	
Heparin vs. Warfarin + GCS	49.85 (0.71, 5814)	
Heparin vs. YM150	2.81 (0.35, 22.24)	
IPC + GCS vs. Apixaban	1.03 (0.01, 54.05)	1.22 (0.01, 182.91)
IPC + GCS vs. Dabigatran	0.71 (0.01, 29.99)	0.85 (0.01, 94.07)
IPC + GCS vs. Dalteparin	0.72 (0.01, 56.04)	0.86 (0.00, 236.28)
IPC + GCS vs. Desirudin	0.69 (0.01, 30.36)	0.70 (0.00, 97.91)
IPC + GCS vs. Enoxaparin	0.34 (0.00, 12.69)	0.40 (0.00, 36.67)
IPC + GCS vs. Enoxaparin + GCS	1.51 (0.34, 6.80)	1.53 (0.18, 12.81)
IPC + GCS vs. Fondaparinux	2.08 (0.20, 21.98)	2.14 (0.08, 61.01)

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials
Comparison	All Trials	or Multi-Arm Trials (Final Model)
IPC + GCS vs. Fondaparinux + GCS	2.48 (0.40, 15.46)	2.52 (0.19, 35.48)
IPC + GCS vs. IPC	0.50 (0.00, 36.86)	0.57 (0.00, 137.96)
IPC + GCS vs. IPC + LD Aspirin	0.21 (0.00, 16.49)	0.25 (0.00, 52.04)
IPC + GCS vs. None	0.23 (0.00, 13.38)	0.27 (0.00, 42.73)
IPC + GCS vs. Rivaroxaban	2.79 (0.03, 117.10)	3.17 (0.02, 345.16)
IPC + GCS vs. Tinzaparin	0.38 (0.00, 19.09)	0.45 (0.00, 63.75)
IPC + GCS vs. Warfarin	0.30 (0.00, 18.80)	0.35 (0.00, 79.12)
IPC + GCS vs. $YM150$	0.30 (0.00, 18.23)	0.36 (0.00, 58.32)
IPC + LD Aspirin vs. Apixaban	4.90 (0.30, 88.32)	4.83 (0.15, 166.50)
IPC + LD Aspirin vs. Dabigatran	3.37 (0.29, 44.66)	3.35 (0.17, 72.75)
IPC + LD Aspirin vs. Enoxaparin	1.62 (0.16, 19.09)	1.59 (0.10, 27.09)
IPC + LD Aspirin vs. None	1.09 (0.06, 21.59)	1.05 (0.03, 39.53)
IPC + LD Aspirin vs. Warfarin	1.43 (0.07, 32.72)	1.40 (0.03, 76.94)
IPC vs. Apixaban	2.07 (0.15, 31.44)	2.13 (0.05, 90.29)
IPC vs. Dabigatran	1.42 (0.14, 15.94)	1.48 (0.06, 39.17)
IPC vs. Dalteparin	1.44 (0.06, 36.86)	1.51 (0.02, 144.5)
IPC vs. Desirudin	1.39 (0.13, 16.76)	1.22 (0.03, 47.70)
IPC vs. Enoxaparin	0.68 (0.08, 6.48)	0.70 (0.03, 14.64)
IPC vs. Fondaparinux	4.17 (0.13, 292.36)	3.73 (0.05, 410.76)
IPC vs. IPC + LD Aspirin	0.42 (0.02, 10.39)	0.44 (0.01, 26.15)
IPC vs. None	0.46 (0.11, 1.89)	0.47 (0.06, 3.67)
IPC vs. Rivaroxaban	5.60 (0.51, 61.74)	5.55 (0.20, 146.64)

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm Trials
Comparison	All Trials	(Final Model)
IPC vs. Tinzaparin	0.77 (0.06, 11.25)	0.79 (0.02, 31.19)
IPC vs. Warfarin	0.61 (0.03, 12.33)	0.62 (0.01, 42.35)
IPC vs. YM150	0.61 (0.04, 11.35)	0.63 (0.01, 29.34)
Rivaroxaban vs. Apixaban	0.37 (0.06, 2.36)	0.38 (0.03, 4.81)
Rivaroxaban vs. Dabigatran	0.25 (0.07, 0.97)	0.27 (0.05, 1.58)
Rivaroxaban vs. Enoxaparin	0.12 (0.05, 0.33)	0.13 (0.04, 0.45)
Rivaroxaban vs. IPC + LD Aspirin	0.08 (0.01, 0.96)	0.08 (0.00, 1.67)
Rivaroxaban vs. None	0.08 (0.01, 0.58)	0.08 (0.01, 1.11)
Rivaroxaban vs. Warfarin	0.11 (0.01, 1.02)	0.11 (0, 2.73)
Tinzaparin vs. Apixaban	2.69 (0.34, 21.76)	2.71 (0.14, 55.26)
Tinzaparin vs. Dabigatran	1.85 (0.36, 9.66)	1.88 (0.17, 21.52)
Tinzaparin vs. Enoxaparin	0.89 (0.22, 3.63)	0.89 (0.11, 7.21)
Tinzaparin vs. IPC + LD Aspirin	0.55 (0.03, 8.36)	0.56 (0.02, 17.39)
Tinzaparin vs. None	0.60 (0.06, 5.35)	0.59 (0.03, 12.63)
Tinzaparin vs. Rivaroxaban	7.27 (1.24, 38.3)	7.06 (0.6, 78.34)
Tinzaparin vs. Warfarin	0.79 (0.2, 3.11)	0.79 (0.1, 6.12)
Tinzaparin vs. YM150	0.79 (0.08, 7.85)	0.81 (0.04, 18.58)
Warfarin + GCS vs. Apixaban	0.19 (0.00, 15.12)	0.23 (0.00, 59.86)
Warfarin + GCS vs. Dabigatran	0.13 (0.00, 8.99)	0.16 (0.00, 31.03)
Warfarin + GCS vs. Dalteparin	0.13 (0.00, 15.61)	0.16 (0.00, 73.55)
Warfarin + GCS vs. Desirudin	0.13 (0.00, 9.06)	0.13 (0.00, 32.33)
Warfarin + GCS vs. Enoxaparin	0.06 (0.00, 3.83)	0.08 (0.00, 12.47)

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI) Comparison	All Trials	Without Heparin Trials or Multi-Arm Trials (Final Model)
Warfarin + GCS vs. Enoxaparin + GCS	0.28 (0.02, 2.95)	0.29 (0.01, 6.83)
Warfarin + GCS vs. Fondaparinux	0.39 (0.02, 7.47)	0.40 (0.01, 24.12)
Warfarin + GCS vs. Fondaparinux + GCS	0.46 (0.03, 6.01)	0.48 (0.01, 16.31)
Warfarin + GCS vs. IPC	0.09 (0.00, 10.21)	0.11 (0.00, 41.72)
Warfarin + GCS vs. $IPC + GCS$	0.19 (0.03, 1.15)	0.19 (0.02, 1.92)
Warfarin + GCS vs. IPC + LD Aspirin	0.04 (0.00, 4.76)	0.05 (0.00, 15.89)
Warfarin + GCS vs. None	0.04 (0.00, 3.78)	0.05 (0.00, 13.44)
Warfarin + GCS vs. Rivaroxaban	0.52 (0.00, 34.12)	0.60 (0.00, 113.41)
Warfarin + GCS vs. Tinzaparin	0.07 (0.00, 5.42)	0.08 (0.00, 20.70)
Warfarin + GCS vs. Warfarin	0.06 (0.00, 5.37)	0.07 (0.00, 24.39)
Warfarin + GCS vs. YM150	0.06 (0.00, 5.16)	0.07 (0.00, 18.73)
Warfarin vs. Enoxaparin	1.13 (0.16, 7.93)	1.14 (0.06, 20.74)
Warfarin vs. None	0.76 (0.05, 9.87)	0.75 (0.02, 30.02)
YM150 vs. Apixaban	3.41 (0.31, 36.16)	3.37 (0.14, 81.04)
YM150 vs. Dabigatran	2.35 (0.31, 17.48)	2.34 (0.17, 32.79)
YM150 vs. Enoxaparin	1.13 (0.18, 6.97)	1.11 (0.11, 11.55)
YM150 vs. Fondaparinux	0.15 (0.00, 3.94)	0.17 (0.00, 7.61)
YM150 vs. IPC + LD Aspirin	0.70 (0.03, 13.32)	0.70 (0.02, 25.87)
YM150 vs. None	0.76 (0.06, 9.12)	0.74 (0.03, 19.20)
YM150 vs. Rivaroxaban	9.23 (1.13, 71.95)	8.76 (0.61, 122.36)
YM150 vs. Warfarin	1.00 (0.07, 13.99)	0.97 (0.02, 41.22)

Table 114. Network Meta-Analysis – Pairwise Comparisons among Hip Patients – Proximal DVT

Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm Trials
Comparison	All Trials	(Final Model)
Apixaban vs. Enoxaparin	0.59 (0.17, 2.10)	0.50 (0.10, 2.44)
Apixaban vs. None	0.09 (0.01, 0.98)	0.01 (0.00, 0.88)
Apixaban vs. Warfarin	0.37 (0.08, 1.93)	0.22 (0.02, 1.94)
Dabigatran vs. Apixaban	1.57 (0.22, 9.30)	2.21 (0.24, 20.11)
Dabigatran vs. Enoxaparin	0.92 (0.23, 3.40)	1.10 (0.23, 5.27)
Dabigatran vs. None	0.14 (0.01, 1.11)	0.02 (0.00, 1.00)
Dabigatran vs. Warfarin	0.58 (0.09, 3.42)	0.49 (0.05, 4.22)
Enoxaparin vs. None	0.15 (0.02, 1.14)	0.02 (0.00, 1.30)
GCS vs. Apixaban	2.74 (0.09, 67.76)	
GCS vs. Dabigatran	1.75 (0.07, 40.89)	
GCS vs. Enoxaparin	1.61 (0.07, 32.01)	
GCS vs. Heparin	0.31 (0.01, 12.26)	
GCS vs. IPC	7.13 (0.10, 3,130.66)	
GCS vs. None	0.25 (0.01, 3.92)	
GCS vs. Rivaroxaban	5.03 (0.17, 137.00)	
GCS vs. Warfarin	1.02 (0.03, 25.89)	
Heparin vs. Apixaban	8.84 (0.74, 103.54)	
Heparin vs. Dabigatran	5.64 (0.48, 75.94)	
Heparin vs. Enoxaparin	5.21 (0.63, 44.84)	
Heparin vs. IPC	22.99 (0.25, 11305)	

Table 115. Network Meta-Analysis – Pairwise Comparisons among Patients – Proximal DVT

Results expressed as Odds Ratio (95% CI)		Without Heparin Trials or Multi-Arm Trials
Comparison	All Trials	(Final Model)
Heparin vs. None	0.80 (0.04, 15.12)	
Heparin vs. Rivaroxaban	16.23 (1.37, 210.19)	
Heparin vs. Warfarin	3.28 (0.28, 39.49)	
IPC vs. Apixaban	0.38 (0.00, 23.95)	
IPC vs. Dabigatran	0.25 (0.00, 14.94)	
IPC vs. Enoxaparin	0.23 (0.00, 11.74)	
IPC vs. None	0.03 (0.00, 1.56)	
IPC vs. Rivaroxaban	0.71 (0.00, 48.57)	
IPC vs. Warfarin	0.14 (0.00, 9.29)	
Rivaroxaban vs. Apixaban	0.54 (0.08, 3.17)	0.63 (0.07, 5.02)
Rivaroxaban vs. Dabigatran	0.35 (0.05, 2.38)	0.29 (0.03, 2.29)
Rivaroxaban vs. Enoxaparin	0.32 (0.08, 1.18)	0.32 (0.07, 1.26)
Rivaroxaban vs. None	0.05 (0.00, 0.53)	0.01 (0.00, 0.51)
Rivaroxaban vs. Warfarin	0.20 (0.03, 1.19)	0.14 (0.01, 1.06)
Warfarin vs. Enoxaparin	1.59 (0.46, 5.44)	2.25 (0.49, 11.88)
Warfarin vs. None	0.24 (0.02, 2.55)	0.04 (0, 4.22)

Table 115. Network Meta-Analysis – Pairwise Comparisons among Patients – Proximal DVT

CONSISTENCY CHECKS

The table below summarizes the results of the network meta-analysis consistency checks. See Table 116 through Table 137 for details of the results of these consistency checks.

SUMMARY OF CONSISTENCY CHECKS

All Trials Except Those That Did Not Observe Any Events

Inconsistency was noted in the following comparisons:

	All Trials
Ln	OR (with continuity correction)
	No Inconsistencies
PE	No Inconsistencies
	No Inconsistencies
Symptomatic DVT	
All Cause Mortality	
Proximal DVT	No Inconsistencies
All Trial	s from Treatments with \geq One Event
	OR (no continuity correction)
	Enoxaparin vs None
PE	No Inconsistencies
DVT	No Inconsistencies
Symptomatic DVT	No Inconsistencies
All Cause Mortality	No Inconsistencies
	Without Heparin Trials
Major Bleed	No Inconsistencies
PE	No Inconsistencies
	Enoxaparin vs IPC
DVT	Warfarin vs Apixaban
Symptomatic DVT	No Inconsistencies
All Cause Mortality	
	in Trials and Without Trials with > 2 Arms
•	No Inconsistencies
PE	No Inconsistencies
DVT	No Inconsistencies
Symptomatic DVT	Test Not Possible (No Closed Loops)
All Cause Mortality	Test Not Possible (No Closed Loops)
Proximal DVT	No Inconsistencies
Without Heparin Trials and V	Without Trials with > 2 Arms With Continuity Correction
Major Bleed	No Inconsistencies
PE	No Inconsistencies
DVT	No Inconsistencies
Symptomatic DVT	Test Not Possible (No Closed Loops)
All Cause Mortality	Test Not Possible (No Closed Loops)
Proximal DVT	No Inconsistencies

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.099	0.667	-0.108	0.344	0.075	0.000	0.000	1.000
Heparin	1.534	0.828	1.994	0.668	-0.860	0.000	0.000	1.000
Desirudin	-0.092	0.969	-0.691	0.668	0.542	0.000	0.000	1.000
Apixaban	0.094	0.605	0.118	0.281	-0.006	0.000	0.000	1.000
Tinzaparin	0.040	1.397	-0.009	1.416	-1.878	8.722	0.215	0.829
GCS	0.450	1.681	2.002	1.942	6.190	3.878	1.596	0.110
IPC	-1.298	1.882						
None	0.008	1.321	-0.036	1.413	-0.351	3.979	0.088	0.930
Warfarin vs:								
Tinzaparin	-0.059	1.397	0.008	1.415	2.654	8.923	0.297	0.766
Heparin vs:								
Desirudin	-1.627	0.973	-1.184	0.898	-2.548	0.000	0.000	1.000
GCS vs:								
IPC	-1.747	1.979	-2.002	2.001	-11.650	13.525	0.861	0.389
None	-0.442	1.585	0.000	1.417	-1.763	0.000	0.000	1.000
IPC vs:								
None	1.306	1.592	1.981	1.393	-2.203	0.000	0.000	1.000

 Table 116. Model 1 (all trials) PE Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	-0.747	0.383	-0.574	0.323	-0.424	0.000	0.000	1.000
Heparin	0.239	0.313	0.289	0.262	-0.115	0.000	0.000	1.000
None	-0.615	0.465	0.011	0.582	1.729	0.968	1.787	0.074
Apixaban	-0.230	0.300	-0.232	0.204	0.002	0.000	0.000	1.000
Dabigatran	0.250	0.248	0.251	0.179	-0.001	0.000	0.000	1.000
Desirudin	0.190	0.443	-0.005	0.319	0.211	0.000	0.000	1.000
GCS	-1.949	1.613	-2.009	1.418	0.205	0.000	0.000	1.000
IPC	-2.415	2.243	-2.009	1.418	-0.270	0.000	0.000	1.000
Tinzaparin	-0.113	0.556	-0.683	0.821	-1.053	1.116	0.944	0.345
Fondaparinux	0.358	0.577	0.282	0.504	0.244	0.000	0.000	1.000
Warfarin vs:								
Apixaban	0.517	0.480	1.974	2.000	1.546	2.060	0.750	0.453
Tinzaparin	0.634	0.486	0.782	0.375	-0.218	0.000	0.000	1.000
Heparin vs:								
None	-0.854	0.515	-2.227	0.916	-2.006	1.107	1.812	0.070
Desirudin	-0.050	0.507	0.673	0.820	1.170	1.043	1.122	0.262
None vs:								
Dabigatran	0.865	0.512	0.972	1.007	0.144	1.169	0.124	0.902
Fondaparinux	0.973	0.672	1.034	1.004	0.111	1.351	0.082	0.934
GCS vs:								
Enoxaparin + GCS	0.030	1.571	0.000	1.418	0.131	0.000	0.000	1.000
Fondaparinux vs:								
Fondaparinux + GCS	-1.560	1.674	-1.966	1.999	-1.358	3.656	0.371	0.710
Enoxaparin + GCS vs:								
Fondaparinux + GCS	0.718	0.325	0.569	0.184	0.070	0.000	0.000	1.000
-								

 Table 117. Model 1 (all trials) Major Bleed Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Heparin	2.435	1.758	0.601	-0.546	0.196	0.000	0.000	1.000
Desirudin	-0.045	1.366	0.647	-0.157	-0.009	0.000	0.000	1.000
Heparin vs:								
Desirudin	-2.480	1.859	-2.002	-3.200	0.721	3.931	0.183	0.855

Table 118. Model 1 (all trials) All Cause Mortality Consistency Check on Ln Odds Ratio

Table 119. Model 1 (all trials) Symptomatic DVT Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	-1.032	1.674	0.000	1.417	-2.614	0.000	0.000	1.000
Apixaban	-0.644	0.617	-0.601	0.317	-0.015	0.000	0.000	1.000
Warfarin vs:								
Apixaban	0.388	1.685	0.711	1.160	-0.291	0.000	0.000	1.000

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Z	р
Enoxaparin vs:								
Warfarin	0.673	0.227	0.725	0.136	-0.029	0.000	0.000	1.000
Heparin	0.693	0.240	0.619	0.159	0.058	0.000	0.000	1.000
Tinzaparin	0.276	0.312	0.098	0.234	0.229	0.000	0.000	1.000
Desirudin	-0.389	0.280	-0.417	0.123	0.007	0.000	0.000	1.000
Apixaban	-0.543	0.207	-0.511	0.082	-0.006	0.000	0.000	1.000
None	0.886	0.340	0.757	0.247	0.145	0.000	0.000	1.000
IPC	-0.152	0.435	0.428	0.534	1.725	0.921	1.873	0.061
GCS	0.439	0.510	0.877	0.469	-2.361	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.398	0.301	-0.269	0.121	-0.025	0.000	0.000	1.000
Apixaban	-1.216	0.291	-1.016	0.354	0.616	0.621	0.993	0.321
Heparin vs:								
Desirudin	-1.081	0.264	-0.949	0.176	-0.105	0.000	0.000	1.000
None vs:								
IPC	-1.038	0.348	-1.073	0.199	0.017	0.000	0.000	1.000
GCS	-0.447	0.489	-0.633	0.356	0.209	0.000	0.000	1.000
IPC vs:								
GCS	0.590	0.519	0.483	0.439	0.271	0.000	0.000	1.000

 Table 120. Model 1 (all trials) DVT Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.378	0.357	0.393	0.244	-0.013	0.000	0.000	1.000
Apixaban	-0.740	0.355	-0.740	0.214	0.000	0.000	0.000	1.000
Dabigatran	-0.485	0.271	-0.423	0.149	-0.027	0.000	0.000	1.000
None	0.812	0.486	0.504	0.477	8.007	0.000	0.000	1.000
Tinzaparin	0.027	0.440	-0.111	0.317	0.149	0.000	0.000	1.000
Desirudin	-0.644	0.415	-0.538	0.212	-0.037	0.000	0.000	1.000
IPC	-0.156	0.682	-2.000	1.999	-2.087	2.126	0.981	0.326
Heparin	1.272	0.361	1.097	0.249	0.159	0.000	0.000	1.000
GCS	-0.091	1.190	0.000	1.419	0.308	2.606	0.118	0.906
Warfarin vs:								
Apixaban	-1.118	0.486	0.038	1.007	1.507	1.150	1.311	0.190
Tinzaparin	-0.351	0.431	-0.237	0.228	-0.044	0.000	0.000	1.000
Dabigatran vs:								
None	1.297	0.527	2.033	0.825	1.244	1.073	1.159	0.246
None vs:								
IPC	-0.968	0.537	-0.807	0.273	-0.056	0.000	0.000	1.000
GCS	-0.904	1.176	-1.013	1.007	0.301	0.000	0.000	1.000
Desirudin vs:								
Heparin	1.916	0.408	1.551	0.253	0.229	0.000	0.000	1.000
IPC vs:								
GCS	0.065	1.218	2.002	1.942	3.194	2.493	1.281	0.200

 Table 121. Model 1 (all trials) Proximal DVT Consistency Check on Ln Odds Ratio

			Direct SD				
MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Z	р
0.160	0.897	-0.108	0.344	0.046	0.000	0.000	1.000
3.720	1.709	1.994	0.668	0.312	0.000	0.000	1.000
0.401	1.433	-0.691	0.668	0.303	0.000	0.000	1.000
0.018	0.820	0.118	0.281	-0.013	0.000	0.000	1.000
0.088	1.601	-0.009	1.416	0.348	0.000	0.000	1.000
-0.072	1.599	0.008	1.415	-0.290	0.000	0.000	1.000
-3.320	1.717	-1.184	0.898	-0.804	0.000	0.000	1.000
	0.160 3.720 0.401 0.018 0.088 -0.072	0.1600.8973.7201.7090.4011.4330.0180.8200.0881.601-0.0721.599	0.160 0.897 -0.108 3.720 1.709 1.994 0.401 1.433 -0.691 0.018 0.820 0.118 0.088 1.601 -0.009 -0.072 1.599 0.008	MC MeanMC SDDirect Ln OR(Ln OR)0.1600.897-0.1080.3443.7201.7091.9940.6680.4011.433-0.6910.6680.0180.8200.1180.2810.0881.601-0.0091.416-0.0721.5990.0081.415	MC MeanMC SDDirect Ln OR(Ln OR)Omega0.1600.897-0.1080.3440.0463.7201.7091.9940.6680.3120.4011.433-0.6910.6680.3030.0180.8200.1180.281-0.0130.0881.601-0.0091.4160.348-0.0721.5990.0081.415-0.290	MC MeanMC SDDirect Ln OR(Ln OR)OmegaSD Omega0.1600.897-0.1080.3440.0460.0003.7201.7091.9940.6680.3120.0000.4011.433-0.6910.6680.3030.0000.0180.8200.1180.281-0.0130.0000.0881.601-0.0091.4160.3480.000-0.0721.5990.0081.415-0.2900.000	MC MeanMC SDDirect Ln OR(Ln OR)OmegaSD OmegaZ0.1600.897-0.1080.3440.0460.0000.0003.7201.7091.9940.6680.3120.0000.0000.4011.433-0.6910.6680.3030.0000.0000.0180.8200.1180.281-0.0130.0000.0000.0881.601-0.0091.4160.3480.0000.000-0.0721.5990.0081.415-0.2900.0000.000

Table 122. Model 2 (all trials from treatments with ≥ one event) PE Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Z	р
Enoxaparin vs:								
Warfarin	-0.776	0.394	-0.574	0.323	-0.413	0.000	0.000	1.000
Heparin	0.258	0.336	0.289	0.262	-0.047	0.000	0.000	1.000
None	-0.601	0.519	0.011	0.582	2.967	1.282	2.316	0.021
Desirudin	0.206	0.478	-0.005	0.319	0.169	0.000	0.000	1.000
Tinzaparin	-0.123	0.577	-0.683	0.821	-1.106	1.153	0.959	0.338
Fondaparinux	0.352	0.596	0.282	0.503	0.172	0.000	0.000	1.000
Warfarin vs:								
Apixaban	0.555	0.506	1.974	2.000	1.516	2.067	0.733	0.463
Tinzaparin	0.653	0.511	0.782	0.375	-0.152	0.000	0.000	1.000
Heparin vs:								
None	-0.860	0.578	-2.227	0.916	-2.273	1.181	1.925	0.054
Desirudin	-0.053	0.539	0.673	0.820	1.277	1.088	1.174	0.240
None vs:								
Dabigatran	0.847	0.555	0.972	1.006	0.180	1.207	0.149	0.881
Fondaparinux	0.953	0.713	1.034	1.005	0.163	1.427	0.114	0.909

Table 123. Model 2 (all trials from treatments with ≥ one event) Major Bleeding Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Heparin	2.435	1.758	0.601	-0.546	0.196	0.000	0.000	1.000
Desirudin	-0.045	1.366	0.647	-0.157	-0.009	0.000	0.000	1.000
Heparin vs:								
Desirudin	-2.480	1.859	-2.002	-3.200	0.721	3.931	0.183	0.855

Table 124. Model 2 (all trials from treatments with ≥ one event) All Cause Mortality Consistency Check on Ln Odds Ratio

Table 125. Model 2 (all trials from treatments with ≥ one event) Symptomatic DVT Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	-1.032	1.674	0.000	1.417	-2.614	0.000	0.000	1.000
Apixaban	-0.644	0.617	-0.601	0.317	-0.015	0.000	0.000	1.000
Warfarin vs:								
Apixaban	0.388	1.685	0.711	1.160	-0.291	0.000	0.000	1.000

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Z	р
Enoxaparin vs:								
Warfarin	0.673	0.227	0.725	0.136	-0.029	0.000	0.000	1.000
Heparin	0.693	0.240	0.619	0.159	0.058	0.000	0.000	1.000
Tinzaparin	0.276	0.312	0.098	0.234	0.229	0.000	0.000	1.000
Desirudin	-0.389	0.280	-0.417	0.123	0.007	0.000	0.000	1.000
Apixaban	-0.543	0.207	-0.511	0.082	-0.006	0.000	0.000	1.000
None	0.886	0.340	0.757	0.247	0.145	0.000	0.000	1.000
IPC	-0.152	0.435	0.428	0.534	1.725	0.921	1.873	0.061
GCS	0.439	0.510	0.877	0.469	-2.361	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.398	0.301	-0.269	0.121	-0.025	0.000	0.000	1.000
Apixaban	-1.216	0.291	-1.016	0.354	0.616	0.621	0.993	0.321
Heparin vs:								
Desirudin	-1.081	0.264	-0.949	0.176	-0.105	0.000	0.000	1.000
None vs:								
IPC	-1.038	0.348	-1.073	0.199	0.017	0.000	0.000	1.000
GCS	-0.447	0.489	-0.633	0.356	0.209	0.000	0.000	1.000
IPC vs:								
GCS	0.590	0.519	0.483	0.439	0.271	0.000	0.000	1.000

Table 126. Model 2 (all trials from treatments with ≥ one event) DVT Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.128	0.824	-0.108	0.344	0.050	0.000	0.000	1.000
Apixaban	0.037	0.751	0.118	0.281	-0.013	0.000	0.000	1.000
Tinzaparin	0.068	1.521	-0.009	1.416	0.498	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.060	1.525	0.008	1.415	-0.422	0.000	0.000	1.000

Table 127. Model 3 (without heparin trials) PE Consistency Check on Ln Odds Ratio

Table 128. Model 3 (without heparin trials) Major Bleeding Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	-0.764	0.386	-0.574	0.323	-0.522	0.000	0.000	1.000
None	-0.100	0.558	0.011	0.582	1.362	2.035	0.669	0.503
Tinzaparin	-0.120	0.567	-0.683	0.821	-1.077	1.135	0.948	0.343
Fondaparinux	0.445	0.577	0.282	0.503	0.524	0.000	0.000	1.000
Warfarin vs:								
Apixaban	0.530	0.501	1.974	2.000	1.541	2.066	0.746	0.456
Tinzaparin	0.644	0.503	0.782	0.375	-0.172	0.000	0.000	1.000
None vs:								
Dabigatran	0.378	0.588	0.972	1.006	0.903	1.240	0.728	0.466
Fondaparinux	0.546	0.716	1.034	1.005	0.993	1.433	0.693	0.488

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	-1.032	1.674	0.000	1.417	-2.614	0.000	0.000	1.000
Apixaban	-0.644	0.617	-0.601	0.317	-0.015	0.000	0.000	1.000
Warfarin vs:								
Apixaban	0.388	1.685	0.711	1.160	-0.291	0.000	0.000	1.000

Table 129. Model 3 (without heparin trials) Symptomatic DVT Consistency Check on Ln Odds Ratio

Table 130. Model 3 (without heparin trials) DVT Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.676	0.277	0.725	0.136	-0.016	0.000	0.000	1.000
Tinzaparin	0.270	0.387	0.098	0.234	0.100	0.000	0.000	1.000
Apixaban	-0.544	0.258	-0.511	0.082	-0.004	0.000	0.000	1.000
None	0.911	0.402	0.757	0.247	0.093	0.000	0.000	1.000
IPC	-0.118	0.506	0.428	0.534	5.333	1.669	3.195	0.001
GCS	0.470	0.591	0.877	0.469	-0.689	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.406	0.380	-0.269	0.121	-0.016	0.000	0.000	1.000
Apixaban	-1.220	0.353	-1.016	0.354	42.640	5.114	8.337	0.000
None vs:								
IPC	-1.029	0.409	-1.073	0.199	0.014	0.000	0.000	1.000
GCS	-0.441	0.566	-0.633	0.356	0.125	0.000	0.000	1.000
IPC vs:								
GCS	0.588	0.592	0.483	0.439	0.128	0.000	0.000	1.000

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.386	0.835	-0.108	0.345	0.102	0.000	0.000	1.000
Tinzaparin	0.212	1.447	-0.009	1.416	4.959	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.174	1.452	0.008	1.415	-3.419	0.000	0.000	1.000

Table 131. Model 4 (without heparin or trials with >2 arms) PE Consistency Check on Ln Odds Ratio

Table 132. Model 4 (without heparin or trials with >2 arms) Major Bleeding Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	-0.732	0.406	-0.574	0.323	-0.427	0.000	0.000	1.000
None	-0.129	0.573	0.011	0.582	4.704	3.376	1.393	0.163
Tinzaparin	-0.104	0.583	-0.683	0.821	-1.169	1.166	1.002	0.316
Fondaparinux	0.442	0.605	0.282	0.503	0.361	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	0.628	0.525	0.782	0.375	-0.161	0.000	0.000	1.000
None vs:								
Dabigatran	0.403	0.605	0.972	1.006	0.892	1.259	0.708	0.479
Fondaparinux	0.571	0.731	1.034	1.005	0.983	1.464	0.671	0.502

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.653	0.396	0.725	0.136	-0.010	0.000	0.000	1.000
Tinzaparin	0.273	0.484	0.098	0.234	0.054	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.380	0.473	-0.269	0.121	-0.008	0.000	0.000	1.000

Table 133. Model 4 (without heparin or trials with >2 arms) DVT Consistency Check on Ln Odds Ratio

Table 134. Model 4 (without heparin or trials with >2 arms) Proximal DVT Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Z	р
Enoxaparin vs:								
Warfarin	0.633	0.634	0.393	0.244	0.042	0.000	0.000	1.000
Dabigatran	-0.544	0.431	-0.423	0.149	-0.016	0.000	0.000	1.000
None	1.168	0.935	0.504	0.477	0.234	0.000	0.000	1.000
Tinzaparin	0.152	0.744	-0.111	0.317	0.058	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	-0.482	0.735	-0.237	0.228	-0.026	0.000	0.000	1.000
Dabigatran vs:								
None	1.712	0.989	2.033	0.825	-0.733	0.000	0.000	1.000

Table 135. Model 5 (without heparin or trials with >2 arms, with continuity correction) PE Consistency Check	on Ln Odds
Ratio	

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.300	0.748	-0.108	0.345	0.110	0.000	0.000	1.000
Tinzaparin	0.148	1.407	-0.009	1.416	-12.718	12.750	0.997	0.319
Warfarin vs:								
Tinzaparin	-0.152	1.394	0.008	1.415	5.456	8.265	0.660	0.509

Table 136. Model 5 (without heparin or trials with >2 arms, with continuity correction) Major Bleeding Consistency Check on Ln Odds Ratio

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Z	р
Enoxaparin vs:								
Warfarin	-0.739	0.411	-0.574	0.323	-0.418	0.000	0.000	1.000
None	-0.099	0.559	0.011	0.582	1.381	2.065	0.669	0.504
Tinzaparin	-0.098	0.591	-0.683	0.821	-1.213	1.183	1.026	0.305
Fondaparinux	0.460	0.612	0.282	0.503	0.372	0.000	0.000	1.000
Warfarin vs:								
Tinzaparin	0.640	0.524	0.782	0.375	-0.150	0.000	0.000	1.000
None vs:								
Dabigatran	0.373	0.592	0.972	1.006	0.917	1.245	0.737	0.461
Fondaparinux	0.558	0.729	1.034	1.005	1.002	1.459	0.687	0.492

				Direct SD				
Comparison	MC Mean	MC SD	Direct Ln OR	(Ln OR)	Omega	SD Omega	Ζ	р
Enoxaparin vs:								
Warfarin	0.619	0.592	0.393	0.244	0.046	0.000	0.000	1.000
Dabigatran	-0.508	0.397	-0.423	0.149	-0.014	0.000	0.000	1.000
None	0.975	0.837	0.504	0.477	0.226	0.000	0.000	1.000
Tinzaparin	0.143	0.693	-0.111	0.317	0.067	0.000	0.000	1.000
Warfarin vs:								
Dabigatran	-1.126	0.715						
None	0.356	1.014						
Tinzaparin	-0.475	0.686	-0.237	0.228	-0.030	0.000	0.000	1.000
Dabigatran vs:								
None	1.482	0.871	2.033	0.825	-4.790	0.000	0.000	1.000
None	1.402	0.071	2.035	0.825	-4.790	0.000	0.000	1.1

Table 137. Model 5 (without heparin or trials with >2 arms, with continuity correction) Proximal DVT Consistency Check on Ln Odds Ratio

MODEL FIT

Table 138. Network Meta-Analysis Model Fit

Outcome	Joint	Model	Data Points	Residual Deviance
Pulmonary Embolism	Both Hip and Knee	All Trials	71	72.96
Pulmonary Embolism	Hip	All Trials	38	39.28
Pulmonary Embolism	Knee	All Trials	29	31.17
Pulmonary Embolism	Both Hip and Knee	All Trials from Treatments with ≥ 1 Event	55	61.5
Pulmonary Embolism	Ĥip	All Trials from Treatments with ≥ 1 Event	32	35.06
Pulmonary Embolism	Knee	All Trials from Treatments with ≥ 1 Event	21	23.95
Pulmonary Embolism	Both Hip and Knee	Without Heparin Trials	43	48.41
Pulmonary Embolism	Ĥip	Without Heparin Trials	22	23.2
Pulmonary Embolism	Knee	Without Heparin Trials	21	23.95
Pulmonary Embolism	Both Hip and Knee	Without Heparin Trials and Without Multi-Arm Trials	40	43.66
Pulmonary Embolism	Ĥip	Without Heparin Trials and Without Multi-Arm Trials	22	23.2
Pulmonary Embolism	Knee	Without Heparin Trials and Without Multi-Arm Trials	18	19.23
		Without Heparin Trials and Without Multi-Arm Trials		
Pulmonary Embolism	Both Hip and Knee	(with continuity correction)	50	53.23
-	-	Without Heparin Trials and Without Multi-Arm Trials		
Pulmonary Embolism	Hip	(with continuity correction)	28	29.32
	-	Without Heparin Trials and Without Multi-Arm Trials		
Pulmonary Embolism	Knee	(with continuity correction)	20	20.33
Major Bleeding	Both Hip and Knee	All Trials	99	103.9
Major Bleeding	Ĥip	All Trials	66	68.13
Major Bleeding	Knee	All Trials	33	34.88
Major Bleeding	Both Hip and Knee	All Trials from Treatments with ≥ 1 Event	81	93.23
Major Bleeding	Hip	All Trials from Treatments with ≥ 1 Event	54	61.71
Major Bleeding	Knee	All Trials from Treatments with ≥ 1 Event	29	32.16
Major Bleeding	Both Hip and Knee	Without Heparin Trials	67	72.33
Major Bleeding	Ĥip	Without Heparin Trials	42	44.66
Major Bleeding	Knee	Without Heparin Trials	27	30.07
Major Bleeding	Both Hip and Knee	Without Heparin Trials and Without Multi-Arm Trials	64	69.28
Major Bleeding	Ĥip	Without Heparin Trials and Without Multi-Arm Trials	42	44.66
Major Bleeding	Knee	Without Heparin Trials and Without Multi-Arm Trials	24	26.84

Outcome	Joint	Model	Data Points	Residual Deviance
		Without Heparin Trials and Without Multi-Arm Trials		
Major Bleeding	Both Hip and Knee	(with continuity correction)	78	82.43
		Without Heparin Trials and Without Multi-Arm Trials		
Major Bleeding	Hip	(with continuity correction)	54	54.33
	-	Without Heparin Trials and Without Multi-Arm Trials		
Major Bleeding	Knee	(with continuity correction)	24	25.71
All Cause Mortality	Both Hip and Knee	All Trials	56	57.18
All Cause Mortality	Hip	All Trials	34	35.37
All Cause Mortality	Knee	All Trials	16	16.09
All Cause Mortality	Both Hip and Knee	All Trials from Treatments with ≥ 1 Event	42	46.99
All Cause Mortality	Hip	All Trials from Treatments with ≥ 1 Event	26	29.13
All Cause Mortality	Knee	All Trials from Treatments with ≥ 1 Event	16	16.94
All Cause Mortality	Both Hip and Knee	Without Heparin Trials	36	40.95
All Cause Mortality	Hip	Without Heparin Trials	20	23.38
All Cause Mortality	Knee	Without Heparin Trials	16	16.94
All Cause Mortality	Both Hip and Knee	Without Heparin Trials and Without Multi-Arm Trials	36	40.95
All Cause Mortality	Hip	Without Heparin Trials and Without Multi-Arm Trials	20	23.38
All Cause Mortality	Knee	Without Heparin Trials and Without Multi-Arm Trials	16	16.94
		Without Heparin Trials and Without Multi-Arm Trials		
All Cause Mortality	Both Hip and Knee	(with continuity correction)	50	51.62
	_	Without Heparin Trials and Without Multi-Arm Trials		
All Cause Mortality	Hip	(with continuity correction)	28	29.96
	-	Without Heparin Trials and Without Multi-Arm Trials		
All Cause Mortality	Knee	(with continuity correction)	16	16.09
Symptomatic DVT	Both Hip and Knee	All Trials	41	42.78
Symptomatic DVT	Hip	All Trials	16	17.26
Symptomatic DVT	Knee	All Trials	19	19.38
Symptomatic DVT	Both Hip and Knee	All Trials from Treatments with ≥ 1 Event	41	42.7
Symptomatic DVT	Ĥip	All Trials from Treatments with ≥ 1 Event	14	14.96
Symptomatic DVT	Knee	All Trials from Treatments with ≥ 1 Event	19	20.22
Symptomatic DVT	Both Hip and Knee	Without Heparin Trials	39	40.57

Table 138. Network Meta-Analysis Model Fit

Outcome	Joint	Model	Data Points	Residual Deviance
Symptomatic DVT	Hip	Without Heparin Trials	12	12.86
Symptomatic DVT	Knee	Without Heparin Trials	19	20.22
Symptomatic DVT	Both Hip and Knee	Without Heparin Trials and Without Multi-Arm Trials	34	35.28
Symptomatic DVT	Hip	Without Heparin Trials and Without Multi-Arm Trials	12	12.86
Symptomatic DVT	Knee	Without Heparin Trials and Without Multi-Arm Trials	16	17.12
		Without Heparin Trials and Without Multi-Arm Trials		
Symptomatic DVT	Both Hip and Knee	(with continuity correction)	34	35.03
	_	Without Heparin Trials and Without Multi-Arm Trials		
Symptomatic DVT	Hip	(with continuity correction)	14	15.26
		Without Heparin Trials and Without Multi-Arm Trials		
Symptomatic DVT	Knee	(with continuity correction)	16	16.36
DVT	Both Hip and Knee	All Trials	79	80.28
DVT	Ĥip	All Trials	44	45.94
DVT	Knee	All Trials	31	30.21
DVT	Both Hip and Knee	All Trials from Treatments with ≥ 1 Event	79	80.28
DVT	Hip	All Trials from Treatments with ≥ 1 Event	44	45.94
DVT	Knee	All Trials from Treatments with ≥ 1 Event	31	30.21
DVT	Both Hip and Knee	Without Heparin Trials	69	70.15
DVT	Hip	Without Heparin Trials	36	37.78
DVT	Knee	Without Heparin Trials	29	28.16
DVT	Both Hip and Knee	Without Heparin Trials and Without Multi-Arm Trials	58	59.12
DVT	Hip	Without Heparin Trials and Without Multi-Arm Trials	36	37.78
DVT	Knee	Without Heparin Trials and Without Multi-Arm Trials	22	21.95
		Without Heparin Trials and Without Multi-Arm Trials		
DVT	Both Hip and Knee	(with continuity correction)	58	59.12
	-	Without Heparin Trials and Without Multi-Arm Trials		
DVT	Hip	(with continuity correction)	36	37.78
	-	Without Heparin Trials and Without Multi-Arm Trials		
DVT	Knee	(with continuity correction)	22	21.95
Proximal DVT	Both Hip and Knee	All Trials	87	87.91
Proximal DVT	Ĥip	All Trials	54	57.22

Table 138. Network Meta-Analysis Model Fit

Outcome	Joint	Model	Data Points	Residual Deviance
Proximal DVT	Knee	All Trials	29	29.37
Proximal DVT	Both Hip and Knee	Without Heparin Trials and Without Multi-Arm Trials	70	73.31
		Without Heparin Trials and Without Multi-Arm Trials		
Proximal DVT	Both Hip and Knee	(with continuity correction)	70	71.45
	-	Without Heparin Trials and Without Multi-Arm Trials		
Proximal DVT	Hip	(with continuity correction)	46	48.03
	-	Without Heparin Trials and Without Multi-Arm Trials		
Proximal DVT	Knee	(with continuity correction)	20	20.33

INDIVIDUAL STUDY RESULTS

Table 139. Individual Study Results - Fatal PE

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.	0100001	0100p2	Joint	Birengin	Duration		112	1		Difference
2009 Lassen et al.	Apixaban	Enoxaparin	Knee	High	2 months 2.5	1599	1596	0.10%	0.10%	No
2010 Lassen et al.	Apixaban	Enoxaparin	Knee	High	months	1528	1529	0.10%	0.00%	No
2010b	Apixaban	Enoxaparin Enoxaparin;	Hip	High	95 days	2708	2699	0.00%	0.00%	No
Lassen et al.		Group 3:					109;		0.00%	
2007 PEP Trial	Apixaban	Warfarin	Knee	High	6 weeks	105	n3:109	0.00%	g3:0%	No
Collaborative	Aspirin									
Group 2000	(<300mg/Day) Aspirin	Placebo	Both	High	35 days	2047	2041	0.00%	0.10%	No
Lieberman et	(≥300mg/Day) +	Aspirin								
al. 1994	IPC	(≥300mg/Day)	Hip	High	3 months	113	118	0.00%	0.00%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS								
2010	Allowed Dabigatran; GCS And Nsaids (Inc.	Allowed Enoxaparin; GCS And Nsaids (Inc.	Knee	High	2 weeks	129	124	0.00%	0.00%	No
Eriksson et	Low Dose	Low Dose								
al. 2005	Aspirin) Allowed Dabigatran; GCS, Low Dose	Aspirin) Allowed Enoxaparin; GCS, Low Dose	Both	High	5 weeks	283	300	0.00%	0.00%	No
	Aspirin And	Aspirin And								
Ginsberg et al. 2009	Cox-2 Inhibitors Allowed	Cox-2 Inhibitors Allowed	Knee	High	17 days	604	643	0.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Author	Dalteparin; GCS	Warfarin; GCS	J 0111t	Strength	Duration	<u> </u>	112	1	4	Difference
Hull et al.	Allowed (Used	Allowed (Used In								
2000	In 25-30%)	25-30%)	Hip	High	NR	496	489	0.00%	0.00%	No
Eriksson et			•	C						
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	6 weeks	802	785	0.10%	0.00%	No
Eriksson et										
al. 1996	Desirudin	Heparin	Hip	High	10 days	202	229	0.00%	0.00%	No
Eriksson et										
al. 1997	Desirudin	Heparin	Hip	High	10 days	180	180	0.00%	0.00%	No
Colwell et al.										
1994	Enoxaparin	Heparin	Hip	High	NR	195	209	0.00%	0.00%	No
Levine et al.										
1991	Enoxaparin	Heparin	Hip	High	14 days	333	332	0.00%	0.00%	No
Planes et al.										
1988	Enoxaparin	Heparin	Hip	High	NR	124	112	0.00%	0.00%	No
Leclerc et al.	—	***		*** 1		22 <i>i</i>		0.000/	0.000/	
1996	Enoxaparin	Warfarin	Knee	High	~14 days	336	334	0.00%	0.00%	No
Warwick et	Enoxaparin +	Foot Pump +		*** 1		100	10.6	0.000/	0.000/	
al. 1998	GCS	GCS	Hip	High	NR	138	136	0.00%	0.00%	No
Warwick et	Enoxaparin +	Foot Pump +	17	TT: 1		110	117	0.000/	1 700/	N
al. 2002	GCS	GCS	Knee	High	NR	112	117	0.00%	1.70%	No
Edwards et	Enoxaparin +	F .	D (1		ND	1 4 1	126	0.000/	0.000/	NT
al. 2008	IPC	Enoxaparin	Both	Moderate	NR	141	136	0.00%	0.00%	No
Colwell et al.	Enoxaparin; GCS	Warfarin; GCS	TT:	TT' - 1-	ND	1510	1405	0.100/	0.100/	N.
1999 Termia at al	Allowed	Allowed	Hip	High	NR	1516	1495	0.10%	0.10%	No
Turpie et al. 2001	Fondenerinuv	Enovonorin	Uin	Uich	6 waaka	177	260	0.00%	0.40%	No
Cohen et al.	Fondaparinux	Enoxaparin Fondenarinux	Hip	High	6 weeks	1//	200	0.00%	0.40%	INO
2007	Fondaparinux	Fondaparinux + GCS	Hip	Uigh	NR	400	395	0.00%	0.00%	No
2007	Fondaparniux	003	пр	High	INK	400	373	0.00%	0.00%	INU

Table 139. Individual Study Results - Fatal PE

Table 139. Individual Study	Results -	Fatal PE
-----------------------------	------------------	----------

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
	Fondaparinux;									
Bauer et al.	GCS	Enoxaparin; GCS								
2001	Recommended Fondaparinux;	Recommended	Knee	High	49 days	517	517	0.20%	0.20%	No
Lassen et al.	GCS	Enoxaparin; GCS								
2002	Recommended Fondaparinux;	Recommended	Hip	High	49 days	1129	1123	0.10%	0.00%	No
Turpie et al.	GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	49 days	1126	1128	0.10%	0.20%	No
Rader et al.	Heparin + GCS +	Heparin + GCS +	_	_						
1998	Heparin	Enoxaparin	Both	High	NR	116	130	0.00%	0.00%	No
Hull et al.										
1990	IPC	None	Hip	Moderate	3 months 1-2 months, not including	152	158	0.70%	0.00%	No
Eriksson et					1st 6-10					
al. 2006b Eriksson et	Rivaroxaban	Enoxaparin	Hip	High	days	142	157	0.00%	0.00%	No
al. 2008 Kakkar et al.	Rivaroxaban	Enoxaparin	Hip	High	2 months	1595	1558	0.00%	0.10%	No
2008 Turpie et al.	Rivaroxaban	Enoxaparin	Hip	High	10 weeks	1228	1229	0.00%	0.20%	No
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	0.10%	0.00%	No

Table 139. Individual Study Results - Fatal PE

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
					the					
					month after 1st					
					week					
Turpie et al.	Rivaroxaban;	Enoxaparin; GCS			(also 0 in					
2005	GCS Allowed	Allowed	Knee	High	1st week)	102	104	0.00%	0.00%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Both	High	NR	715	721	0.00%	0.00%	No
Lassen et al.	Tinzaparin +									
1991	GCS	GCS	Hip	Moderate	NR	105	105	1.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.	Groupi	Group2	JUIII	Strength	Duration	111	112	1	4	Difference
2009	Apixaban	Enoxaparin	Knee	High	2 weeks	1596	1588	0.00%	0.10%	No
Lassen et al.	Аріхаван	Епохарани	Kilee	Ingn	2 weeks	1570	1500	0.0070	0.1070	110
2010b	Apixaban	Enoxaparin	Hip	High	35 days	2673	2659	0.00%	0.00%	No
		Enoxaparin;	•	e	2					
Lassen et al.		Group 3:					109;		0.00%	
2007	Apixaban	Warfarin	Knee	High	6 weeks	105	n3:109	0.00%	g3:0%	No
	Aspirin									
Lieberman et	(≥300mg/Day) +	Aspirin								
al. 1994	IPC	(≥300mg/Day)	Hip	High	3 months	113	118	0.00%	0.00%	No
	Aspirin									
	(≥300mg/Day) +	Aspirin								
	IPC (Rapid	(≥300mg/Day)								
	Inflation	+ IPC								
	Asymmetrical	(Sequential								
Lachiewicz	Compression	Compression			in-					
et al. 2004	Device)	Device)	Knee	High	hospital	206	217	0.00%	0.00%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS								
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	0.00%	0.00%	No
		Enoxaparin;								
	Dabigatran; GCS,	GCS, Low								
	Low Dose Aspirin	Dose Aspirin								
	And Cox-2	And Cox-2								
Eriksson et	Inhibitors	Inhibitors								
al. 2007b	Allowed	Allowed	Knee	High	11 days	679	694	0.00%	0.00%	No

A	Course 1	C2	T = ¹ = 4	<u>S</u> 4	Derestien	1		% Group	% Group	Significan
Author	Group1	Group2	Joint	Strength	Duration	nı	n2	1	2	Difference
	Dabigatran; GCS,	Enoxaparin; GCS, Low								
	Low Dose Aspirin	Dose Aspirin								
	And Cox-2	And Cox-2								
Eriksson et	Inhibitors	Inhibitors								
al. 2007c	Allowed	Allowed	Hip	High	5 weeks	1146	1154	0.10%	0.00%	No
ul. 20070	7 mowed	Enoxaparin;	mp	mgn	5 WEEKS	1110	1101	0.1070	0.0070	110
	Dabigatran; GCS,	GCS, Low								
	Low Dose Aspirin	Dose Aspirin								
	And Cox-2	And Cox-2								
Ginsberg et	Inhibitors	Inhibitors								
al. 2009	Allowed	Allowed	Knee	High	17 days	857	868	0.00%	0.00%	No
Eriksson et				C	•					
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	6 weeks	802	785	0.10%	0.00%	No
Eriksson et		_	_	_						
al. 1997	Desirudin	Heparin	Hip	High	NR	223	220	0.00%	0.00%	No
Levine et al.										
1991	Enoxaparin	Heparin	Hip	High	14 days	333	332	0.00%	0.00%	No
Planes et al.										
1988	Enoxaparin	Heparin	Hip	High	NR	124	112	0.00%	0.00%	No
Leclerc et al.										
1996	Enoxaparin	Warfarin	Knee	High	~14 days	336	334	0.00%	0.00%	No
Warwick et	Enoxaparin +	Foot Pump +				100	101	0.000/	0.000/	
al. 1998	GCS	GCS	Hip	High	NR	138	136	0.00%	0.00%	No
Edwards et		.	D .1		ND	1 4 1	104	0.000/	0.000/	N.7
al. 2008	Enoxaparin + IPC	Enoxaparin	Both	Moderate	NR	141	136	0.00%	0.00%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS	Vasa	II: al	ND	172	176	0.000/	0.600/	Ne
al. 2001	Allowed	Allowed	Knee	High	NR	173	176	0.00%	0.60%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Aution	Fondaparinux;	Enoxaparin;	JUIII	Suchgin	Duration	111	112	T	4	Difference
Bauer et al.	GCS	GCS								
2001	Recommended	Recommended	Knee	High	11 days	517	517	0.00%	0.00%	No
	Fondaparinux;	Enoxaparin;		8						
Lassen et al.	GCS	GCS								
2002	Recommended	Recommended	Hip	High	11 days	1140	1133	0.00%	0.00%	No
	Fondaparinux;	Enoxaparin;	1	e	5					
Turpie et al.	GCS	GCS								
2002	Recommended	Recommended	Hip	High	11 days	1128	1129	0.00%	0.00%	No
Eriksson et			-	-	7-11					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	days	142	157	0.00%	0.00%	No
Eriksson et										
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	38 days	2209	2224	0.00%	0.00%	No
Kakkar et al.					5-6					
2008	Rivaroxaban	Enoxaparin	Hip	High	weeks	1228	1229	0.00%	0.00%	No
Lassen et al.										
2008	Rivaroxaban	Enoxaparin	Knee	High	~2 weeks	1220	1239	0.00%	0.00%	No
Turpie et al.										
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	0.10%	0.00%	No
Eriksson et	Rivaroxaban;	Enoxaparin;								
al. 2006	GCS Allowed	GCS Allowed	Hip	High	11 days	136	132	0.00%	0.00%	No
Eriksson et	Rivaroxaban;	Enoxaparin;			7-11			0.00		
al. 2007	GCS Allowed	GCS Allowed	Hip	High	days	80	162	0.00%	0.00%	No
Turpie et al.	Rivaroxaban;	Enoxaparin;			• •	100	101	0.000	0.000/	
2005	GCS Allowed	GCS Allowed	Knee	High	9 days	102	104	0.00%	0.00%	No
Hull et al.	T ' '		D (1	TT' 1	ND	716	701	0.000/	0.000/	N
1993 Enil	Tinzaparin	Warfarin	Both	High	NR	715	721	0.00%	0.00%	No
Eriksson et	VM150	Frencesia	II:n	II: al	0 dana	156	166	0.000/	0.000/	No
al. 2010	YM150	Enoxaparin	Hip	High	9 days	156	166	0.00%	0.00%	No

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Lassen et al.										
2009	Apixaban	Enoxaparin	Knee	High	2 months	1599	1596	1.10%	0.80%	No
Lassen et al.					2.5					
2010	Apixaban	Enoxaparin	Knee	High	months	1528	1529	0.50%	0.10%	No
Lassen et al.										
2010b	Apixaban	Enoxaparin	Hip	High	95 days	2708	2699	0.10%	0.30%	No
Lassen et al.		Enoxaparin;					109		1.80%	
2007	Apixaban	Group 3: Warfarin	Knee	High	6 weeks	105	n3:109	0.00%	g3:0%	No
PEP Trial										
Collaborative	Aspirin									
Group 2000	(<300mg/Day)	Placebo	Both	High	35 days	2047	2041	0.40%	0.40%	No
Lieberman et	Aspirin	Aspirin								
al. 1994	$(\geq 300 \text{mg/Day}) + \text{IPC}$	(≥300mg/Day)	Hip	High	3 months	113	118	0.90%	0.80%	No
Westrich et	Aspirin									
al. 2006	$(\geq 300 \text{mg/Day}) + \text{IPC}$	Enoxaparin + IPC	Knee	Moderate	NR	129	135	0.80%	0.00%	No
	Aspirin	Aspirin								
	$(\geq 300 \text{mg/Day}) + \text{IPC}$	(≥300mg/Day) +								
	(Rapid Inflation	IPC (Sequential								
Lachiewicz	Asymmetrical	Compression								
et al. 2004	Compression Device)	Device)	Knee	High	6 months	206	217	0.00%	0.50%	No
Eriksson et										
al. 2011	Dabigatran	Enoxaparin	Hip	High	3 months	1001	992	0.20%	0.40%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS								
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	0.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Autior	Dabigatran; GCS And	Enoxaparin; GCS	Joint	Strength	Duration	111	112	1	4	Difference
	Nsaids (Inc. Low	And Nsaids (Inc.								
Eriksson et	Dose Aspirin)	Low Dose								
al. 2005	Allowed	Aspirin) Allowed	Both	High	5 weeks	283	300	0.00%	0.00%	No
	Dabigatran; GCS,	Enoxaparin; GCS,		8						
	Low Dose Aspirin	Low Dose Aspirin								
Eriksson et	And Cox-2 Inhibitors	And Cox-2								
al. 2007b	Allowed	Inhibitors Allowed	Knee	High	11 days	675	685	0.00%	0.10%	No
	Dabigatran; GCS,	Enoxaparin; GCS,		-						
	Low Dose Aspirin	Low Dose Aspirin								
Eriksson et	And Cox-2 Inhibitors	And Cox-2								
al. 2007c	Allowed	Inhibitors Allowed	Hip	High	5 weeks	1137	1142	0.40%	0.30%	No
	Dabigatran; GCS,	Enoxaparin; GCS,								
	Low Dose Aspirin	Low Dose Aspirin								
Ginsberg et	And Cox-2 Inhibitors	And Cox-2								
al. 2009	Allowed	Inhibitors Allowed	Knee	High	3 months	604	643	1.30%	1.10%	No
Francis et al.										
1997	Dalteparin	Warfarin	Hip	Moderate	NR	271	279	0.00%	0.00%	No
TT 11 / 1	Dalteparin; GCS	Warfarin; GCS								
Hull et al.	Allowed (Used In 25-	Allowed (Used In		TT' 1	NID	100	400	0.000/	0.000/	N
2000 Enilseen et	30%)	25-30%)	Hip	High	NR	496	489	0.00%	0.00%	No
Eriksson et	Desirudin	Enononin	TT:	II: ah	C erro alva	002	785	0.400/	0.80%	No
al. 1997(b) Eriksson et	Destruction	Enoxaparin	Hip	High	6 weeks	802	/85	0.40%	0.80%	INO
al. 1996	Desirudin	Uanarin	Uin	Moderate	10 days	202	229	0.50%	0.00%	No
Eriksson et	DESILUUIII	Heparin	Hip	moderate	10 uays	202	229	0.30%	0.00%	INU
al. 1997	Desirudin	Heparin	Hip	High	44 days	180	180	0.00%	2.20%	Yes
ai. 1991	Desituum	nepam	mp	ingn	++ uays	100	100	0.0070	2.20/0	1 63

A (1	0 1	a a	T • 4	G4 41		1	2	% Group	% Group	Significant
Author	Group1	Group2 GCS; Group 3:	Joint	Strength	Duration	nı	n2 110	1	2 0.90%	Difference
Chin et al.		IPC; Group 4: No					n3:110		0.90% g3:0.0%	
2009	Enoxaparin	Treatment	Knee	High	NR	110	n3.110 n4:110	0.00%	g4:0.9%	No
Colwell et al.	Епохарати	Treatment	ittice	Ingn		110	114.110	0.0070	g=.0.770	110
1994	Enoxaparin	Heparin	Hip	High	7 days	195	209	0.00%	1.90%	Yes
Colwell et al.	Епохарати	nepum	mp	mgn	7 duys	175	207	0.0070	1.9070	105
1995	Enoxaparin	Heparin	Knee	High	NR	228	225	0.00%	0.90%	No
Levine et al.	2.1.0.1.mp			8				0.0070	019 070	1.0
1991	Enoxaparin	Heparin	Hip	High	NR	333	332	0.00%	0.60%	No
Planes et al.	r	F	r	8						
1988	Enoxaparin	Heparin	Hip	High	NR	124	112	0.00%	0.90%	No
Planes et al.	1	1	1	0						
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	0.50%	0.50%	No
Leclerc et al.	1	1	1	e						
1996	Enoxaparin	Warfarin	Knee	High	~14 days	336	334	0.30%	0.90%	No
Warwick et	-			-	-					
al. 1998	Enoxaparin + GCS	Foot Pump + GCS	Hip	High	NR	138	136	0.00%	0.70%	No
Edwards et										
al. 2008	Enoxaparin + IPC	Enoxaparin	Both	Moderate	NR	141	136	0.70%	0.70%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (hip)	Allowed	Allowed	Hip	Moderate	NR	80	86	1.30%	0.00%	No
Colwell et al.	Enoxaparin; GCS	Warfarin; GCS								
1999	Allowed	Allowed	Hip	High	NR	1516	1495	1.00%	0.80%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS								
al. 2001	Allowed	Allowed	Knee	High	NR	173	176	0.00%	0.60%	No
Turpie et al.										
2001	Fondaparinux	Enoxaparin	Hip	Moderate	~10 days	115	171	0.00%	0.00%	No
Bauer et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2001	Recommended	Recommended	Knee	High	49 days	517	517	0.60%	1.00%	No

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	49 days	1129	1123	0.40%	0.30%	No
Turpie et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	49 days	1126	1128	1.10%	0.40%	No
Rader et al.	Heparin + GCS +	Heparin + GCS +								
1998	Heparin	Enoxaparin	Both	High	NR	116	130	0.00%	0.00%	No
Hull et al.										
1990	IPC	None	Hip	Moderate	~14 days	152	158	0.00%	0.60%	No
	IPC; Low Dose									
Colwell et al.	Aspirin Allowed									
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	10 weeks	196	190	1.00%	1.10%	No
Eriksson et					1-2					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	months	142	157	0.70%	0.00%	No
Eriksson et										
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	36 days	1595	1558	0.30%	0.10%	No
Kakkar et al.					5-6					
2008	Rivaroxaban	Enoxaparin	Hip	High	weeks	864	869	0.10%	0.60%	No
Lassen et al.										
2008	Rivaroxaban	Enoxaparin	Knee	High	day 17	1201	1217	0.00%	0.30%	Yes
Turpie et al.										
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	0.30%	0.50%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS								
2005	Allowed	Allowed	Knee	High	~ 1 week	102	104	0.00%	0.00%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Both	High	3 months	715	721	0.10%	0.10%	No
Lassen et al.										
1991	Tinzaparin + GCS	GCS	Hip	Moderate	NR	105	105	1.00%	1.00%	No
Eriksson et										
al. 2010	YM150	Enoxaparin	Hip	High	9 days	114	127	0.00%	0.00%	No

Author	Crown1	Group2	Joint	Strongth	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Group1	Groupz	Joint	Strength	Duration	<u>n1</u>	112	1	4	Difference
Lassen et al. 2009	Apixaban	Enoxaparin	Knee	High	2 weeks	1596	1588	0.70%	1.40%	No
Lassen et al.										
2010	Apixaban	Enoxaparin	Knee	High	2 weeks	1501	1508	0.60%	0.90%	No
Lassen et al.										
2010b	Apixaban	Enoxaparin	Hip	High	35 days	2673	2659	0.80%	0.70%	No
Lassen et al.		Enoxaparin; Group 3:					149;		0.00%	
2007	Apixaban	Warfarin	Knee	High	6 weeks	155	n3:151	0.60%	g3:0%	No
Kim et al.										
1998	Aspirin (≥300mg/Day)	None	Hip	Moderate	NR	50	50	0.00%	0.00%	No
Harris et al.										
1977	Aspirin (≥300mg/Day)	Placebo	Hip	High	NR	44	51	0.00%	0.00%	No
Salzman et										
al. 1971	Aspirin (≥300mg/Day)	Warfarin	Hip	High	NR	43	43	7.00%	9.30%	No
Eriksson et					4-5					
al. 2011	Dabigatran	Enoxaparin	Hip	High	weeks	1010	1003	1.40%	0.90%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS								
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	2.30%	0.80%	No
		Enoxaparin; GCS								
	Dabigatran; GCS And	And Nsaids (Inc.								
Eriksson et	Nsaids (Inc. Low Dose	Low Dose Aspirin)								
al. 2005	Aspirin) Allowed	Allowed	Both	High	NR	385	392	4.70%	2.00%	No
		Enoxaparin; GCS,		-						
	Dabigatran; GCS, Low	Low Dose Aspirin								
Eriksson et	Dose Aspirin And Cox-	And Cox-2 Inhibitors								
al. 2007b	2 Inhibitors Allowed	Allowed	Knee	High	11 days	679	694	1.50%	1.30%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Autior	Gloupi	Enoxaparin; GCS,	JUIII	Strength	Duration	111	112	1	4	Difference
	Dabigatran; GCS, Low	Low Dose Aspirin								
Eriksson et	Dose Aspirin And Cox-	And Cox-2 Inhibitors								
al. 2007c	2 Inhibitors Allowed	Allowed	Hip	High	5 weeks	1146	1154	2.00%	1.60%	No
		Enoxaparin; GCS,								
	Dabigatran; GCS, Low	Low Dose Aspirin								
Ginsberg et	Dose Aspirin And Cox-	And Cox-2 Inhibitors								
al. 2009	2 Inhibitors Allowed	Allowed	Knee	High	3 months	857	868	0.70%	1.40%	No
Francis et al.				_						
1997	Dalteparin	Warfarin	Hip	Moderate	NR	271	279	2.20%	1.40%	No
	Dalteparin; GCS	Warfarin; GCS	_							
Hull et al.	Allowed (Used In 25-	Allowed (Used In 25-								
2000	30%)	30%)	Hip	High	day0-1	496	489	8.90%	4.50%	Yes
Eriksson et										
al. 1997(b) †	Desirudin	Enoxaparin	Hip	High	10 days	1028	1023	1.90%	2.00%	No
Eriksson et										
al. 1997†	Desirudin	Heparin	Hip	High	NR	223	220	0.00%	0.00%	No
		GCS; Group 3: IPC;					110		0.00%	
Chin et al.		Group 4: No					n3:110		g3:0%	
2009	Enoxaparin	Treatment	Knee	High	NR	110	n4:110	1.80%	g4:0%	No
Colwell et al.										
1994	Enoxaparin	Heparin	Hip	High	NR	195	209	4.10%	6.20%	No
Colwell et al.										
1995	Enoxaparin	Heparin	Knee	High	NR	228	225	1.30%	1.30%	No
Levine et al.										
1991	Enoxaparin	Heparin	Hip	High	14 days	333	332	3.30%	5.70%	No
Planes et al.										
1988	Enoxaparin	Heparin	Hip	High	NR	124	112	1.60%	0.00%	No

Table 142.]	Individual Study	V Results - M	ajor Bleeding

A . (1		a	- • /		D			% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration 14 days	n1	n2	1	2	Difference
Turpie et al.					or until					
1986	Enoxaparin	Placebo	Hip	High	discharge	50	50	2.00%	4.00%	No
Planes et al.	<u></u>		p	111811	<i>ansena</i> .80	00	00	2.0070		110
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	1.80%	0.90%	No
Leclerc et al.	1	1	1	U						
1996	Enoxaparin	Warfarin	Knee	High	~14 days	336	334	2.10%	1.80%	No
Samama et	-			-						
al. 1997	Enoxaparin + GCS	Placebo + GCS	Hip	High	10 days	85	85	1.20%	1.20%	No
Senaran et al.	Enoxaparin; GCS	Heparin; GCS								
2006	Allowed	Allowed	Hip	High	NR	50	50	4.00%	0.00%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (hip)	Allowed	Allowed	Hip	High	NR	102	101	2.00%	0.00%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (knee)	Allowed	Allowed	Knee	High	NR	91	89	1.10%	4.50%	No
Colwell et al.	Enoxaparin; GCS	Warfarin; GCS						0.000/	0.000/	
1999	Allowed	Allowed	Hip	High	NR	1516	1495	0.60%	0.30%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS	V	TT: - 1-	ND	172	176	5 200/	2 2004	NT-
al. 2001	Allowed	Allowed	Knee	High	NR	173	176	5.20%	2.30%	No
Turpie et al. 2001	Fondaparinux	Enovonaria	IIin	Hich	~10 days	177	260	4.50%	3.50%	No
Cohen et al.	Folidapariliux	Enoxaparin	Hip	High	~10 days	1//	200	4.30%	5.50%	INU
2007	Fondaparinux	Fondaparinux + GCS	Hip	High	NR	404	391	0.20%	0.00%	No
2007	Tondaparmux	Enoxaparin + IPC;	mp	Ingn		404	571	0.2070	0.0070	110
Yokote et al.		Group 3: Placebo +					86;		0.00%	
2011	Fondaparinux + IPC	IPC	Hip	High	12 weeks	85	n3:85	0.00%	g3:0%	No
Fuji et al.	Fondaparinux; GCS	Placebo; GCS	111P	111511	12 WOOK5	00	110.00	0.0070	50.070	1.0
2008b	Allowed	Allowed	Both	High	NR	165	169	1.80%	0.60%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Bauer et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2001	Recommended	Recommended	Knee	High	NR	517	517	2.10%	0.20%	Yes
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS		C						
2002	Recommended	Recommended	Hip	High	NR	1140	1133	4.10%	2.80%	No
Turpie et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	NR	1128	1129	1.80%	1.00%	No
Fordyce et										
al. 1992†	Foot Pump + GCS	GCS	Hip	High	NR	39	40	0.00%	0.00%	No
Mannucci et										
al. 1976†	Heparin	None	Hip	Moderate	NR	45	51	11.10%	0.00%	Yes
Hampson et										
al. 1974†	Heparin	Placebo	Hip	Moderate	NR	48	52	0.00%	0.00%	No
Paiement et										
al. 1987	IPC	Warfarin	Hip	Moderate	NR	66	72	0.00%	0.00%	No
Colwell et al.	IPC; Low Dose Aspirin									
2010	Allowed (Used In 63%)	Enoxaparin	Hip	Moderate	10 weeks	198	194	0.00%	5.70%	Yes
Agnelli et al.										
2007	LY517717	Enoxaparin	Both	High	1 month	106	90	0.90%	1.10%	No
Eriksson et					7-11					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	days	142	157	0.70%	1.90%	No
Eriksson et	.	.				••••		0.000	0.100/	
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	38 days	2209	2224	0.30%	0.10%	No
Kakkar et al.	.	.			5-6	1000	1000	0.4.0.07	0.100/	
2008	Rivaroxaban	Enoxaparin	Hip	High	weeks	1228	1229	0.10%	0.10%	No
Lassen et al.	D' 1	.	17	TT' 1	0 1	1000	1000	0.000	0.5004	N
2008	Rivaroxaban	Enoxaparin	Knee	High	~2 weeks	1220	1239	0.60%	0.50%	No
Turpie et al.	D' 1	F '	17	TT' 1	1 17	1506	1700	0.700/	0.200/	NT
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	0.70%	0.30%	No

								%	%	
								Group	Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS								
al. 2006	Allowed	Allowed	Hip	High	11 days	136	132	2.20%	1.50%	No
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS			7-11					
al. 2007	Allowed	Allowed	Hip	High	days	80	162	2.50%	0.00%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS	_	_						
2005	Allowed	Allowed	Knee	High	9 days	102	104	0.00%	1.90%	No
Hull et al.				-						
1993	Tinzaparin	Warfarin	Both	High	NR	715	721	2.80%	1.20%	No
Poller et al.	-			-						
1995	Warfarin	Heparin	Both	High	NR	31	37	0.00%	0.00%	No
Eriksson et				C						
al. 2010	YM150	Enoxaparin	Hip	High	6 weeks	156	166	0.00%	0.60%	No
		Enoxaparin;	-	-						
Eriksson et	YM150; Mechanical	Mechanical Allowed								
al. 2007d	Allowed (Used In 1/3)	(Used In $1/3$)	Hip	High	~5 weeks	36	36	0.00%	0.00%	No

†: These studies used the term severe or serious instead of major

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.	Groupi	0100p2	JUIII	Strength	Duration	111	112	I	4	Difference
2009	Apixaban	Enoxaparin	Knee	High	2 months	1599	1596	0.20%	0.40%	No
Lassen et al.	L	1		e	2.5					
2010	Apixaban	Enoxaparin	Knee	High	months	1528	1529	0.20%	0.10%	No
Lassen et al.										
2010b	Apixaban	Enoxaparin Enoxaparin;	Hip	High	95 days	2708	2699	0.20%	0.10%	No
Lassen et al.		Group 3:					109;		0.00%;	
2007	Apixaban	Warfarin	Knee	High	6 weeks	105	n3:109	0.00%	%g3:0%	No
PEP Trial										
Collaborative	Aspirin									
Group 2000	(<300mg/Day)	Placebo	Both	High	35 days	2047	2041	0.40%	0.50%	No
.	Aspirin									
Lieberman et	(≥300mg/Day) +	Aspirin	TT:-	TT: - 1.	2	112	110	0.000/	0.000/	N.
al. 1994	IPC Agninin	(≥300mg/Day)	Hip	High	3 months	113	118	0.90%	0.00%	No
	Aspirin (≥300mg/Day) +									
	IPC (Rapid	Aspirin								
	Inflation	$(\geq 300 \text{mg/Day}) +$								
	Asymmetrical	IPC (Sequential								
Lachiewicz	Compression	Compression			in-					
et al. 2004	Device)	Device)	Knee	High	hospital	206	217	0.00%	0.50%	No
Eriksson et	,	,		e	5-6					
al. 2011	Dabigatran	Enoxaparin	Hip	High	weeks	1001	992	0.00%	0.20%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS	_	-						
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	0.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Dabigatran; GCS,	Enoxaparin;								
	Low Dose Aspirin	GCS, Low Dose								
	And Cox-2	Aspirin And								
Eriksson et	Inhibitors	Cox-2 Inhibitors								
al. 2007b	Allowed	Allowed	Knee	High	11 days	675	685	0.10%	0.10%	No
	Dabigatran; GCS,	Enoxaparin;		U	2					
	Low Dose Aspirin	GCS, Low Dose								
	And Cox-2	Aspirin And								
Eriksson et	Inhibitors	Cox-2 Inhibitors								
al. 2007c	Allowed	Allowed	Hip	High	5 weeks	1137	1142	0.30%	0.00%	No
	Dabigatran; GCS,	Enoxaparin;	-	-						
	Low Dose Aspirin	GCS, Low Dose								
	And Cox-2	Aspirin And								
Ginsberg et	Inhibitors	Cox-2 Inhibitors								
al. 2009	Allowed	Allowed	Knee	High	3 months	604	643	0.30%	0.30%	No
	Dalteparin; GCS	Warfarin; GCS								
Hull et al.	Allowed (Used In	Allowed (Used In								
2000	25-30%)	25-30%)	Hip	High	NR	496	489	0.40%	0.40%	No
Eriksson et										
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	6 weeks	802	785	0.50%	0.30%	No
Eriksson et										
al. 1996	Desirudin	Heparin	Hip	High	6 weeks	277	277	0.00%	0.40%	No
Eriksson et										
al. 1997	Desirudin	Heparin	Hip	High	44 days	180	180	0.00%	1.10%	No
Colwell et al.								0.70		
1994	Enoxaparin	Heparin	Hip	High	NR	195	209	0.50%	1.00%	No
Levine et al.	. .			· · · ·	1 4 1	222		0.000/	0.000/	
1991	Enoxaparin	Heparin	Hip	High	14 days	333	332	0.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Planes et al.	•	-		X						
1988	Enoxaparin	Heparin	Hip	High	NR	124	112	0.00%	0.00%	No
Leclerc et al.	_	_	_	-						
1996	Enoxaparin	Warfarin	Knee	High	6 months	336	334	0.30%	0.30%	No
Warwick et	Enoxaparin +	Foot Pump +								
al. 1998	GCS	GCS	Hip	High	NR	143	147	0.00%	0.00%	No
Warwick et	Enoxaparin +	Foot Pump +								
al. 2002	GCS	GCS	Knee	High	NR	112	117	0.90%	2.60%	No
Edwards et										
al. 2008	Enoxaparin + IPC	Enoxaparin	Both	Moderate	NR	141	136	0.00%	0.00%	No
Colwell et al.	Enoxaparin; GCS	Warfarin; GCS								
1999	Allowed	Allowed	Hip	High	NR	1516	1495	0.60%	0.70%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS								
al. 2001	Allowed	Allowed	Knee	High	NR	173	176	0.60%	1.70%	No
Turpie et al.										
2001	Fondaparinux	Enoxaparin	Hip	High	1 month from discharge to discharge	177	260	0.00%	0.40%	No
Cohen et al.		Fondaparinux +			+ 18-19					
2007	Fondaparinux Fondaparinux;	GCS	Hip	High	days	404	391	0.70%	0.30%	No
Bauer et al.	GCS	Enoxaparin; GCS								
2001	Recommended Fondaparinux;	Recommended	Knee	High	1 month	517	517	0.40%	0.60%	No
Lassen et al.	GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	NR	1140	1133	0.20%	0.40%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Autior	Fondaparinux;	610up2	JUIII	Suengin	Duration	111	112	1	4	Difference
Turpie et al.	GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	~14 days	1128	1129	0.50%	0.30%	No
Hull et al.										
1990	IPC	None	Hip	Moderate	NR	152	158	1.30%	0.00%	No
Francis et al.										
1992	IPC + GCS	Warfarin + GCS	Hip	High	NR	110	110	0.90%	0.90%	No
Eriksson et										
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	~10 days	142	157	0.00%	0.00%	No
Eriksson et	D' 1	.		· · · ·	40.1	1505	1550	0.000/	0.000/	NT
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	49 days	1595	1558	0.30%	0.30%	No
Kakkar et al. 2008	Rivaroxaban	Enovonorin	Ilin	Hich	10 dava	1228	1229	0.20%	0.70%	No
Lassen et al.	Kivaroxabali	Enoxaparin	Hip	High	49 days	1228	1229	0.20%	0.70%	INO
2008	Rivaroxaban	Enoxaparin	Knee	High	6 weeks	1201	1217	0.00%	0.50%	Yes
Turpie et al.	Rivarozabali	Liioxaparin	ittice	Ingn	0 weeks	1201	1217	0.0070	0.5070	105
2009	Rivaroxaban	Enoxaparin	Knee	High	6 weeks	1526	1508	0.40%	0.40%	No
Eriksson et	Rivaroxaban;	Enoxaparin; GCS			0 1100115	1020	1000	011070	011070	110
al. 2006	GCS Allowed	Allowed	Hip	High	49 days	109	106	0.90%	0.00%	No
Turpie et al.	Rivaroxaban;	Enoxaparin; GCS	•	C	2					
2005	GCS Allowed	Allowed	Knee	High	6 weeks	102	104	0.00%	0.00%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Both	High	NR	715	721	0.70%	0.70%	No
Lassen et al.										
1991	Tinzaparin + GCS	GCS	Hip	Moderate	~14 days	105	105	1.00%	1.00%	No
Eriksson et										
al. 2010	YM150	Enoxaparin	Hip	High	36 days	114	127	0.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.	0104	010012	001110		2 41 401011			-	_	
2010b	Apixaban	Enoxaparin	Hip	High	35 days	2673	2659	0.00%	0.00%	No
Lassen et al.	•	Enoxaparin; Group	•	C			149		0.00%	
2007	Apixaban	3: Warfarin	Knee	High	6 weeks	155	n3:151	0.00%	g3:0%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS		-					-	
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	0.80%	0.00%	No
		Enoxaparin; GCS		-						
	Dabigatran; GCS And	And Nsaids (Inc.								
Eriksson et	Nsaids (Inc. Low Dose	Low Dose Aspirin)								
al. 2005	Aspirin) Allowed	Allowed	Both	High	NR	385	392	0.30%	0.30%	No
		Enoxaparin; GCS,								
	Dabigatran; GCS, Low	Low Dose Aspirin								
Eriksson et	Dose Aspirin And Cox-2	And Cox-2 Inhibitors								
al. 2007b	Inhibitors Allowed	Allowed	Knee	High	11 days	679	694	0.40%	0.10%	No
		Enoxaparin; GCS,								
	Dabigatran; GCS, Low	Low Dose Aspirin								
Eriksson et	Dose Aspirin And Cox-2	And Cox-2 Inhibitors								
al. 2007c	Inhibitors Allowed	Allowed	Hip	High	5 weeks	1146	1154	0.20%	0.30%	No
		Enoxaparin; GCS,								
	Dabigatran; GCS, Low	Low Dose Aspirin								
Ginsberg et	Dose Aspirin And Cox-2	And Cox-2 Inhibitors								
al. 2009	Inhibitors Allowed	Allowed	Knee	High	17 days	857	868	0.00%	0.10%	No
Eriksson et										
al. 1991	Dalteparin	Heparin	Hip	High	NR	67	69	0.00%	0.00%	No
Eriksson et										
al. 1996	Desirudin	Heparin	Hip	High	10 days	277	277	1.40%	0.70%	No
Eriksson et				··· ·				0.000/	0.000/	
al. 1997	Desirudin	Heparin	Hip	High	NR	223	220	0.00%	0.00%	No

Table 144. Individual Study Results - Reoperation due to Bleeding

A /7		a •	- • /					% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Bauer et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2001	Recommended	Recommended	Knee	High	11 days	517	517	0.40%	0.20%	No
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	11 days	1140	1133	0.40%	0.30%	No
Turpie et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	High	11 days	1128	1129	0.20%	0.20%	No
Windisch et	Foot Pump + Enoxaparin									
al. 2010	+ GCS	Enoxaparin + GCS	Knee	Moderate	NR	40	40	0.00%	0.00%	No
Eriksson et					7-11					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	days	128	157	0.00%	0.00%	No
Eriksson et										
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	38 days	2209	2224	0.10%	0.00%	No
Kakkar et al.					5-6					
2008	Rivaroxaban	Enoxaparin	Hip	High	weeks	1228	1229	0.00%	0.00%	No
Lassen et al.										
2008	Rivaroxaban	Enoxaparin	Knee	High	~2 weeks	1220	1239	0.40%	0.30%	No
Turpie et al.		_		-						
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	0.30%	0.10%	No
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS		-						
al. 2006	Allowed	Allowed	Hip	High	11 days	136	132	1.50%	0.00%	No
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS	ľ	C	7-11					
al. 2007	Allowed	Allowed	Hip	High	days	80	162	1.30%	0.00%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS	•	C C	-					
2005	Allowed	Allowed	Knee	High	9 days	102	104	0.00%	0.00%	No

Table 144. Individual Study Results - Reoperation due to Bleeding

									% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	1	2	Difference
Lassen et al.	•	•		0	Clinically relevant						
2009	Apixaban	Enoxaparin	Knee	High	nonmajor bleeding	2 weeks	1596	1588	2.20%	3.00%	No
Lassen et al.					Clinically relevant						
2010	Apixaban	Enoxaparin	Knee	High	nonmajor bleeding	2 weeks	1501	1508	2.90%	3.80%	No
Lassen et al.					Clinically relevant						
2010b	Apixaban	Enoxaparin	Hip	High	nonmajor bleeding	35 days	2673	2659	4.10%	4.50%	No
Fuji et al.	Dabigatran;	Placebo; GCS			Clinically relevant						
2010	GCS Allowed	Allowed	Knee	High	bleeding	2 weeks	129	124	1.60%	2.40%	No
	Dabigatran;	Enoxaparin;									
	GCS And	GCS And									
	Nsaids (Inc.	Nsaids (Inc.									
	Low Dose	Low Dose			Clinically						
Eriksson et	Aspirin)	Aspirin)			significant						
al. 2005	Allowed	Allowed	Both	High	bleeding	NR	385	392	4.90%	2.60%	No
	Dabigatran;	Enoxaparin;									
	GCS And	GCS And			a						
	Nsaids (Inc.	Nsaids (Inc.			Composite major						
D 11	Low Dose	Low Dose			or clinically						
Eriksson et	Aspirin)	Aspirin)		TT' 1	significant	NID	205	202	0.200/	1 (00)	N
al. 2005	Allowed	Allowed	Both	High	bleeding	NR	385	392	8.30%	4.60%	No
	Dabigatran;	Enoxaparin;									
	GCS, Low	GCS, Low									
	Dose Aspirin And Cox-2	Dose Aspirin									
Eriksson et	And Cox-2 Inhibitors	And Cox-2 Inhibitors			Clinically relevant						
al. 2007b			Knac	High	Clinically relevant	11 dava	679	694	5.90%	5.30%	No
al. 20070	Allowed	Allowed	Knee	High	nonmajor bleeding	11 days	0/9	094	3.90%	3.30%	INU

Table 145. Individual Study Results - Clinically Important Bleeding

									% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	1	2	Difference
	Dabigatran;	Enoxaparin;									
	GCS, Low	GCS, Low									
	Dose Aspirin	Dose Aspirin									
	And Cox-2	And Cox-2									
Eriksson et	Inhibitors	Inhibitors			Clinically relevant						
al. 2007c	Allowed	Allowed	Hip	High	nonmajor bleeding	5 weeks	1146	1154	4.20%	3.50%	No
	Dabigatran;	Enoxaparin;									
	GCS, Low	GCS, Low									
	Dose Aspirin	Dose Aspirin									
~	And Cox-2	And Cox-2			~~						
Ginsberg et	Inhibitors	Inhibitors			Clinically relevant			0.40			
al. 2009	Allowed	Allowed	Knee	High	nonmajor bleeding	17 days	857	868	2.70%	2.40%	No
	Dabigatran;	Enoxaparin;									
	GCS, Low	GCS, Low				3 months					
	Dose Aspirin	Dose Aspirin				(not					
	And Cox-2	And Cox-2				including					
Ginsberg et	Inhibitors	Inhibitors	17	TT: 1	Clinically relevant	1st 17	0.57	0.60	0.700/	0.000/	NT
al. 2009	Allowed	Allowed	Knee	High	nonmajor bleeding	days)	857	868	0.70%	0.30%	No
	г ·				Any Clinically						
Fitzgerald et	Enoxaparin;	Warfarin;	17	TT' 1	Important	ND	170	176	22 5000	02 2004	NT
al. 2001	GCS Allowed	GCS Allowed	Knee	High	Bleeding	NR	173	176	33.50%	23.30%	No
Cohen et al.		Eendeneminuw			Clinically						
2007	Fondonorinuv	Fondaparinux + GCS	Uin	Uich	significant minor	NR	404	201	5.00%	4 100/	No
	Fondaparinux	+ GCS Warfarin +	Hip	High	bleeding Clinically	INK	404	391	5.00%	4.10%	No
Bailey et al. 1991	IPC + GCS	GCS	Llin	Moderate		NR	50	45	0.00%	0.00%	No
Eriksson et	IL + ACS	003	Hip	wooerate	important bleeding Clinically relevant	NR 7-11	30	43	0.00%	0.00%	INU
al. 2006b	Rivaroxaban	Enovonorin	Uin	High	nonmajor bleeding		128	157	1.60%	3.20%	No
ai. 20000	Kivaiuxauali	Enoxaparin	Hip	riigii	noninajor bieeding	days	120	137	1.00%	3.20%	INU

Table 145. Individual Study Results - Clinically Important Bleeding

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Eriksson et	•	•		0	Clinically relevant						
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	nonmajor bleeding	38 days	2209	2224	2.90%	2.40%	No
Kakkar et al.					Clinically relevant	5-6					
2008	Rivaroxaban	Enoxaparin	Hip	High	nonmajor bleeding	weeks	1228	1229	3.30%	2.70%	No
Lassen et al.					Clinically relevant						
2008	Rivaroxaban	Enoxaparin	Knee	High	nonmajor bleeding	~2 weeks	1220	1239	2.70%	2.30%	No
Turpie et al.					Clinically relevant						
2009	Rivaroxaban	Enoxaparin	Knee	High	nonmajor bleeding	day 17	1526	1508	2.60%	2.00%	No
Eriksson et	Rivaroxaban;	Enoxaparin;			Clinically relevant						
al. 2006	GCS Allowed	GCS Allowed	Hip	High	nonmajor bleeding	11 days	136	132	5.90%	0.00%	Yes
Eriksson et	Rivaroxaban;	Enoxaparin;			Clinically relevant	7-11					
al. 2007	GCS Allowed	GCS Allowed	Hip	High	nonmajor bleeding	days	80	162	1.30%	1.90%	No
Turpie et al.	Rivaroxaban;	Enoxaparin;			Clinically relevant						
2005	GCS Allowed	GCS Allowed	Knee	High	nonmajor bleeding	9 days	102	104	2.90%	2.90%	No
Eriksson et					Clinically relevant						
al. 2010	YM150	Enoxaparin	Hip	High	nonmajor bleeding	6 weeks	156	166	3.20%	2.40%	No
Eriksson et					Clinically relevant						
al. 2010	YM150	Enoxaparin	Hip	High	nonmajor bleeding	9 days	156	166	2.60%	2.40%	No
					Major or clinically						
Eriksson et					relevant nonmajor						
al. 2010	YM150	Enoxaparin	Hip	High	bleeding	6 weeks	156	166	3.20%	3.00%	No
					Major or clinically						
Eriksson et					relevant nonmajor						
al. 2010	YM150	Enoxaparin	Hip	High	bleeding	9 days	156	166	2.60%	3.00%	No
	YM150;	Enoxaparin;									
	Mechanical	Mechanical									
Eriksson et	Allowed	Allowed		*** 1	Clinically relevant	- 1	26	2.5	0.000/	0.000/) T
al. 2007d	(Used In 1/3)	(Used In 1/3)	Hip	High	nonmajor bleeding	~5 weeks	36	36	0.00%	0.00%	No

Table 145. Individual Study Results - Clinically Important Bleeding

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.	Groupi	0100p2	501110	Suengui	Duration	mi	112	-		Difference
2009	Apixaban	Enoxaparin	Knee	High	2 weeks	1596	1588	2.40%	2.50%	No
Lassen et al.		r		8				,		
2010	Apixaban	Enoxaparin	Knee	High	2 weeks	1501	1508	3.40%	3.60%	No
Lassen et al.	1	1		e						
2010b	Apixaban	Enoxaparin	Hip	High	35 days	2673	2659	6.90%	7.50%	No
Lassen et al.	•	Enoxaparin; Group 3:	•	C			149		4.00%	
2007	Apixaban	Warfarin	Knee	High	6 weeks	155	n3:151	5.80%	g3:5.3%	No
Salzman et	Aspirin			-					-	
al. 1971	(≥300mg/Day)	Warfarin	Hip	High	NR	43	43	9.30%	9.30%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS								
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	7.00%	4.80%	No
	Dabigatran; GCS	Enoxaparin; GCS								
	And Nsaids (Inc.	And Nsaids (Inc. Low								
Eriksson et	Low Dose Aspirin)	Dose Aspirin)								
al. 2005	Allowed	Allowed	Both	High	NR	385	392	9.60%	6.40%	No
	Dabigatran; GCS,	Enoxaparin; GCS,								
	Low Dose Aspirin	Low Dose Aspirin								
Eriksson et	And Cox-2	And Cox-2 Inhibitors								
al. 2007b	Inhibitors Allowed	Allowed	Knee	High	11 days	679	694	8.80%	9.90%	No
	Dabigatran; GCS,	Enoxaparin; GCS,								
	Low Dose Aspirin	Low Dose Aspirin								
Eriksson et	And Cox-2	And Cox-2 Inhibitors								
al. 2007c	Inhibitors Allowed	Allowed	Hip	High	5 weeks	1146	1154	6.10%	6.40%	No
	Dalteparin; GCS	Warfarin; GCS								
Hull et al.	Allowed (Used In	Allowed (Used In 25-								
2000	25-30%)	30%)	Hip	High	day0-1	496	489	0.60%	0.40%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Aution	Dalteparin; GCS	Warfarin; GCS	JUIII	Strength	Duration	111	112	1	4	Difference
Hull et al.	Allowed (Used In	Allowed (Used In 25-								
2000	25-30%)	30%)	Hip	High	day2-8	496	489	1.20%	1.60%	No
Colwell et al.	,	,	r	8	j					
1994	Enoxaparin	Heparin	Hip	High	NR	195	209	8.20%	5.70%	No
Colwell et al.	I	1	I	U						
1995	Enoxaparin	Heparin	Knee	High	NR	228	225	18.90%	21.80%	No
Levine et al.	•			U						
1991	Enoxaparin	Heparin	Hip	High	14 days	333	332	1.80%	3.60%	No
Planes et al.	*	•	•	U U	-					
1988	Enoxaparin	Heparin	Hip	High	NR 14 days	124	112	0.80%	1.80%	No
Turpie et al.					or until					
1986	Enoxaparin	Placebo	Hip	High	discharge	50	50	2.00%	0.00%	No
Planes et al.	_		_	-	_					
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	9.60%	5.90%	No
Leclerc et al.										
1996	Enoxaparin	Warfarin	Knee	High	~14 days	336	334	28.00%	24.90%	No
Samama et										
al. 1997	Enoxaparin + GCS	Placebo + GCS	Hip	High	10 days	85	85	38.80%	23.50%	No
Senaran et al.	Enoxaparin; GCS	Heparin; GCS								
2006	Allowed	Allowed	Hip	High	NR	50	50	2.00%	8.00%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (knee)	Allowed	Allowed	Knee	High	NR	91	89	6.60%	4.50%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (hip)	Allowed	Allowed	Hip	High	NR	102	101	6.90%	2.00%	No
Colwell et al.	Enoxaparin; GCS	Warfarin; GCS								
1999	Allowed	Allowed	Hip	High	NR	1516	1495	8.80%	6.80%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS								
al. 2001	Allowed	Allowed	Knee	High	NR	173	176	28.30%	21.00%	No
Turpie et al.				C						
2001	Fondaparinux	Enoxaparin	Hip	High	~10 days	177	260	3.40%	3.10%	No
Cohen et al.		*	•	C	-					
2007	Fondaparinux	Fondaparinux + GCS	Hip	High	NR	404	391	7.20%	6.40%	No
Fuji et al.	Fondaparinux; GCS	Placebo; GCS	•	C						
2008b	Allowed	Allowed	Hip	High	NR	81	82	2.50%	0.00%	No
Fuji et al.	Fondaparinux; GCS	Placebo; GCS	•	C						
2008b	Allowed	Allowed	Knee	High	NR	84	87	2.40%	3.40%	No
Paiement et				-						
al. 1987	IPC	Warfarin	Hip	Moderate	NR	66	72	4.50%	4.20%	No
	IPC; Low Dose		_							
Colwell et al.	Aspirin Allowed									
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	10 weeks	198	194	37.40%	40.20%	No
Eriksson et					7-11					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	days	128	157	3.90%	3.80%	No
Eriksson et										
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	38 days	2209	2224	5.80%	5.80%	No
Lassen et al.										
2008	Rivaroxaban	Enoxaparin	Knee	High	~2 weeks	1220	1239	4.30%	4.40%	No
Turpie et al.										
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	10.20%	9.20%	No
Kakkar et al.					5-6					
2008	Rivaroxaban	Enoxaparin	Hip	High	weeks	1228	1229	6.50%	5.50%	No
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS								
al. 2006	Allowed	Allowed	Hip	High	11 days	136	132	4.40%	4.50%	No
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS			7-11					
al. 2007	Allowed	Allowed	Hip	High	days	80	162	5.00%	4.90%	No

Author	Crown1	Crown?	Loint	Strongth	Duration	n 1		% Group 1	% Group 2	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS	17	TT' 1	0.1	100	104	5 000/	2 000/	NT
2005	Allowed	Allowed	Knee	High	9 days	102	104	5.90%	2.90%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Knee	High	NR	317	324	1.60%	1.50%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Hip	High	NR	398	397	1.30%	2.30%	No
Hull et al.	1		1	e						
1993	Tinzaparin	Warfarin	Both	High	NR	715	721	1.40%	1.90%	No
Eriksson et	*			C						
al. 2010	YM150	Enoxaparin	Hip	High	6 weeks	156	166	3.80%	3.00%	No
Eriksson et		1	1	6						
al. 2010	YM150	Enoxaparin	Hip	High	9 days	156	166	3.80%	3.00%	No
	YM150; Mechanical	Enoxaparin;		e	•					
Eriksson et	Allowed (Used In	Mechanical Allowed								
al. 2007d	1/3)	(Used In 1/3)	Hip	High	~5 weeks	36	36	19.40%	22.20%	No

Author	Crown1	Crown 2	Joint	Strength	Outcome	Duration	n1	n2	% Group	% Group 2	Significant Difference
McKenna et	Group1 Aspirin	Group2 IPC; Group 3:	JOIIII	Strength	Outcome	Duration	111	10;	1	2 0.00%;	Difference
al. 1980	$(\geq 300 \text{mg/Day})$	Placebo	Knee	Moderate	Active bleeding	NR	12	n3:12	8.30%	g3: 0%	No
Lassen et al.	(<u>_</u> 500mg/Duy)	1 lucebb	Triffee	Moderate	netive bleeding		12	113.12	0.5070	55.070	110
2009	Apixaban	Enoxaparin	Knee	High	All bleeding	2 weeks	1596	1588	5.30%	6.80%	No
Lassen et al.	F	F		8	8						
2010	Apixaban	Enoxaparin	Knee	High	All bleeding	2 weeks	1501	1508	6.90%	8.40%	No
Lassen et al.	Ĩ	L		e	C						
2010b	Apixaban	Enoxaparin	Hip	High	All bleeding	35 days	2673	2659	11.70%	12.60%	No
		Enoxaparin;									
Lassen et al.		Group 3:						149;		5.40%;	
2007	Apixaban	Warfarin	Knee	High	All bleeding	6 weeks	155	n3:151	7.10%	g3:5.3%	No
Fuji et al.	Dabigatran;	Placebo; GCS									
2010	GCS Allowed	Allowed	Knee	High	Any bleeding	2 weeks	129	124	10.90%	8.10%	No
Fuji et al.	Fondaparinux;	Placebo; GCS		· · · ·	A 11 1'		0.1	00	4.000/	0.000/	X 7
2008b	GCS Allowed	Allowed	Hip	High	Any bleeding	NR	81	82	4.90%	0.00%	Yes
Fuji et al. 2008b	Fondaparinux; GCS Allowed	Placebo; GCS Allowed	Knee	High	Any blooding	NR	84	87	3.60%	4.60%	No
Eriksson et	GCS Allowed	Allowed	Knee	High	Any bleeding	INK	04	87	5.00%	4.00%	INO
al. 2008	Rivaroxaban	Enoxaparin	Hip	High	Any bleeding	38 days	2209	2224	6.00%	5.90%	No
Lassen et al.	Ki vai Okabali	Liloxaparin	mp	Ingn	They bleeding	50 days	2207	<i>222</i> T	0.0070	5.7070	110
2008	Rivaroxaban	Enoxaparin	Knee	High	Any bleeding	~2 weeks	1220	1239	4.90%	4.80%	No
Turpie et al.		2		8	i mj oleeanig		1220	1207	, 0,70		1.0
2009	Rivaroxaban	Enoxaparin	Knee	High	Any bleeding	day 17	1526	1508	10.50%	9.40%	No
Eriksson et		*		C		2					
al. 2010	YM150	Enoxaparin	Hip	High	Any bleeding	6 weeks	156	166	7.10%	5.40%	No
Eriksson et		_	-	-	-						
al. 2010	YM150	Enoxaparin	Hip	High	Any bleeding	9 days	156	166	6.40%	5.40%	No
Colwell et al.					Bleeding at						
1995	Enoxaparin	Heparin	Knee	High	nonoperative site	NR	228	225	17.10%	20.90%	No

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Colwell et al.				~	Bleeding at						
1995 Lotke et al.	Enoxaparin Aspirin	Heparin Warfarin,	Knee	High	operative site Bleeding	NR	228	225	3.90%	2.20%	No
1996	(≥300mg/Day)	Then Aspirin GCS;	Both	Moderate	complications	NR	166	146	3.60%	5.50%	No
Chin et al.		Group 3: IPC; Group 4: No			Bleeding			110; n3:110		2.7%; g3:3.6%	
2009 Warwick et	Enoxaparin Enoxaparin +	Treatment Foot Pump +	Knee	High	complications Bleeding	NR	110	n4:110	8.20%	g4:2.7%	No
al. 2002 Moskovitz et	GCS Heparin +	GCS	Knee	High	complications Bleeding	NR	108	111	3.70%	0.00%	Yes
al. 1978 Francis et al.	GCS	GCS Warfarin +	Hip	High	complications Bleeding	NR	35	32	54.30%	28.10%	No
1992 Agnelli et al.	IPC + GCS	GCS	Hip	High	complications Bleeding events	NR	110	110	3.60%	3.60%	No
2007 Santori et al.	LY517717	Enoxaparin	Both	High	(major and minor) Bleeding problems or wound	~1 week	106	90	0.90%	2.20%	No
1994 Colwell et al.	Heparin Enoxaparin;	Foot Pump Warfarin;	Hip	Moderate	hematoma Both Major and	NR	65	67	13.80%	0.00%	Yes
1999 Eriksson et	GCS Allowed	GCS Allowed	Hip	High	Minor Bleeding Excessive bleeding (>3000	NR	1516	1495	0.60%	0.30%	No
al. 1991 Mannucci et	Dalteparin	Heparin	Hip	High	ml) Excessive	NR	67	69	1.50%	7.20%	No
al. 1976	Heparin Aspirin	None	Hip	Moderate	operative bleeding	NR	45	51	20.00%	21.60%	No
Westrich et al. 2006	(≥300mg/Day) + IPC	Enoxaparin + Ipc	Knee	Moderate	Internal bleeding complication	NR	129	135	0.80%	0.00%	No

Table 147. Individual Study Results - Any Bleeding

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Francis et al.	Groupi	Group2	JOIIII	Strength	Operative site	Duration	111	112	1	4	Difference
1997	Dalteparin Fondaparinux;	Warfarin Enoxaparin;	Hip	Moderate	bleeding	NR	271	279	4.40%	1.10%	No
Bauer et al.	GCS	GCS									
2001	Recommended Fondaparinux;	Recommended Enoxaparin;	Knee	High	Other bleeding	11 days	517	517	2.70%	3.70%	No
Lassen et al.	GCS	GCS									
2002	Recommended Fondaparinux;	Recommended Enoxaparin;	Hip	High	Other bleeding	11 days	1140	1133	3.90%	3.40%	No
Turpie et al.	GCS	GCS	TT.	TT' 1	0.1 11 1	11 1	1100	1120	1 500/	0 100/	N
2002 Francis et al.	Recommended	Recommended	Hip	High	Other bleeding Other bleeding	11 days	1128	1129	1.50%	2.10%	No
1997	Dalteparin	Warfarin Enoxaparin;	Hip	Moderate	complications Potentially	NR	271	279	5.90%	3.60%	No
Lassen et al.		Group 3:			significant non-			149;		1.30%;	
2007 Eriksson et	Apixaban	Warfarin	Knee	High	overt bleeding Surgical bleeding	6 weeks	155	n3:151	0.60%	g3:0%	No
al. 1996 Hull et al.	Desirudin Dalteparin; GCS Allowed	Heparin Warfarin; GCS Allowed	Hip	High	complications	10 days	277	277	2.90%	2.50%	No
	(Used In 25-	(Used In 25-	Ilin	Iliah	Trivial blooding	dav0_1	106	190	1 200/	1 000/	No
2000	30%) Dalteparin; GCS Allowed	30%) Warfarin; GCS Allowed	Hip	High	Trivial bleeding	day0-1	496	489	1.20%	1.80%	No
Hull et al. 2000	(Used In 25- 30%)	(Used In 25- 30%)	Hip	High	Trivial bleeding	day 2 8	496	489	3.80%	2.70%	No
2000	JU%)	30%)	riip	nigii	Thviai bleeding	day2-8	490	407	3.80%	2.70%	INU

Table 147. Individual Study	Results - Any Bleeding
-----------------------------	-------------------------------

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	IPC; Low										
	Dose Aspirin				Urinary bleeding						
Colwell et al.	Allowed				requiring						
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	rehospitalization	10 weeks	198	194	0.00%	0.50%	No
		Warfarin +	-		-						
	Aspirin	GCS; Group									
Harris et al.	$(\geq 300 \text{mg/Day})$	3: Heparin +			Wound-bleeding			55;		18.2%;	
1974	+ GCS	GCS	Hip	High	complications	NR	51	n3:20	2.00%	g3:20%	Yes

A (1	0 1		.		0.4				% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Outcome Bleed requiring	Duration	nl	n2	1	2	Difference
PEP Trial					transfusion:						
Collaborative	Aspirin				hematemesis or						
Group 2000	(<300mg/Day)	Placebo	Both	High	melena	35 days	2047	2041	0.30%	0.10%	No
PEP Trial				0	Bleed requiring			-			
Collaborative	Aspirin				transfusion: other						
Group 2000	(<300mg/Day)	Placebo	Both	High	bleed	35 days	2047	2041	2.30%	2.90%	No
PEP Trial					Bleed requiring						
Collaborative	Aspirin				transfusion: wound						
Group 2000	(<300mg/Day)	Placebo	Both	High	bleed >=4 days	35 days	2047	2041	0.50%	0.60%	No
Cohen et al.		Fondaparinux									
2007	Fondaparinux	+ GCS	Hip	High	Need for transfusion	NR	404	391	33.20%	36.10%	No
G 1					Patients Requiring						
Salzman et	Aspirin		TT:	TT: -1.	Transfusion in 1st	ND	12	12	40.000/	20.000/	V
al. 1971	(≥300mg/Day)	Warfarin	Hip	High	Postoperative Week	NR	43	43	48.80%	20.90%	Yes
Bonneux et al. 2006	Fondaparinux + GCS	Enoxaparin + GCS	Knee	High	Postoperative Transfusions	NR	55	54	12.70%	9.30%	No
al. 2000	+ GCS Fondaparinux;	Enoxaparin;	Kliee	nign	Transfusions	INK	33	34	12.70%	9.30%	INO
Bauer et al.	GCS	GCS			Postoperative						
2001	Recommended	Recommended	Knee	High	Transfusions	11 days	517	517	42.90%	38.10%	No
2001	Fondaparinux;	Enoxaparin;	Trilee	mgn	Tunistusions	11 duys	517	517	12.9070	50.1070	110
Lassen et al.	GCS	GCS			Postoperative						
2002	Recommended	Recommended	Hip	High	Transfusions	11 days	1140	1133	62.60%	60.90%	No
	Fondaparinux;	Enoxaparin;	1	C		2					
Turpie et al.	GCS	GCS			Postoperative						
2002	Recommended	Recommended	Hip	High	Transfusions	11 days	1128	1129	52.60%	49.20%	No
Avikainen et					Postoperative						
al. 1995	Enoxaparin	Heparin	Hip	High	Transfusions	NR	83	84	31.30%	26.20%	No

Table 148. Individual Study Results - Transfusion

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lotke et al.	Aspirin	Warfarin,	Joint	Bucigui	Outcome	Duration	111	112	1	4	Difference
1996	(≥300mg/Day)	Then Aspirin Aspirin	Both	Moderate	Transfusion after 48h	NR	166	146	0.00%	0.00%	No
Gelfer et al.		(<300mg/Day)			Transfusion of >2						
2006 Stone et al.	Enoxaparin	+ IPC	Both	High	units Transfusion of at	NR	60	61	48.30%	55.70%	No
1996 Leclerc et al.	IPC	Enoxaparin	Hip	Moderate	least 2 units Transfusions after	NR	25	25	12.00%	28.00%	No
1996	Enoxaparin	Warfarin	Knee	High	recovery room Transfusions during	~14 days	336	334	42.00%	32.30%	Yes
Leclerc et al.					surgery or in						
1996	Enoxaparin	Warfarin	Knee	High	recovery room Transfusions for	~14 days	336	334	9.20%	9.60%	No
Colwell et al.	Enoxaparin;	Warfarin;			replacement of						
1999	GCS Allowed	GCS Allowed	Hip	High	operative blood loss Transfusions for	NR	1516	1495	66.90%	62.10%	Yes
					replacement of						
Colwell et al.	Enoxaparin;	Warfarin;			postoperative blood						
1999	GCS Allowed	GCS Allowed	Hip	High	loss	NR	1516	1495	2.80%	1.50%	Yes
Poller et al.					Patients requiring at least 3 units of red						
1995	Warfarin	Heparin	Both	High	cells during surgery	NR	31	37	9.70%	8.10%	No

	G 1		.			D			% Group	%	Significant
Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	1	Group 2	Difference
	Heparin +	Aspirin									
Sharrock et	Aspirin (≥300mg/Day)	Aspirin (≥300mg/Day)									
al. 1990	$(\geq 500 \text{ mg/Day})$ + GCS	$(\geq 500 \text{ mg/ Day})$ + GCS	Hip	Moderate	Deep hematoma	NR	60	66	3.30%	1.50%	No
PEP Trial	1 GCS	1005	mp	Wioderate	Deep nematoma		00	00	5.5070	1.5070	110
Collaborative	Aspirin				Evacuation of						
Group 2000	(<300mg/Day)	Placebo	Both	High	hematoma	35 days	2047	2041	0.80%	0.40%	No
Eriksson et				U	Evacuation of	2					
al. 1991	Dalteparin	Heparin	Hip	High	hematoma	NR	67	69	0.00%	0.00%	No
					Hematoma						
Warwick et	Enoxaparin +	Foot Pump +			necessitating						
al. 1998	GCS	GCS	Hip	High	treatment	NR	138	136	0.00%	0.00%	No
	IPC; Low				Hematoma						
	Dose Aspirin				requiring						
Colwell et al.	Allowed	F .			prolonged	10 1	100	104	0.000/	0.500/	N
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	hospitalization	10 weeks	198	194	0.00%	0.50%	No
	IPC; Low Dose Aspirin				Hematoma						
Colwell et al.	Allowed				requiring						
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	rehospitalization	10 weeks	198	194	0.00%	0.50%	No
Avikainen et	(0.500 m 0.570)	Liloxupuilli	mp	moderate	Revisions due to	10 weeks	170	171	0.0070	0.2070	110
al. 1995	Enoxaparin	Heparin	Hip	High	wound hematomas	NR	83	84	0.00%	0.00%	No
	r	r	Г	0	Surgical			-			
	Heparin +	Heparin +			intervention due to						
Rader et al.	GCS +	GCS +			hematoma or						
1998	Heparin	Enoxaparin	Both	High	infection	NR	116	130	0.00%	0.00%	No

Table 149. Individual Study Results - Wound Hematoma – Severe/Complicated/Requiring Intervention

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Dalteparin;	Warfarin;									
	GCS Allowed	GCS Allowed									
Hull et al.	(Used In 25-	(Used In 25-			Wound hematoma,						
2000	30%)	30%)	Hip	High	Complicated	NR	496	489	0.40%	0.20%	No
Hull et al.					Wound hematoma,						
1993	Tinzaparin	Warfarin	Both	High	Complicated	NR	715	721	0.40%	0.40%	No
		GCS; Group									
Hume et al.	Heparin +	3: Warfarin +			Wound hematoma,			19;		5.30%	
1973	GCS	GCS	Hip	Moderate	major	NR	18	n3:17	38.90%	g3:5.9%	Yes
Torholm et					Wound hematoma,						
al. 1991	Dalteparin	Placebo	Hip	High	severe	NR	58	54	0.00%	0.00%	No

Table 149. Individual Study Results - Wound Hematoma – Severe/Complicated/Requiring Intervention

			- • /		D		•	% Group	%	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	Group 2	Difference
Kim et al.		N.T.				-0	-	0.000/	a 0004	
1998	Aspirin (≥300mg/Day)	None	Hip	Moderate	NR	50	50	0.00%	2.00%	No
Harris et al.										
1977	Aspirin (≥300mg/Day)	Placebo	Hip	High	NR	44	51	6.80%	2.00%	No
Salzman et										
al. 1971	Aspirin (≥300mg/Day)	Warfarin GCS + IPC;	Hip	High	NR	43	43	9.30%	16.30%	No
Woolson et	Aspirin (≥300Mg/Day)	Group 3: Warfarin					73;		1.40%;	
al. 1991	+ GCS $+$ IPC	+ GCS $+$ IPC	Hip	Moderate	NR	70	n3:69	1.40%	g3:1.4%	No
Dechavanne			•						0	
et al. 1989	Dalteparin	Heparin	Hip	High	NR	41	40	9.80%	10.00%	No
	Dalteparin; GCS	Warfarin; GCS	1	U						
Hull et al.	Allowed (Used In 25-	Allowed (Used In								
2000	30%)	25-30%)	Hip	High	NR	496	489	2.00%	3.30%	No
	Dalteparin; GCS	Warfarin; GCS	1	U						
Hull et al.	Allowed (Used In 25-	Allowed (Used In								
2000	30%)	25-30%)	Hip	High	NR	496	489	10.30%	9.20%	No
Eriksson et	,	,	1	U						
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	NR	1028	1023	8.30%	7.90%	No
Eriksson et		·	r	0						
al. 1996	Desirudin	Heparin	Hip	High	NR	277	277	5.10%	5.40%	No
Warwick et		P	r	8						
al. 1995	Enoxaparin + GCS	GCS	Hip	High	NR	78	78	0.00%	3.80%	No
Fauno et al.	r		r -	8						
1994	Enoxaparin + GCS	Heparin + GCS	Knee	High	NR	92	93	8.70%	12.90%	No
Mannucci et				8			20	5		
al. 1976	Heparin	None	Hip	Moderate	NR	45	51	20.00%	0.00%	Yes
VTCSG	repuin	1,0110	•••P	moderate		10		20.0070	0.0070	1.00
1975	Heparin	None	Hip	Moderate	NR	30	30	13.30%	10.00%	No
1715	nopulli	1 tone	шp	muut	1 111	50	50	15.5070	10.0070	110

Table 150. Individual Study Results - Wound Hematoma

								% Group	%	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	Group 2	Difference
		Aspirin								
Sharrock et	Heparin + Aspirin	(≥300mg/Day) +								
al. 1990	$(\geq 300 \text{mg/Day}) + \text{GCS}$	GCS	Hip	Moderate	NR	60	66	1.70%	0.00%	No
Hume et al.		GCS; Group 3:					19;		0.00%	
1973	Heparin + GCS	Warfarin + GCS	Hip	Moderate	NR	18	n3:17	16.70%	g3:29.4%	Yes
Hull et al.										
1993	Tinzaparin	Warfarin	Both	High	NR	715	721	6.70%	3.60%	Yes
Hull et al.										
1993	Tinzaparin	Warfarin	Knee	High	NR	317	324	8.80%	5.90%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Hip	High	NR	398	397	5.80%	2.50%	No
Barber et al.										
1977	Warfarin	Heparin	Hip	Moderate	NR	58	19	24.10%	15.80%	No
Fordyce et			_							
al. 1991	Warfarin	Placebo	Hip	High	NR	74	74	8.10%	10.80%	No

Table 150. Individual Study Results - Wound Hematoma

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Eriksson et		-		x	Deep wound						
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	infection	10 days	1028	1023	0.20%	0.20%	No
Eriksson et		_	_	_							
al. 1997	Desirudin	Heparin	Hip	High	Deep infection	NR	223	220	0.00%	0.00%	No
Eriksson et					Reoperation due to						
al. 1996	Desirudin	Heparin	Hip	High	infection	10 days	277	277	0.70%	0.00%	No
Barber et al.		_	-	-	Deep wound						
1977	Warfarin	Heparin	Hip	Moderate	infection	NR	58	19	0.00%	0.00%	No

Table 151. Individual Study Results - Deep Wound Infection

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.		Enoxaparin;					149;		0.70%;	
2007 PEP Trial	Apixaban	Group 3: Warfarin	Knee	High	6 weeks	155	n3:151	1.90%	g3:2.0%	No
Collaborative	Aspirin									
Group 2000	(<300mg/Day)	Placebo	Both	High	35 days	2047	2041	0.60%	0.90%	No
Dechavanne										
et al. 1989 Torholm et	Dalteparin	Heparin	Hip	High	NR	41	40	0.00%	5.00%	No
al. 1991	Dalteparin	Placebo	Hip	High	NR	58	54	3.40%	0.00%	No
Gelfer et al.		Aspirin (<300mg/Day) +								
2006	Enoxaparin	IPC GCS;	Both	High	NR	60	61 110	0.00%	0.00% 1.80%	No
Chin et al.		Group 3: IPC;					n3:110		g3:0.9%	
2009	Enoxaparin	Group 4: No Treatment	Knee	High	1 month	110	n4:110	0.00%	g4:1.8%	No
Avikainen et										
al. 1995	Enoxaparin	Heparin	Hip	High	NR	83	84	0.00%	0.00%	No
Fauno et al.	Enoxaparin +									
1994	GCS	Heparin + GCS	Knee	High	NR	92	93	1.10%	3.20%	No
Moskovitz et	Heparin +					~~		0.000/	0.000/	
al. 1978	GCS	GCS	Hip	High	NR	35	32	0.00%	0.00%	No
Eriksson et al. 2008	Rivaroxaban	Enovonorin	Ilin	High	20 dava	2209	2224	0.40%	0.40%	No
Kakkar et al.	Rivaroxadan	Enoxaparin	Hip	High	38 days 5-6	2209	2224	0.40%	0.40%	INO
2008	Rivaroxaban	Enoxaparin	Hip	High	weeks	1228	1229	0.70%	0.50%	No
Lassen et al.	iti vai okabali	Liioxupuriii	mp	mgm	weeks	1220	122)	0.7070	0.5070	110
2008	Rivaroxaban	Enoxaparin	Knee	High	~2 weeks	1220	1239	0.60%	0.90%	No
Turpie et al.				0		-				
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	1526	1508	0.30%	0.20%	No

Table 152. Individual Study Results - Wound Infection

Table 152. Individual S	Study Results -	Wound Infection
-------------------------	-----------------	-----------------

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Fordyce et										
al. 1991	Warfarin	Placebo	Hip	High	NR	74	74	0.00%	1.40%	No

Table 153. Individual Study Results - GI Bleeding

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Haas et al.										
1990	Aspirin (≥300mg/Day)	IPC	Knee	Moderate	NR	58	61	0.00%	0.00%	No
Salzman et										
al. 1971	Aspirin (≥300mg/Day)	Warfarin	Hip	High	NR	43	43	7.00%	2.30%	No
Lieberman et	Aspirin (≥300mg/Day)	Aspirin								
al. 1994	+ IPC	(≥300mg/Day)	Hip	High	3 months	113	118	0.00%	0.80%	No
Gelfer et al.		Aspirin								
2006	Enoxaparin	(<300mg/Day) + IPC	Both	High	NR	60	61	0.00%	0.00%	No

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Eriksson et										
al. 1991	Dalteparin	Heparin	Hip	High	NR	67	69	3.00%	10.10%	No
Torholm et	-	-	-	-						
al. 1991	Dalteparin	Placebo	Hip	High	NR	58	54	0.00%	0.00%	No
Eriksson et	*		•	C						
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	10 days	1028	1023	2.80%	0.60%	Yes
Eriksson et		*	Ĩ	C	•					
al. 1996	Desirudin	Heparin	Hip	High	10 days	277	277	9.70%	10.80%	No
Eriksson et		*	Ĩ	C	•					
al. 1997	Desirudin	Heparin	Hip	High	NR	223	220	1.80%	1.80%	No
Lassen et al.		L	1	C						
1991	Tinzaparin + GCS	GCS	Hip	Moderate	NR	105	105	62.90%	19.00%	Yes

Table 154. Individual Study Results - Injection-Site Hematoma

A 4]	C1	C2	T 4	<u>C4</u>	0-4	Dametian	1	2	% Group	% Group	Significant
Author	Group1 IPC; Low	Group2	Joint	Strength	Outcome	Duration	n1	n2	1	2	Difference
Colwell et al. 2010	Dose Aspirin Allowed (Used In 63%) IPC; Low	Enoxaparin	Hip	Moderate	Anemia requiring prolonged hospitalization Anemia with	10 weeks	198	194	0.00%	2.60%	Yes
Colwell et al.	Dose Aspirin Allowed				hypotension requiring						
2010 Eriksson et	(Used In 63%)	Enoxaparin	Hip	Moderate	intervention	10 weeks	198	194	0.00%	1.00%	No
al. 1996	Desirudin	Heparin	Hip	High	Dehiscence Discharge from drain sites which	10 days	277	277	0.40%	0.40%	No
Warwick et	Enoxaparin +				persisted beyond						
al. 1995	GCS	GCS Warfarin +	Hip	High	the 6th postop day	NR	78	78	21.80%	10.30%	No
	Aspirin	GCS; Group									
Harris et al.	(≥300mg/Day)	3: Heparin +			Distant			55;		10.90%	
1974 Cohen et al.	+ GCS	GCS Fondaparinux	Hip	High	complications Hemoglobin	NR	51	n3:20	2.00%	g3:0%	Yes
2007	Fondaparinux	+ GCS Aspirin	Hip	High	decreased	NR	404	391	11.90%	11.00%	No
Gelfer et al.		(<300mg/Day)			Low Hemoglobin						
2006	Enoxaparin Aspirin	+ IPC	Both	High	(<9 g/dL)	NR	60	61	6.70%	11.50%	No
Lieberman et	$(\geq 300 \text{mg/Day})$	Aspirin			Major						
al. 1994 Haas et al.	+ IPC Aspirin	(≥300mg/Day)	Hip	High	complications Wound	NR	113	118	1.80%	0.80%	No
1990	$(\geq 300 \text{mg/Day})$	IPC	Knee	Moderate	complications	NR	58	61	8.60%	9.80%	No

Table 155. Individual Study Results - Other Wound or Bleeding Complications

A . 0			- • /			D		•	% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	1	2	Difference
Eriksson et					Wound						
al. 1997(b)	Desirudin	Enoxaparin Aspirin	Hip	High	Dehiscence	10 days	1028	1023	0.60%	0.50%	No
Gelfer et al.		(<300mg/Day)			Wound drainage						
2006	Enoxaparin	+ IPC	Both	High	over 500ml in 72h	NR	60	61	13.30%	16.40%	No
	IPC; Low										
	Dose Aspirin				Wound drainage						
Colwell et al.	Allowed				requiring						
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	rehospitalization	10 weeks	198	194	0.00%	0.50%	No
	IPC; Low										
	Dose Aspirin				Wound drainage						
Colwell et al.	Allowed				requiring						
2010	(Used In 63%)	Enoxaparin	Hip	Moderate	rehospitalization	NR	198	194	0.00%	0.50%	No
	Heparin +	_	_		Wound or						
Westrich et	Aspirin	Aspirin			bleeding						
al. 2005	(≥300mg/Day)	(≥300mg/Day)	Hip	High	complications	NR	69	65	0.00%	0.00%	No
Bonneux et	Fondaparinux	Enoxaparin +									
al. 2006	+ GCS	GCS	Knee	High	Wound problems	NR	55	54	7.30%	7.40%	No
Stone et al.											
1996	IPC	Enoxaparin	Hip	Moderate	Wound problems	NR	25	25	4.00%	0.00%	No
Torholm et		_	_		_						
al. 1991	Dalteparin	Placebo	Hip	High	Wound rupture	NR	58	54	0.00%	1.90%	No
Eriksson et	~		-	-	-						
al. 1997	Desirudin	Heparin	Hip	High	Wound rupture	NR	223	220	0.00%	0.00%	No

Table 155. Individual Study Results - Other Wound or Bleeding Complications

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lassen et al.	•	•		0						
2009	Apixaban	Enoxaparin	Knee	High	2 months	1599	1596	0.40%	0.60%	No
Lassen et al.					2.5					
2010	Apixaban	Enoxaparin	Knee	High	months	1528	1529	0.30%	0.50%	No
Lassen et al.										
2010b	Apixaban	Enoxaparin	Hip	High	95 days	2708	2699	0.00%	0.30%	Yes
Lassen et al.		Enoxaparin; Group					109		0.90%	
2007	Apixaban	3: Warfarin	Knee	High	6 weeks	105	n3:109	1.90%	g3:0.9%	No
PEP Trial										
Collaborative	Aspirin									
Group 2000	(<300mg/Day)	Placebo	Both	Moderate	35 days	2047	2041	0.70%	0.90%	No
	Aspirin	Aspirin								
	$(\geq 300 \text{mg/Day}) + \text{IPC}$	(≥300mg/Day) +								
	(Rapid Inflation	IPC (Sequential								
Lachiewicz	Asymmetrical	Compression							0.00	
et al. 2004	Compression Device)	Device)	Knee	High	NR	206	217	0.00%	0.00%	No
Eriksson et	DI	D :		*** 1	0 1	1001	000	0.100/	0.400/	NT
al. 2011	Dabigatran	Enoxaparin	Hip	High	3 months	1001	992	0.10%	0.40%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS	17	TT' 1	0 1	100	104	0.000/	1 (00/	NT
2010	Allowed	Allowed	Knee	High	2 weeks	129	124	0.80%	1.60%	No
	Dabigatran; GCS And	Enoxaparin; GCS								
Eriksson et	Nsaids (Inc. Low	And Nsaids (Inc.								
al. 2005	Dose Aspirin) Allowed	Low Dose Aspirin) Allowed	Deth	III ale	5	283	300	0.70%	0.30%	No
al. 2005			Both	High	5 weeks	283	300	0.70%	0.30%	INO
	Dabigatran; GCS,	Enoxaparin; GCS,								
Eriksson et	Low Dose Aspirin And Cox-2 Inhibitors	Low Dose Aspirin And Cox-2								
al. 2007b	Allowed	Inhibitors Allowed	Knee	High	11 days	675	685	0.10%	1.20%	Yes
1. 20070	Alloweu	minutions Anowed	KIICC	Iligii	11 uays	075	005	0.1070	1.2070	1 05

Table 156. Individual Study Results - Symptomatic DVT

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
numor	Dabigatran; GCS,	Enoxaparin; GCS,	50111	ouengin	Duration		112	1		Difference
	Low Dose Aspirin	Low Dose Aspirin								
Eriksson et	And Cox-2 Inhibitors	And Cox-2								
al. 2007c	Allowed	Inhibitors Allowed	Hip	High	5 weeks 3 months	1137	1142	0.50%	0.10%	No
	Dabigatran; GCS,	Enoxaparin; GCS,			(not					
	Low Dose Aspirin	Low Dose Aspirin			including					
Ginsberg et	And Cox-2 Inhibitors	And Cox-2			1st 17					
al. 2009	Allowed	Inhibitors Allowed	Knee	High	days)	604	643	0.30%	0.30%	No
	Dalteparin; GCS	Warfarin; GCS								
Hull et al.	Allowed (Used In 25-	Allowed (Used In								
2000	30%)	25-30%)	Hip	High	NR	337	338	1.50%	4.40%	No
Eriksson et										
al. 1997(b)	Desirudin	Enoxaparin	Hip	High	6 weeks	802	785	1.00%	0.90%	No
Eriksson et										
al. 1997	Desirudin	Heparin	Hip	High	44 days	180	180	2.20%	2.80%	No
Planes et al.										
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	1.40%	0.90%	No
Warwick et	F : 000			*** 1	NE	100	10.6	1 4004	0.500/) T
al. 1998	Enoxaparin + GCS	Foot Pump + GCS	Hip	High	NR	138	136	1.40%	0.70%	No
Edwards et		F	D - 11	Ma la mata	2	1 / 1	120	0.700/	0.700/	N.
al. 2008	Enoxaparin + IPC	Enoxaparin	Both	Moderate	3 months	141	136	0.70%	0.70%	No
Bauer et al. 2001	Fondaparinux; GCS Recommended	Enoxaparin; GCS Recommended	Knee	High	11 dava	517	517	0.60%	0.80%	No
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS	Knee	High	11 days	317	317	0.00%	0.80%	NO
2002	Recommended	Recommended	Hip	High	11 days	1129	1123	0.30%	0.10%	No
Turpie et al.	Fondaparinux; GCS	Enoxaparin; GCS	mp	mgn	11 uays	1129	1123	0.3070	0.1070	INU
2002	Recommended	Recommended	Hip	High	11 days	1126	1128	0.40%	0.00%	Yes
2002	Recommended	Recommended	тпр	пдп	11 uuys	1120	1120	0.4070	0.0070	105

Table 156. Individual Study Results - Symptomatic DVT

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Hull et al.										
1990	IPC	None	Hip	Moderate	3 months	152	158	1.30%	0.60%	No
Eriksson et					1-2					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	High	months	113	107	0.00%	0.90%	No
Turpie et al.										
2009	Rivaroxaban	Enoxaparin	Knee	High	day 17	965	959	0.60%	1.00%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS		_						
2005	Allowed	Allowed	Knee	High	~ 1 week	102	104	0.00%	1.90%	No
Eriksson et				_						
al. 2010	YM150	Enoxaparin	Hip	High	9 days	114	127	0.00%	0.00%	No

Table 156. Individual Study Results - Symptomatic DVT

								% Group	%	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	Group 2	Difference
Lassen et al.										
2010	Apixaban	Enoxaparin	Knee	Low	2 weeks	971	997	14.60%	24.40%	Yes
Lassen et al.										
2009	Apixaban	Enoxaparin	Knee	Moderate	2 weeks	1142	1122	7.80%	8.20%	No
Lassen et al.				_						
2010b	Apixaban	Enoxaparin	Hip	Low	35 days	1944	1911	1.10%	3.60%	Yes
Lassen et al.		Enoxaparin;					109;		12.80%	
2007	Apixaban	Group 3: Warfarin	Knee	Moderate	12 days	105	n3:109	10.50%	g3:25.7%	Yes
Lotke et al.		Warfarin, Then								
1996	Aspirin (≥300mg/Day)	Aspirin	Both	Moderate	7-9 days	166	146	56.60%	53.40%	No
Lieberman et	Aspirin (≥300mg/Day)	Aspirin					110	6 8 0 0 1		
al. 1994	+ IPC	(≥300mg/Day)	Hip	Moderate	7 days	113	118	6.20%	7.60%	No
Westrich et	Aspirin (≥300mg/Day)				4-6		105	1	4.4.0.04	
al. 2006†	+ IPC	Enoxaparin + IPC	Knee	Moderate	weeks	129	135	17.80%	14.10%	No
		Aspirin								
	Aspirin (≥300mg/Day)	$(\geq 300 \text{mg/Day}) +$								
T 1 · ·	+ IPC (Rapid Inflation	IPC (Sequential								
Lachiewicz	Asymmetrical	Compression	17		ND	200	017	7 200/	15 700/	X 7
et al. 2004†	Compression Device)	Device)	Knee	Moderate	NR	206	217	7.30%	15.70%	Yes
Eriksson et		г ·		T	ND	701	702	7 (00)	0.000	NT
al. 2011	Dabigatran	Enoxaparin	Hip	Low	NR	791	783	7.60%	8.60%	No
	Debiestron, CCC And	Enoxaparin; GCS								
E alles a set	Dabigatran; GCS And	And Nsaids (Inc.								
Eriksson et	Nsaids (Inc. Low Dose	Low Dose	$\mathbf{D} \cdot \mathbf{d}$	Ma lanata	7 1	202	200	16 600/	24.000/	N.
al. 2005	Aspirin) Allowed	Aspirin) Allowed	Both	Moderate	7 days	283	300	16.60%	24.00%	No
	Dabigatran; GCS, Low	Enoxaparin; GCS,								
Cinchang of	Dose Aspirin And Cox-2 Inhibitors	Low Dose Aspirin And Cox-2								
Ginsberg et			Vnaa	Moderate	17 dava	604	612	20.000/	24 600/	No
al. 2009	Allowed	Inhibitors Allowed	Knee	Moderate	17 days	604	643	30.00%	24.60%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Dabigatran; GCS, Low	Enoxaparin; GCS,	Uomu	Strength	Durumon			-	01040	Difference
	Dose Aspirin And	Low Dose Aspirin								
Eriksson et	Cox-2 Inhibitors	And Cox-2								
al. 2007b	Allowed	Inhibitors Allowed	Knee	Moderate	11 days	503	511	36.00%	36.00%	No
	Dabigatran; GCS, Low	Enoxaparin; GCS,			·					
	Dose Aspirin And	Low Dose Aspirin								
Eriksson et	Cox-2 Inhibitors	And Cox-2								
al. 2007c	Allowed	Inhibitors Allowed	Hip	Moderate	5 weeks	874	894	4.60%	6.30%	No
Francis et al.										
1997	Dalteparin	Warfarin	Hip	Moderate	NR	192	190	14.60%	25.80%	Yes
	Dalteparin; GCS	Warfarin; GCS								
Hull et al.	Allowed (Used In 25-	Allowed (Used In								
2000	30%)	25-30%)	Hip	Moderate	day 6	337	338	10.70%	24.00%	Yes
Eriksson et										
al. 1997(b)	Desirudin	Enoxaparin	Hip	Moderate	10 days	773	768	18.40%	25.50%	Yes
Eriksson et										
al. 1996	Desirudin	Heparin	Hip	Moderate	10 days	202	229	18.30%	33.60%	Yes
Eriksson et		· ·			10.1	100	100		aa a a a a	
al. 1997	Desirudin	Heparin	Hip	Moderate	10 days	180	180	7.20%	23.30%	Yes
C1 · 1		GCS; Group 3:					110		12.70%	
Chin et al.	Energenenin	IPC; Group 4: No	Vana	Madanata	ND	110	n3:110	5 500/	g3:8.2%	Vaa
2009† Colwell et al.	Enoxaparin	Treatment	Knee	Moderate	NR	110	n4:110	5.50%	g4:21.8%	Yes
1994	Enovonorin	Hanamin	Ilin	Madamata	7 dava	194	207	4.60%	11.60%	Yes
Colwell et al.	Enoxaparin	Heparin	Hip	Moderate	7 days	194	207	4.00%	11.00%	res
1995	Enovanarin	Uanarin	Knee	Moderate	NR	228	225	24.60%	33.80%	No
Planes et al.	Enoxaparin	Heparin	Klice	wiouerate	INK	220	223	∠ 4.0 0%	33.00%	INU
1988	Enoxaparin	Heparin	Hip	Moderate	12 days	120	108	12.50%	25.00%	No
1700	Еполарани	nepaini	mp	witherate	12 uays	120	100	12.3070	23.0070	110

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Planes et al.	•	•		0					•	
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	20.10%	21.70%	No
Leclerc et al.	-	-	-	-						
1996	Enoxaparin	Warfarin	Knee	Moderate	~14 days	206	211	36.90%	51.70%	Yes
Warwick et										
al. 2002	Enoxaparin + GCS	Foot Pump + GCS	Knee	Low	NR	89	99	53.90%	57.60%	No
Warwick et										
al. 1998	Enoxaparin + GCS	Foot Pump + GCS	Hip	Moderate	NR	138	136	13.00%	17.60%	No
Edwards et										
al. 2008†	Enoxaparin + IPC	Enoxaparin	Both	Low	discharge	141	136	3.50%	11.00%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (hip)	Allowed	Allowed	Hip	Moderate	NR	80	86	33.80%	41.90%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS								
al. 2001	Allowed	Allowed	Knee	Moderate	NR	173	176	25.40%	44.90%	Yes
Turpie et al.					4-5					
2001	Fondaparinux	Enoxaparin	Hip	Moderate	weeks	115	171	1.70%	9.40%	Yes
Bauer et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2001	Recommended	Recommended	Knee	Moderate	11 days	361	361	12.50%	27.10%	Yes
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS					010	4.0004	0.000/	••
2002	Recommended	Recommended	Hip	Moderate	11 days	908	918	4.00%	9.00%	Yes
Turpie et al.	Fondaparinux; GCS	Enoxaparin; GCS			11 1	704	706	F (00)	0.000/	NT
2002	Recommended	Recommended	Hip	Moderate	11 days	784	796	5.60%	8.20%	No
Rader et al.	Heparin $+$ GCS $+$	Heparin + GCS + Γ			ND	110	120	1 700/	6.000/	NT
1998	Heparin	Enoxaparin	Both	Moderate	NR	116	130	1.70%	6.20%	No
Hull et al.	IPC	None	ILe	Moderate	11	150	150	22 700/	10 700/	Vac
1990 Eronais at al	IPC	None	Hip	Moderate	~14 days	152	158	23.70%	48.70%	Yes
Francis et al. 1992	IPC + GCS	Warfarin + GCS	Uin	Moderate	NR	98	103	26.50%	31.10%	No
1992	IFC + UCS	wariarin + GCS	Hip	Moderate	INK	98	105	20.30%	51.10%	1NO

								% Group	%	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	Group 2	Difference
	IPC; Low Dose									
Colwell et al.	Aspirin Allowed									
2010†	(Used In 63%)	Enoxaparin	Hip	Low	10 days	196	190	4.10%	4.20%	No
Turpie et al.										
2009	Rivaroxaban	Enoxaparin	Knee	Moderate	day 17	965	959	5.70%	7.90%	No
Eriksson et					6-10					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	Moderate	days	113	107	10.60%	25.20%	Yes
Eriksson et										
al. 2008	Rivaroxaban	Enoxaparin	Hip	Moderate	36 days	1595	1558	0.80%	3.40%	Yes
Kakkar et al.					5-6					
2008	Rivaroxaban	Enoxaparin	Hip	Moderate	weeks	864	869	1.60%	8.20%	Yes
Lassen et al.										
2008	Rivaroxaban	Enoxaparin	Knee	Moderate	day 17	824	878	9.60%	18.20%	Yes
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS								
al. 2006	Allowed	Allowed	Hip	Moderate	9 days	109	106	13.80%	17.00%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS								
2005	Allowed	Allowed	Knee	Moderate	~ 1 week	102	104	20.60%	29.80%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Both	Moderate	NR	590	617	31.40%	37.40%	No
Lassen et al.										
1991	Tinzaparin + GCS	GCS	Hip	Moderate	NR	93	97	31.20%	45.40%	No
Eriksson et										
al. 2010	YM150 s used ultrasound rather	Enoxaparin	Hip	Moderate	9 days	114	127	19.30%	18.90%	No

†: these studies used ultrasound rather than venography

A4h	G	C2	T 4	<u>C4</u>	Derestien	1		% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	nı	n2	1	2	Difference
Lassen et al.	A	F	V	T	0 1	1100	1100	0.000/	2 200/	V
2010 Lassen et al.	Apixaban	Enoxaparin	Knee	Low	2 weeks	1192	1199	0.80%	2.20%	Yes
2010b	Anivahan	Enovonarin	Uin	Low	35 days	2196	2190	0.30%	0.90%	Yes
Lassen et al.	Apixaban	Enoxaparin	Hip	LOW	55 days	2190	2190	0.30%	0.90%	168
2009	Apixaban	Enoxaparin	Knee	Moderate	2 weeks	1254	1207	0.70%	0.90%	No
Lassen et al.	Аріхаван	Enoxaparin; Group 3:	Klice	Widderate	2 WEEKS	1234	1207	0.70%	2.80%	INU
2007	Apixaban	Warfarin	Knee	Moderate	12 days	105	n3:109	1.90%	g3:1.8%	No
Lotke et al.	пріхадан	Warfarin, Then	Rifee	Wioderate	12 days	105	113.107	1.9070	g5.1.070	110
1996	Aspirin (≥300mg/Day)	Aspirin	Both	Moderate	NR	166	146	9.60%	12.30%	No
Lieberman et	Aspirin (≥300mg/Day)	Aspirin	Dom	moderate	1.11	100	110	2.0070	12.3070	110
al. 1994	+ IPC	$(\geq 300 \text{mg/Day})$	Hip	Moderate	7 days	113	118	0.00%	0.80%	No
Westrich et	Aspirin (≥300mg/Day)		Г		4-6	-	-			
al. 2006	+ IPC	Enoxaparin + IPC	Knee	Moderate	weeks	129	135	2.30%	3.70%	No
Eriksson et		1			4-5					
al. 2011	Dabigatran	Enoxaparin	Hip	Low	weeks	804	792	2.10%	3.90%	No
Fuji et al.	Dabigatran; GCS	Placebo; GCS	-							
2010	Allowed	Allowed	Knee	Moderate	2 weeks	102	104	0.00%	5.80%	Yes
		Enoxaparin; GCS								
	Dabigatran; GCS And	And Nsaids (Inc.								
Eriksson et	Nsaids (Inc. Low Dose	Low Dose Aspirin)								
al. 2005	Aspirin) Allowed	Allowed	Both	Moderate	7 days	283	300	2.10%	5.70%	No
		Enoxaparin; GCS,								
	Dabigatran; GCS, Low	Low Dose Aspirin								
Eriksson et	Dose Aspirin And Cox-	And Cox-2 Inhibitors								
al. 2007b	2 Inhibitors Allowed	Allowed	Knee	Moderate	11 days	506	510	2.60%	3.10%	No

Table 158. Individual Study Results - Proximal DVT

A 4h o	Current 1	Crown 2	Toint	Cánon cáb	Dunation	1	2	% Group	% Group 2	Significant
Author	Group1	Group2	Joint	Strength	Duration	nı	n2	1	2	Difference
Eriksson et al. 2007c	Dabigatran; GCS, Low Dose Aspirin And Cox- 2 Inhibitors Allowed	Enoxaparin; GCS, Low Dose Aspirin And Cox-2 Inhibitors Allowed Enoxaparin; GCS,	Hip	Moderate	5 weeks	905	914	2.00%	3.50%	No
Ginsberg et	Dabigatran; GCS, Low Dose Aspirin And Cox-	Low Dose Aspirin And Cox-2 Inhibitors								
al. 2009 Francis et al.	2 Inhibitors Allowed	Allowed	Knee	Moderate	17 days	604	643	2.30%	1.60%	No
1997 Hull et al.	Dalteparin Dalteparin; GCS Allowed (Used In 25-	Warfarin Warfarin; GCS Allowed (Used In 25-	Hip	Moderate	NR	192	190	5.20%	8.40%	No
2000 Eriksson et	30%)	30%)	Hip	Moderate	day 6	354	363	0.80%	3.00%	No
al. 1997(b) Eriksson et	Desirudin	Enoxaparin	Hip	Moderate	10 days	802	785	4.50%	7.50%	Yes
al. 1996 Eriksson et	Desirudin	Heparin	Hip	Moderate	10 days	202	229	3.00%	19.70%	Yes
al. 1997	Desirudin	Heparin GCS; Group 3:IPC;	Hip	Moderate	10 days	180	180 110	1.70%	8.90% 0.90%	Yes
Chin et al.		Group 4: No					n3:110		g3:0.0%	
2009 Colwell et al.	Enoxaparin	Treatment	Knee	Moderate	NR	110	n4:110	0.90%	g4:2.7%	No
1994 Colwell et al.	Enoxaparin	Heparin	Hip	Moderate	7 days	194	207	2.10%	4.80%	No
1995 Planes et al.	Enoxaparin	Heparin	Knee	Moderate	NR	228	225	2.20%	9.80%	Yes
1988	Enoxaparin	Heparin	Hip	Moderate	12 days	120	108	7.50%	18.50%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Planes et al.	•	•		0						
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	10.50%	9.50%	No
Leclerc et al.	*	*	•	C						
1996	Enoxaparin	Warfarin	Knee	Moderate	~14 days	206	211	11.70%	10.40%	No
Warwick et	_									
al. 2002	Enoxaparin + GCS	Foot Pump + GCS	Knee	Low	NR	89	99	0.00%	4.00%	Yes
Warwick et	_	_								
al. 1998	Enoxaparin + GCS	Foot Pump + GCS	Hip	Moderate	NR	138	136	8.70%	12.50%	No
Fuji et al.	Enoxaparin; GCS	Placebo; GCS								
2008 (hip)	Allowed	Allowed	Hip	Moderate	NR	80	86	7.50%	10.50%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS								
al. 2001	Allowed	Allowed	Knee	Moderate	NR	173	176	1.70%	11.40%	Yes
Turpie et al.										
2001	Fondaparinux	Enoxaparin	Hip	Moderate	10 days	115	171	0.90%	2.90%	No
Cohen et al.										
2007	Fondaparinux	Fondaparinux + GCS	Hip	High	42 days	400	395	4.80%	4.10%	No
Bauer et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2001	Recommended	Recommended	Knee	Moderate	11 days	368	372	2.40%	5.40%	No
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	Moderate	11 days	922	927	0.70%	2.50%	Yes
Turpie et al.	Fondaparinux; GCS	Enoxaparin; GCS								
2002	Recommended	Recommended	Hip	Moderate	11 days	816	830	1.70%	1.20%	No
Hull et al.										
1990	IPC	None	Hip	Moderate	~14 days	152	158	14.50%	26.60%	Yes
Francis et al.										
1992	IPC + GCS	Warfarin + GCS	Hip	Moderate	NR	98	103	12.20%	2.90%	Yes
	IPC; Low Dose Aspirin									
Colwell et al.	Allowed (Used In									
2010	63%)	Enoxaparin	Hip	Low	10 days	196	190	1.50%	1.10%	No

Table 158. Individual Study Results - Proximal DVT

							-	% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Eriksson et					6-10					
al. 2006b	Rivaroxaban	Enoxaparin	Hip	Moderate	days	113	107	2.70%	2.80%	No
Eriksson et										
al. 2008	Rivaroxaban	Enoxaparin	Hip	Moderate	36 days	1595	1558	0.10%	2.00%	Yes
Kakkar et al.					5-6					
2008	Rivaroxaban	Enoxaparin	Hip	Moderate	weeks	864	869	0.60%	5.10%	Yes
Lassen et al.										
2008	Rivaroxaban	Enoxaparin	Knee	Moderate	day 17	824	878	1.10%	2.30%	No
Turpie et al.										
2009	Rivaroxaban	Enoxaparin	Knee	Moderate	day 17	965	959	0.30%	1.40%	Yes
Eriksson et	Rivaroxaban; GCS	Enoxaparin; GCS			-					
al. 2006	Allowed	Allowed	Hip	Moderate	9 days	109	106	0.90%	4.70%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS	•		•					
2005	Allowed	Allowed	Knee	Moderate	~ 1 week	102	104	1.00%	2.90%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Both	Moderate	NR	590	617	6.10%	7.60%	No
Eriksson et	L									
al. 2010	YM150	Enoxaparin	Hip	Moderate	9 days	114	127	4.40%	3.90%	No

Table 158. Individual Study Results - Proximal DVT

Table 159. Individual Study I	Results - Distal DVT
-------------------------------	-----------------------------

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Lotke et al.	Aspirin	Warfarin, Then		0					•	
1996	(≥300mg/Day) Aspirin	Aspirin	Both	Moderate	NR	166	146	47.00%	41.10%	No
Lieberman et	(≥300mg/Day) +	Aspirin								
al. 1994	IPC Aspirin	(≥300mg/Day)	Hip	Moderate	7 days	113	118	6.20%	6.80%	No
Westrich et	(≥300mg/Day) +				4-6					
al. 2006 Eriksson et	IPC	Enoxaparin + IPC	Knee	Moderate	weeks 4-5	129	135	15.50%	10.40%	No
al. 2011	Dabigatran Dabigatran; GCS And Nsaids (Inc.	Enoxaparin Enoxaparin; GCS And Nsaids (Inc.	Hip	Low	weeks	792	785	5.40%	4.50%	No
Eriksson et	Low Dose Aspirin)	Low Dose								
ıl. 2005	Allowed Dabigatran; GCS, Low Dose Aspirin	Aspirin) Allowed Enoxaparin; GCS, Low Dose Aspirin	Both	Moderate	7 days	283	300	15.20%	22.30%	No
Eriksson et	And Cox-2	And Cox-2								
al. 2007b	Inhibitors Allowed Dabigatran; GCS, Low Dose Aspirin	Inhibitors Allowed Enoxaparin; GCS, Low Dose Aspirin	Knee	Moderate	11 days	503	511	33.40%	32.90%	No
Eriksson et	And Cox-2	And Cox-2								
al. 2007c	Inhibitors Allowed Dabigatran; GCS, Low Dose Aspirin	Inhibitors Allowed Enoxaparin; GCS, Low Dose Aspirin	Hip	Moderate	5 weeks	874	894	2.50%	2.70%	No
Ginsberg et	And Cox-2	And Cox-2								
al. 2009 Francis et al.	Inhibitors Allowed	Inhibitors Allowed	Knee	Moderate	17 days	604	643	27.60%	23.00%	No
1997	Dalteparin	Warfarin	Hip	Moderate	NR	192	190	10.90%	22.60%	Yes

Table 159. Individual Study R	Results - Distal DVT
-------------------------------	----------------------

								%		
	a 1	a	- • /	G 1			•	Group	%	Significant
Author	Group1	Group2	Joint	Strength	Duration	nl	<u>n2</u>	1	Group 2	Difference
~1 · / 1		GCS; Group 3:					110;		11.80%	
Chin et al.	F .	IPC; Group 4: No	17		ND	110	n3:110	4 500/	g3:8.2%	V
2009	Enoxaparin	Treatment	Knee	Moderate	NR	110	n4:110	4.50%	g4:19.1%	Yes
Colwell et al.	F ·				7 1	104	207	0 100/	5 200/	NT
1994	Enoxaparin	Heparin	Hip	Moderate	7 days	194	207	2.10%	5.30%	No
Colwell et al.	F ·		17		ND	220	225	22 400/	24.000/	NT
1995	Enoxaparin	Heparin	Knee	Moderate	NR	228	225	22.40%	24.00%	No
Planes et al.	F	TT	TT:	Ma la mata	12 1	120	100	5 000/	6 500/	NT-
1988 Waxaa 1	Enoxaparin	Heparin	Hip	Moderate	12 days	120	108	5.00%	6.50%	No
Warwick et	Enormania CCC	East Duran CCC	Vaca	Law	ND	80	99	52 000/	52 500/	No
al. 2002 Warwick et	Enoxaparin + GCS	Foot Pump + GCS	Knee	Low	NR	89	99	53.90%	53.50%	No
al. 1998	Enovonaria CCS	East Dump + CCS	Ilin	Moderate	NR	138	136	4.30%	5.10%	No
	Enoxaparin + GCS	Foot Pump + GCS	Hip	Moderate	INK	158	150	4.30%	3.10%	INO
Fitzgerald et al. 2001	Enoxaparin; GCS Allowed	Warfarin; GCS Allowed	Knee	Moderate	NR	173	176	23.70%	33.50%	No
Furpie et al.	Allowed	Alloweu	Kliee	Moderate	INK	175	170	23.70%	35.30%	INU
2001	Fondaparinux	Enoxaparin	Hip	Moderate	10 days	115	171	0.90%	7.60%	Yes
Bauer et al.	Fondaparinux; GCS	Enoxaparin; GCS	mp	Widderate	10 days	115	1/1	0.90%	7.00%	105
2001	Recommended	Recommended	Knee	Moderate	11 days	372	366	9.40%	21.30%	Yes
Lassen et al.	Fondaparinux; GCS	Enoxaparin; GCS	KIICC	Wioderate	11 days	512	500	J. 4 070	21.3070	105
2002	Recommended	Recommended	Hip	Moderate	11 days	909	917	3.30%	7.30%	Yes
Furpie et al.	Fondaparinux; GCS	Enoxaparin; GCS	mp	Wioderate	11 days	<i>J</i> 0 <i>J</i>)1/	5.5070	1.5070	103
2002	Recommended	Recommended	Hip	Moderate	11 days	796	800	4.30%	6.80%	No
Francis et al.	Recommended	Recommended	mp	Moderate	11 duys	170	000	4.5070	0.0070	110
1992	IPC + GCS	Warfarin + GCS	Hip	Moderate	NR	98	103	6.10%	19.40%	Yes
	IPC; Low Dose		тпр	moderate	1.11	20	105	0.1070	17.1070	100
Colwell et al	· · · · · · · · · · · · · · · · · · ·									
		Enoxaparin	Hip	Low	10 days	196	190	2.60%	3.20%	No
Colwell et al. 2010	IPC; Low Dose Aspirin Allowed (Used In 63%)	Enoxaparin	Hip	Low	10 days	196	190	2.60%	3.20%	

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Eriksson et	Groups	010up2	JUIII	Suchgin	6-10	111	114	1	Group 2	Difference
al. 2006b	Rivaroxaban	Enoxaparin	Hip	Moderate	days	113	107	8.00%	22.40%	Yes
Eriksson et		.			26.1	1505	1 = = 0	0.700/	1 400/	N 7
al. 2008 Kakkar et al.	Rivaroxaban	Enoxaparin	Hip	Moderate	36 days 5-6	1595	1558	0.70%	1.40%	No
2008	Rivaroxaban	Enoxaparin	Hip	Moderate	weeks	864	869	1.00%	3.10%	Yes
Lassen et al.			•							
2008	Rivaroxaban	Enoxaparin	Knee	Moderate	day 17	824	878	8.50%	15.90%	Yes
Turpie et al.					-					
2009	Rivaroxaban	Enoxaparin	Knee	Moderate	day 17	965	959	5.40%	6.60%	No
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS			-					
2005	Allowed	Allowed	Knee	Moderate	~ 1 week	102	104	19.60%	26.90%	No
Eriksson et										
al. 2010	YM150	Enoxaparin	Hip	Moderate	9 days	114	127	14.90%	15.00%	No

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Turpie et al.	Rivaroxaban; GCS	Enoxaparin; GCS	Joint	Strength	Duration		112	-		Difference
2005	Allowed	Allowed	Knee	High	NR	102	104	0.00%	0.00%	No
	Dabigatran; GCS And	Enoxaparin; GCS And		U						
Eriksson et	Nsaids (Inc. Low Dose	Nsaids (Inc. Low Dose								
al. 2005	Aspirin) Allowed	Aspirin) Allowed	Both	High	NR	385	392	0.30%	0.30%	No
Turpie et al.		-		-						
2001	Fondaparinux	Enoxaparin	Hip	High	NR	177	260	0.00%	0.00%	No
Senaran et al.	Enoxaparin; GCS									
2006	Allowed	Heparin; GCS Allowed	Hip	High	NR	50	50	0.00%	2.00%	No
Planes et al.										
1999	Enoxaparin	Tinzaparin	Hip	High	NR	219	221	0.00%	0.00%	No
Colwell et al.	Enoxaparin; GCS	Warfarin; GCS								
1999	Allowed	Allowed	Hip	High	NR	1516	1495	0.10%	0.00%	No
Colwell et al.										
1994	Enoxaparin	Heparin	Hip	High	NR	195	209	0.00%	1.00%	No
Eriksson et									0.00	
al. 1997	Desirudin	Heparin	Hip	High	NR	223	220	0.00%	0.90%	No
Sharrock et	Heparin + Aspirin	Aspirin (≥300mg/Day)						0.000/	0.000/	
al. 1990	$(\geq 300 \text{mg/Day}) + \text{GCS}$	+ GCS	Hip	Moderate	NR	60	66	0.00%	0.00%	No
Lassen et al.			17	TT: 1		1506	1 5 0 0	0.000/	0.000/	N
2009	Apixaban	Enoxaparin	Knee	High	NR	1596	1588	0.20%	0.30%	No
Lassen et al.	Animahan	Energenerin	Vaaa	II: ala	ND	1501	1500	0.000/	0.100/	No
2010	Apixaban	Enoxaparin	Knee	High	NR	1501	1508	0.00%	0.10%	No
Lassen et al. 2010b	Anivahan	Enovonorin	IIin	Iliah	NR	2673	2659	0.00%	0.10%	No
Dechavanne	Apixaban	Enoxaparin	Hip	High	INK	2075	2039	0.00%	0.10%	INO
et al. 1989	Dalteparin	Heparin	Hip	High	NR	41	40	0.00%	0.00%	No
Eriksson et	Danoparin	nopam	шþ	mgn		41	40	0.0070	0.0070	110
al. 1991	Dalteparin	Heparin	Hip	High	NR	67	69	0.00%	0.00%	No

Table 160. Individual Study Results - Thrombocytopenia

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Levine et al.										
1991	Enoxaparin	Heparin	Hip	High	NR	333	332	0.00%	0.00%	No
Hull et al.										
1993	Tinzaparin	Warfarin	Both	High	NR	715	721	0.00%	0.00%	No
Fitzgerald et	Enoxaparin; GCS	Warfarin; GCS								
al. 2001	Allowed	Allowed	Knee	High	NR	173	176	0.00%	0.00%	No
	Dalteparin; GCS	Warfarin; GCS								
Hull et al.	Allowed (Used In 25-	Allowed (Used In 25-								
2000	30%)	30%)	Hip	High	NR	496	489	0.00%	0.00%	No

Table 160. Individual Study Results - Thrombocytopenia

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
	Dalteparin, GCS,	Dalteparin, GCS,								
	Dextran for 7 days,	Dextran for 7 days,								
Dahl et al.	then Dalteparin for	then Placebo for 28								
1997	28 more days	days	Hip	High	NR	117	110	0.00%	0.00%	No
		Enoxaparin until			from discharge					
Bergqvist	Enoxaparin for 21	discharge, then			to discharge +					
et al. 1996	days after discharge	Placebo for 21 days	Hip	High	3months	117	116	0.00%	0.00%	No
Barrellier										
et al. 2010	LMWH for 35 days	LMWH for 10 days	Knee	High	day 35	422	420	0.00%	0.00%	No
					2 months					
Prandoni	Warfarin for 28 days	Warfarin until			following 1st 4					
et al. 2002	after discharge	discharge (~9 days)	Hip	Moderate	weeks	184	176	0.00%	0.00%	No
		Warfarin until								
		discharge, then			day6-day35					
	Dalteparin for 35	Placebo; GCS			(i.e. not					
Hull et al.	days; GCS Allowed	Allowed (Used In			including					
2000b	(Used In <10%)	<10%)	Hip	High	day0-6)	199	180	0.00%	0.00%	No

Table 161. Duration of Prophylaxis Studies - Fatal Bleeding

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
	Dalteparin, GCS,									
	Dextran for 7 days, then	Dalteparin, GCS,								
Dahl et al.	Dalteparin for 28 more	Dextran for 7 days, then								
1997	days	Placebo for 28 days	Hip	High	day7-35	111	106	0.00%	2.80%	No
Comp et		Enoxaparin for 7 days,								
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Knee	High	1 month	217	221	0.00%	0.90%	No
Comp et		Enoxaparin for 7 days,								
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Hip	High	1 month	224	211	0.00%	0.50%	No
Comp et		Enoxaparin for 7 days,								
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Both	High	1 month	441	432	0.00%	0.70%	No
		Enoxaparin until			from discharge					
Bergqvist	Enoxaparin for 21 days	discharge, then Placebo			to discharge +					
et al. 1996	after discharge	for 21 days	Hip	High	18-19 days	117	116	0.00%	1.70%	No
Barrellier										
et al. 2010	LMWH for 35 days	LMWH for 10 days	Knee	High	day 35	422	420	0.20%	0.50%	No
Prandoni	Warfarin for 28 days	Warfarin until discharge								
et al. 2002	after discharge	(~9 days)	Hip	Moderate	4 weeks	184	176	0.00%	0.60%	No
	-		_		day6-day35					
	Dalteparin for 35 days;	Warfarin until discharge,			(i.e. not					
Hull et al.	GCS Allowed (Used In	then Placebo; GCS			including					
2000b	<10%)	Allowed (Used In <10%)	Hip	High	day0-6)	152	133	0.00%	0.00%	No

Table 162. Duration of Prophylaxis Studies - Symptomatic PE

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
Comp et		Enoxaparin for 7 days,								
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days Enoxaparin until	Both	High	1 month	441	432	0.00%	0.20%	No
	Enoxaparin for 21 days	discharge, then Placebo								
Planes et	after discharge; GCS	for 21 days; GCS								
al. 1996	Recommended	Recommended	Hip	High	NR	90	89	0.00%	0.00%	No
Manganelli					discharge-					
et al. 1998	Heparin for 30 days	Heparin until discharge	Hip	Moderate	day45	28	33	0.00%	0.00%	No
Barrellier			-							
et al. 2010	LMWH for 35 days	LMWH for 10 days	Knee	High	day 35	422	420	0.70%	0.50%	No
Prandoni	Warfarin for 28 days	Warfarin until discharge		-						
et al. 2002	after discharge	(~9 days)	Hip	Moderate	4 weeks	184	176	0.50%	0.00%	No
					day6-day35					
	Dalteparin for 35 days;	Warfarin until discharge,			(i.e. not					
Hull et al.	GCS Allowed (Used In	then Placebo; GCS			including					
2000b	<10%)	Allowed (Used In <10%)	Hip	High	day0-6)	199	180	0.00%	0.00%	No
		Dalteparin for 7 days,								
Lassen et	Dalteparin for 35 days;	then Placebo for 28 days;								
al. 1998	GCS Allowed	GCS Allowed	Hip	High	35 days	140	141	0.00%	0.70%	No
	Dalteparin, GCS,									
	Dextran for 7 days, then	Dalteparin, GCS,								
Dahl et al.	Dalteparin for 28 more	Dextran for 7 days, then								
1997	days	Placebo for 28 days	Hip	High	NR	117	110	0.00%	0.00%	No

Table 163. Duration of Prophylaxis Studies - Major Bleeding

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Dahl et	Dalteparin, GCS, Dextran for 7 days, then Dalteparin for	Dalteparin, GCS, Dextran for 7 days, then Placebo for 28		S vi viigui	2 41 40101			-	_	
al. 1997	28 more days	days Enoxaparin for 7	Hip	High	day7-35	117	110	0.90%	0.90%	No
Comp et al. 2001	Enoxaparin for 28 days	days, then Placebo for 21 days	Both	High	1 month 3 months from randomization, not including	441	432	0.00%	0.20%	No
Bergqvist et al.	Enoxaparin for 21 days after	Enoxaparin until discharge, then			hospitalization (~1st week					
1996 Barrellier et al.	discharge	Placebo for 21 days	Hip	High	postop)	117	116	0.00%	0.00%	No
2010 Prandoni	LMWH for 35 days Warfarin for 28	LMWH for 10 days	Knee	High	NR	422	420	0.00%	0.00%	No
et al. 2002	days after discharge	Warfarin until discharge (~9 days) Warfarin until	Hip	Moderate	day 35	184	176	0.00%	0.00%	No
Hull et al.	Dalteparin for 35 days; GCS Allowed (Used In	discharge, then Placebo; GCS Allowed (Used In			day6-day35 (i.e. not including					
2000b	<10%)	<10%)	Hip	High	day0-6)	152	133	0.00%	0.80%	No

Table 164. Duration of Prophylaxis Studies - All Cause Mortality

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
		Enoxaparin until			from discharge					-
Bergqvist	Enoxaparin for 21 days	discharge, then Placebo			to discharge +					
et al. 1996	after discharge	for 21 days	Hip	High	18-19 days	117	116	1.70%	6.90%	No
Barrellier										
et al. 2010	LMWH for 35 days	LMWH for 10 days	Knee	High	day 35	422	420	0.50%	1.70%	No
					day6-day35					
	Dalteparin for 35 days;	Warfarin until discharge,			(i.e. not					
Hull et al.	GCS Allowed (Used In	then Placebo; GCS			including					
2000b	<10%)	Allowed (Used In <10%)	Hip	High	day0-6)	152	133	2.00%	2.30%	No

Table 165. Duration of Prophylaxis Studies - Symptomatic DVT

Table 166. Duration of Prophylaxis Studies - Rehospitalization due to DVT

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
_		Enoxaparin until								
Bergqvist et al. 1996	Enoxaparin for 21 days after discharge	discharge, then Placebo	Hip	High	NR	117	116	9.40%	27.60%	Yes
et al. 1990	aner uischarge	for 21 days	пр	підіі	INK	11/	110	9.40%	27.00%	165

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
numor	Groupi	010up2	J 0111t	buengin	day 35 (not		112	1		Difference
Barrellier					including day					
et al. 2010	LMWH for 35 days	LMWH for 10 days Enoxaparin for 7 days,	Knee	Moderate	0-7)	278	279	3.60%	12.50%	Yes
Comp et	Enoxaparin for 28	then Placebo for 21								
al. 2001	days	days Enoxaparin for 7 days,	Knee	Moderate	1 month	217	221	17.5%	20.8%	No
Comp et	Enoxaparin for 28	then Placebo for 21								
al. 2001	days	days Enoxaparin for 7 days,	Hip	Moderate	1 month	224	221	8.0%	23.2%	Yes
Comp et	Enoxaparin for 28	then Placebo for 21								
al. 2001	days	days Dalteparin for 7 days,	Both	Moderate	1 month	441	432	12.7%	22.0%	Yes
Lassen et	Dalteparin for 35	then Placebo for 28								
al. 1998	days; GCS Allowed Dalteparin, GCS,	days; GCS Allowed Dalteparin, GCS,	Hip	Low	day 35	113	102	4.40%	11.80%	No
	Dextran for 7 days,	Dextran for 7 days,			day 35 (not					
Dahl et al.	then Dalteparin for	then Placebo for 28			including					
1997	28 more days	days Enoxaparin until	Hip	High	day0-7) from discharge	114	104	19.30%	31.70%	No
Bergqvist	Enoxaparin for 21	discharge, then			to discharge +					
et al. 1996	days after discharge	Placebo for 21 days Warfarin until discharge, then	Hip	Moderate	18-19 days	117	116	17.90%	38.80%	Yes
	Dalteparin for 35	Placebo; GCS								
Hull et al.	days; GCS Allowed	Allowed (Used In								
2000b	(Used In <10%)	<10%)	Hip	Moderate	day0-35	174	188	17.20%	36.70%	Yes

Table 167. Duration of Prophylaxis Studies - Deep Vein Thrombosis

								% Group	% Group	Significant
Author	Group1	Group2	Joint	Strength	Duration	n1	n2	1	2	Difference
		Dalteparin for 7 days,								
Lassen et	Dalteparin for 35 days;	then Placebo for 28 days;								
al. 1998	GCS Allowed	GCS Allowed	Hip	Low	day 35	113	102	0.90%	4.90%	No
	Dalteparin, GCS,									
	Dextran for 7 days, then	Dalteparin, GCS,			day 35 (not					
Dahl et al.	Dalteparin for 28 more	Dextran for 7 days, then			including					
1997	days	Placebo for 28 days	Hip	High	day0-7)	114	104	8.80%	13.50%	No
Comp et		Enoxaparin for 7 days,						4.4004		
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Knee	Moderate	1 month	217	221	4.10%	7.70%	No
Comp et		Enoxaparin for 7 days,								
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Hip	Moderate	1 month	224	221	2.70%	12.20%	Yes
Comp et		Enoxaparin for 7 days,						a 1 0.01	10.000	
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Both	Moderate	1 month	441	432	3.40%	10.20%	Yes
- ·	F	Enoxaparin until			from discharge					
Bergqvist	Enoxaparin for 21 days	discharge, then Placebo			to discharge +			6.0004	a 4 4 0 a 4	
et al. 1996	after discharge	for 21 days	Hip	Moderate	18-19 days	117	116	6.80%	24.10%	Yes
Barrellier					1 25	100		0.000/	4 40.04	
et al. 2010	LMWH for 35 days	LMWH for 10 days	Knee	Moderate	day 35	422	420	0.90%	1.40%	No
	Dalteparin for 35 days;	Warfarin until discharge,								
Hull et al.	GCS Allowed (Used In	then Placebo; GCS				1.50		a 1 a a	0.000	
2000b	<10%)	Allowed (Used In <10%)	Hip	Moderate	day0-35	162	153	3.10%	9.20%	No

Table 168. Duration of Prophylaxis Studies - Proximal DVT

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
- iumor	Groupi	Enoxaparin for 7 days,	Joint	Strength	Durution	m	112	-	-	Difference
Comp et	Enoxaparin for 28	then Placebo for 21								
al. 2001	days	days	Knee	Moderate	1 month	217	221	13.40%	12.20%	No
	•	Enoxaparin for 7 days,								
Comp et	Enoxaparin for 28	then Placebo for 21								
al. 2001	days	days	Hip	Moderate	1 month	224	211	5.40%	10.40%	No
		Enoxaparin for 7 days,								
Comp et	Enoxaparin for 28	then Placebo for 21								
al. 2001	days	days	Both	Moderate	1 month	441	432	9.30%	11.30%	No
		Enoxaparin until			from discharge					
Bergqvist	Enoxaparin for 21	discharge, then			to discharge +					
et al. 1996	days after discharge	Placebo for 21 days	Hip	Moderate	18-19 days	117	116	11.10%	12.90%	No

Table 169. Duration of Prophylaxis Studies - Distal DVT

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Author	Groupi	Enoxaparin until	JOIIIL	Strength	Outcome	Duration	111	112	1	4	Difference
	Enovenaria for 21	-									
Dlanas at	Enoxaparin for 21	discharge, then			Wound						
Planes et	days after discharge;	Placebo for 21 days;		TT' 1	_	ND	00	00	1 100/	1 100/	NT
al. 1996	GCS Recommended	GCS Recommended	Hip	High	hematoma	NR	90	89	1.10%	1.10%	No
		Warfarin until									
		discharge, then									
	Dalteparin for 35	Placebo; GCS			Wound						
Hull et	days; GCS Allowed	Allowed (Used In			hematoma,						
al. 2000b	(Used In $<10\%$)	<10%)	Hip	High	complicated	NR	199	180	0.50%	1.10%	No
		Warfarin until		C	*						
		discharge, then									
	Dalteparin for 35	Placebo; GCS			Wound						
Hull et	days; GCS Allowed	Allowed (Used In			hematoma,						
al. 2000b	(Used In <10%)	<10%)	Hip	High	uncomplicated	NR	199	180	2.50%	2.80%	No

Table 170. Duration of Prophylaxis Studies - Wound Hematoma

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Dalteparin, GCS, Dextran									
	for 7 days, then	Dalteparin, GCS, Dextran								
Dahl et al.	Dalteparin for 28 more	for 7 days, then Placebo								
1997	days	for 28 days	Hip	High	NR	117	110	0.90%	0.90%	No
		Enoxaparin until	-	-						
Bergqvist	Enoxaparin for 21 days	discharge, then Placebo								
et al. 1996	after discharge	for 21 days	Hip	High	NR	131	131	4.60%	0.80%	No
Comp et	-	Enoxaparin for 7 days,	_	-						
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Knee	High	1 month	217	221	0.50%	0.90%	No
Comp et		Enoxaparin for 7 days,		-						
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Hip	High	1 month	224	211	1.80%	1.40%	No
Comp et		Enoxaparin for 7 days,	-	-						
al. 2001	Enoxaparin for 28 days	then Placebo for 21 days	Both	High	1 month	441	432	1.10%	1.20%	No

Table 171. Duration of Prophylaxis Studies - Injection-Site Hematoma

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
		Enoxaparin for 7 days,									
Comp et	Enoxaparin for 28	then Placebo for 21									
al. 2001	days	days	Knee	High	Bleeding	1 month	217	221	3.70%	2.70%	No
		Enoxaparin for 7 days,									
Comp et	Enoxaparin for 28	then Placebo for 21									
al. 2001	days	days	Hip	High	Bleeding	1 month	224	211	0.90%	2.40%	No
~		Enoxaparin for 7 days,									
Comp et	Enoxaparin for 28	then Placebo for 21									
al. 2001	days	days	Both	High	Bleeding	1 month	441	432	2.30%	2.50%	No
		Warfarin until				1 6 1 25					
		discharge, then				day6-day35					
Hull et al.	Dalteparin for 35	Placebo; GCS			Trivial	(i.e. not					
2000b	days; GCS Allowed	Allowed (Used In	IIin	Iliah		including	100	180	17.60%	Q 000/	No
20000	(Used In <10%)	<10%) Warfarin until	Hip	High	bleeding	day0-6)	199	180	17.00%	8.90%	No
		discharge, then				day6-day35					
	Dalteparin for 35	Placebo; GCS				(i.e. not					
Hull et al.	days; GCS Allowed	Allowed (Used In				including					
2000b	(Used In $<10\%$)	<10%)	Hip	High	Minor bleeding	day0-6)	199	180	1.50%	2.80%	No
20000	(0300 m (1070)	Dalteparin for 7 days,	mp	mgn	Minor	dayo oy	177	100	1.5070	2.0070	110
Lassen et	Dalteparin for 35	then Placebo for 28			Bleeding						
al. 1998	days; GCS Allowed	days; GCS Allowed	Hip	High	Complications	35 days	140	141	12.90%	7.80%	No
		Enoxaparin for 7 days,	r	0	I						
Comp et	Enoxaparin for 28	then Placebo for 21									
al. 2001	days	days	Knee	High	Ecchymosis	NR	217	221	0.50%	0.50%	No
	-	Enoxaparin for 7 days,		č	-						
Comp et	Enoxaparin for 28	then Placebo for 21									
al. 2001	days	days	Hip	High	Ecchymosis	NR	224	211	2.70%	0.90%	No

Table 172. Duration of Prophylaxis Studies - Other Bleeding Outcomes

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
		Enoxaparin for 7 days,									
Comp et	Enoxaparin for 28	then Placebo for 21									
al. 2001	days	days	Both	High	Ecchymosis	NR	441	432	1.60%	0.70%	No
		Enoxaparin until									
	Enoxaparin for 21	discharge, then									
Planes et	days after discharge;	Placebo for 21 days;									
al. 1996	GCS Recommended	GCS Recommended	Hip	High	Epistaxis	NR	90	89	1.10%	0.00%	No
		Enoxaparin until	-	-	Hemoglobin						
Bergqvist	Enoxaparin for 21	discharge, then			decrease of						
et al. 1996	days after discharge	Placebo for 21 days	Hip	High	2g/dL	NR	131	131	1.50%	3.10%	No
		Enoxaparin until		e	U						
	Enoxaparin for 21	discharge, then									
Planes et	days after discharge;	Placebo for 21 days;									
al. 1996	GCS Recommended	GCS Recommended	Hip	High	Hematemesis	NR	90	89	1.10%	0.00%	No

Table 172. Duration of Prophylaxis Studies - Other Bleeding Outcomes

Author	Group1	Group2	Joint	Strength	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Barrellier										
et al. 2010	LMWH for 35 days Dalteparin, GCS, Dextran for 7 days,	LMWH for 10 days Dalteparin, GCS, Dextran for 7 days,	Knee	High	NR	422	420	0.00%	0.00%	No
Dahl et al.	then Dalteparin for	then Placebo for 28								
1997	28 more days	days Warfarin until discharge, then	Hip	High	NR	117	110	0.00%	0.00%	No
	Dalteparin for 35	Placebo; GCS								
Hull et al.	days; GCS Allowed	Allowed (Used In								
2000b	(Used In <10%)	<10%)	Hip	High	NR	199	180	3.00%	5.60%	No

Table 173. Duration of Prophylaxis Studies - Thrombocytopenia

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Fondaparinux Starting	Fondaparinux starting									
~	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In		TT: 1	All Cause	1 .1	1002	007	0.400/	0.100/	N
2006	Allowed	54%) Allowed	Both	High	Mortality	1 month	1003	997	0.40%	0.10%	No
	Adjusted-dose	Adjusted-dose Warfarin starting night before									
Francis	Warfarin starting 10-	surgery (initial dose									
et al.	14 days preoperatively	based on body weight) +									
1996	+ GCS	GCS	Knee	High	Symptomatic PE	NR	95	101	0.00%	0.00%	No
1770	Fondaparinux Starting	Fondaparinux starting		8			20	101	0.0070	0.0070	110
	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In									
2006	Allowed	54%) Allowed	Hip	High	Symptomatic PE	6 weeks	384	383	0.80%	0.50%	No
	Fondaparinux Starting	Fondaparinux starting									
	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In	17	TT' 1		C 1	(10	C14	1.000/	1 100/	NT
2006	Allowed	54%) Allowed	Knee	High	Symptomatic PE	6 weeks	619	614	1.00%	1.10%	No
	Fondaparinux Starting 8 hours after surgery;	Fondaparinux starting morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In									
2006	Allowed	54%) Allowed	Both	High	Symptomatic PE	6 weeks	1003	997	0.90%	1.00%	No

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Fondaparinux Starting	Fondaparinux starting									
	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In									
2006	Allowed	54%) Allowed	Both	High	Fatal Bleeding	6 weeks	1003	997	0.00%	0.00%	No
		Adjusted-dose Warfarin									
	Adjusted-dose	starting night before									
Francis	Warfarin starting 10-	surgery (initial dose									
et al.	14 days preoperatively	based on body weight) +									
1996	+ GCS	GCS	Knee	High	Major bleeding	NR	103	105	4.90%	1.90%	No
		Enoxaparin, starting with									
Planes		half-dose one hour after									
et al.	Enoxaparin, starting	anesthesia, then full dose									
1991	12 hours after surgery	12 hours after surgery	Hip	High	Major bleeding	NR	65	61	1.50%	1.60%	No
	Fondaparinux Starting	Fondaparinux starting									
a 1 11	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In		TT' 1		c 1	1002	007	1 400/	0.700/	NT
2006	Allowed	54%) Allowed	Both	High	Major Bleeding	6 weeks	1003	997	1.40%	0.70%	No
D1		Enoxaparin, starting with			Warran 1 Harran (a mar						
Planes	Enormania startina	half-dose one hour after			Wound Hematoma						
et al. 1991	Enoxaparin, starting	anesthesia, then full dose	IIin	Iliah	Requiring	NR	65	61	0.00%	0.00%	No
1991	12 hours after surgery	12 hours after surgery Fondaparinux starting	Hip	High	Reoperation	INK	03	01	0.00%	0.00%	INO
	Fondaparinux Starting										
Colwell	8 hours after surgery; GCS (Used In 68%),	morning of first day after surgery; GCS (Used In									
et al.	IPC (Used In 54%),	68%), IPC (Used In			Reoperation due to						
2006	Allowed	54%) Allowed	Both	High	Bleeding	6 weeks	1003	997	1.10%	0.50%	No
2000	Allowed	J+/0) Allowed	Dom	Ingn	Diccuing	U WEEKS	1005	771	1.10/0	0.3070	110

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	-	Adjusted-dose Warfarin		0							
	Adjusted-dose	starting night before									
Francis	Warfarin starting 10-	surgery (initial dose			D1						
et al.	14 days preoperatively	based on body weight) +		*** 1	Bleeding		100	105	10 700/	0.600/	.
1996	+ GCS	GCS	Knee	High	Complications	NR	103	105	10.70%	8.60%	No
	A 1' / 1 1	Adjusted-dose Warfarin									
Eronaia	Adjusted-dose	starting night before									
Francis et al.	Warfarin starting 10- 14 days preoperatively	surgery (initial dose based on body weight) +									
1996	+ GCS	GCS	Knee	High	Minor Bleeding	NR	103	105	5.80%	6.70%	No
1990	+ 005	Enoxaparin, starting with	Klice	Ingn	Winor Diceding	INIX	105	105	5.8070	0.7070	NO
Planes		half-dose one hour after									
et al.	Enoxaparin, starting	anesthesia, then full dose									
1991	12 hours after surgery	12 hours after surgery	Hip	High	Wound Hematoma	NR	65	61	1.50%	6.60%	No
	6 J	Enoxaparin, starting with	r	0				-			
Planes		half-dose one hour after									
et al.	Enoxaparin, starting	anesthesia, then full dose									
1991	12 hours after surgery	12 hours after surgery	Hip	High	Minor Bleeding	NR	65	61	0.00%	0.00%	No
	Fondaparinux Starting	Fondaparinux starting									
	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In						~ ~ -			
2006	Allowed	54%) Allowed	Both	High	Minor Bleeding	6 weeks	1003	997	1.40%	2.00%	No
DI		Enoxaparin, starting with									
Planes	En anna a' an ata at	half-dose one hour after									
et al. 1991	Enoxaparin, starting 12 hours after surgery	anesthesia, then full dose 12 hours after surgery	Hip	High	Wound Infection	NR	65	61	0.00%	0.00%	No
1771	12 nours after surgery	12 nours after surgery	пр	riigii	would infection	INK	05	01	0.00%	0.00%	INU

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Fondaparinux Starting	Fondaparinux starting									
~	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In			G						
et al.	IPC (Used In 54%)	68%), IPC (Used In $54%$) Allowed	TT:	TT: - 1.	Symptomatic	(204	202	0.000/	0.200/	N.
2006	Allowed	54%) Allowed	Hip	High	DVT	6 weeks	384	383	0.00%	0.30%	No
	Fondaparinux Starting 8 hours after surgery;	Fondaparinux starting morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In			Symptomatic						
2006	Allowed	54%) Allowed	Knee	High	DVT	6 weeks	619	614	1.60%	1.60%	No
	Fondaparinux Starting	Fondaparinux starting		U							
	8 hours after surgery;	morning of first day after									
Colwell	GCS (Used In 68%),	surgery; GCS (Used In									
et al.	IPC (Used In 54%)	68%), IPC (Used In			Symptomatic						
2006	Allowed	54%) Allowed	Both	High	DVT	6 weeks	1003	997	1.10%	1.10%	No
		Adjusted-dose Warfarin									
Encode	Adjusted-dose	starting night before									
Francis	Warfarin starting 10-	surgery (initial dose									
et al. 1996	14 days preoperatively + GCS	based on body weight) + GCS	Knee	Moderate	Venographic DVT	1 week	95	101	38.90%	37.60%	No
1990	+ 005	Adjusted-dose Warfarin	Kilee	Wilderate	venographic D v I	1 WCCK	95	101	30.9070	57.0070	NO
	Adjusted-dose	starting night before									
Francis	Warfarin starting 10-	surgery (initial dose									
et al.	14 days preoperatively	based on body weight) +									
1996	+ GCS	GCS	Knee	Moderate	Proximal DVT	NR	95	101	5.30%	6.90%	No

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
	Adjusted-dose	Adjusted-dose Warfarin starting night before									
Francis	Warfarin starting 10-	surgery (initial dose									
et al.	14 days preoperatively	based on body weight) +									
1996	+ GCS	GCS	Knee	Moderate	Distal DVT	NR	95	101	33.70%	30.70%	No
		Enoxaparin, starting with									
Planes		half-dose one hour after									
et al.	Enoxaparin, starting	anesthesia, then full dose									
1991	12 hours after surgery	12 hours after surgery	Hip	High	Thrombocytopenia	NR	65	61	0.00%	0.00%	No
	Tinzaparin starting 12	Tinzaparin starting 2									
Lassen	hours before surgery	hours before surgery			Heparin-						
et al.	(dosage by weight:	(dosage by weight:			associated						
2000	3500-6500IU/day)	2500-4500IU/day)	Hip	Moderate	Thrombocytopenia	NR	96	94	0.00%	0.00%	No

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
		Adjusted-dose Warfarin									
Vives et	Adjusted-dose	until discharge, then 2			All Cause						
al. 2001	Warfarin for 6 weeks	mg/day	Both	Moderate	Mortality	10 weeks	113	109	0.00%	0.00%	No
		Adjusted-dose Warfarin									
Vives et	Adjusted-dose	until discharge, then 2			Symptomatic						
al. 2001	Warfarin for 6 weeks	mg/day	Both	Moderate	PE	6 weeks	113	109	0.90%	0.90%	No
		Adjusted-dose Warfarin									
Vives et	Adjusted-dose	until discharge, then 2			Fatal						
al. 2001	Warfarin for 6 weeks	mg/day	Both	Moderate	Bleeding	6 months	113	109	0.00%	0.00%	No
	Adjusted-dose										
	Warfarin continued										
	for 1 month after	Adjusted-dose Warfarin									
	discharge: IPC	until discharge, then 2									
Wilson et	allowed (used in	mg/day for 1 month; IPC			Major						
al. 1994	73%)	allowed (used in 73%)	Both	High	Bleeding	NR	47	49	0.00%	0.00%	No
		Adjusted-dose Warfarin									
Vives et	Adjusted-dose	until discharge, then 2			Major						
al. 2001	Warfarin for 6 weeks	mg/day	Both	Moderate	Bleeding	6 weeks	113	109	0.00%	0.00%	No
Feller et	Adjusted-dose				Bleeding						
al. 1992	Warfarin	Warfarin 1mg/day	Hip	High	complications		100	100	3.00%	0.00%	No
T T		Adjusted-dose Warfarin									
Vives et	Adjusted-dose	until discharge, then 2	D 1		TT	<i>с</i> 1	110	100	0.000/	0.000/	N.7
al. 2001	Warfarin for 6 weeks	mg/day	Both	Moderate	Hematoma	6 weeks	113	109	0.90%	0.00%	No
	Adjusted-dose										
	Warfarin continued										
	for 1 month after	Adjusted-dose Warfarin									
Wilson et	discharge: IPC	until discharge, then 2			Minor						
al. 1994	allowed (used in	mg/day for 1 month; IPC allowed (used in 73%)	Both	High		NR	47	49	2.10%	4.10%	No
ai. 1994	73%)	anowed (used III 75%)	DOUI	riigii	Bleeding	INK	4/	49	2.10%	4.10%	INU

Table 175. Prophylaxis Dosage and Route of Administration Studies - All Outcomes

Author Vives et	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	Group 1	Group 2	Significant Difference
Vives et		Adjusted-dose Warfarin	001110	Strungth	outcome	Durumon			-	-	Difference
	Adjusted-dose	until discharge, then 2			Symptomatic						
al. 2001	Warfarin for 6 weeks	mg/day	Both	Moderate	DVT	6 weeks	113	109	7.10%	4.60%	No
Feller et	Adjusted-dose				Venographic						
al. 1992	Warfarin	Warfarin 1mg/day	Hip	Moderate	DVT	NR	91	98	17.60%	30.60%	No
Feller et	Adjusted-dose				Proximal						
al. 1992	Warfarin	Warfarin 1mg/day	Hip	Moderate	DVT	NR	91	98	4.40%	11.20%	No
Feller et	Adjusted-dose										
al. 1992	Warfarin	Warfarin 1mg/day	Hip	Moderate	Distal DVT	NR	91	98	13.20%	19.40%	No
					Major						
Harris et	Aspirin				Bleeding						
	(1200mg/Day)	Aspirin (300mg/Day)	Hip	High	Complications	NR	48	43	0.00%	0.00%	No
Harris et	Aspirin				Bleeding						
al. 1982	(3600mg/Day)	Aspirin (1200mg/Day)	Hip	Moderate	Complications	NR	90	92	1.10%	0.00%	No
	Enoxaparin 40mg										
	once daily; GCS	Enoxaparin 30mg twice			A11 C						
1	Allowed (Used In	daily; GCS Allowed (Used	TT:	TT' - 1-	All Cause	ND	100	200	1.000/	0.000/	NT -
al. 1994	57%)	In 57%)	Hip	High	Mortality	NR	199	208	1.00%	0.00%	No
	Enoxaparin 40mg	En anonaria 20ma taniaa									
Spiro et	once daily; GCS Allowed (Used In	Enoxaparin 30mg twice daily; GCS Allowed (Used			Major						
al. 1994	57%)	In 57%)	Hip	High	Bleeding	7 days	199	208	3.50%	5.30%	No
	Enoxaparin 40mg	III <i>31%</i>)	пр	nigii	Dieeunig	/ days	199	208	5.50%	5.50%	INO
	once daily; GCS	Enoxaparin 30mg twice									
Spiro et	Allowed (Used In	daily; GCS Allowed (Used			Minor						
al. 1994	57%)	In 57%)	Hip	High	Bleeding	7 days	199	208	7.00%	7.20%	No
Leyvraz	5170)	III <i>5 1 7</i> 0)	mp	Ingii	Diccuing	7 uays	177	200	1.0070	1.2070	110
et al.	Heparin 3500IU				Wound						
1983	every 8 hours	Adjusted-dose Heparin	Hip	High	hematoma	NR	41	38	12.20%	7.90%	No

Table 175. Prophylaxis Dosage and Route of Administration Studies - All Outcomes

Author	Group1	Group2	Joint	Strength	Outcome	Duration	n1	n2	% Group 1	% Group 2	Significant Difference
Berkowitz	Heparin, Oral; IPC										
et al.	(Used In 82%)	Heparin, SC; IPC (Used In			Major						
2003	Allowed	82%) Allowed	Hip	High	bleeding	NR	43	41	2.30%	2.40%	No
Berkowitz	Heparin, Oral; IPC										
et al.	(Used In 82%)	Heparin, SC; IPC (Used In			Minor						
2003	Allowed	82%) Allowed	Hip	High	bleeding	NR	43	41	4.70%	9.80%	No
					Patients						
Berkowitz	Heparin, Oral; IPC				receiving any						
et al.	(Used In 82%)	Heparin, SC; IPC (Used In			postop						
2003	Allowed	82%) Allowed	Hip	High	transfusions	NR	43	41	27.90%	26.80%	No
Berkowitz	Heparin, Oral; IPC				Patients						
et al.	(Used In 82%)	Heparin, SC; IPC (Used In		· · · ·	receiving 2+		10	4.4	1 < 2004	1 - 1004	N 7
2003	Allowed	82%) Allowed	Hip	High	transfusions	NR	43	41	16.30%	17.10%	No
	Enoxaparin 40mg										
Curing of	once daily; GCS	Enoxaparin 30mg twice									
Spiro et al. 1994	Allowed (Used In 57%)	daily; GCS Allowed (Used	Ilin	Madamata		7 dava	199	208	3.00%	2.90%	No
al. 1994	Enoxaparin 40mg	In 57%)	Hip	Moderate	Any DVT	7 days	199	200	5.00%	2.90%	INU
	once daily; GCS	Enoxaparin 30mg twice									
Spiro et	Allowed (Used In	daily; GCS Allowed (Used			Proximal						
al. 1994	57%)	In 57%)	Hip	Moderate	DVT	7 days	199	208	4.50%	3.80%	No
	Enoxaparin 40mg	III 3770)	mp	moderate		7 duys	177	200	1.5070	5.0070	110
	once daily; GCS	Enoxaparin 30mg twice									
Spiro et	Allowed (Used In	daily; GCS Allowed (Used									
al. 1994	57%)	In 57%)	Hip	Moderate	Distal DVT	7 days	199	208	6.00%	3.80%	No

Table 175. Prophylaxis Dosage and Route of Administration Studies - All Outcomes

INDIVIDUAL STUDY DETAILS

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
	^	^	several dose groups: 25, 50, 75,		ipc devices, muscle
			100, 125, 150; once daily,	40mg once daily, starting	stimulators prohibited, use of
Agnelli et al.			starting 6-8h after surgery, total	evening before surgery, total of	antiplatelet or anticoagulant
2007	LY517717	Enoxaparin	of 6-10 doses	6-10 doses	agents discouraged
				5000IU starting 2h before	
Avikainen et			40mg daily starting 12h	operation, second dose 12h	
al. 1995	Enoxaparin	Heparin	preoperatively for 10 days	postop	n.r.
				10mg (7.5 for women over 70	
				and patients with minor liver	
			SCDs (6 chambers (2 thigh, 4	function test abnormalities) night	
			calf), peak pressure 40mmHg)	before surgery, 5 mg night of	
			started immediately after	surgery if prothrombin time <15	graded elastic compression
			surgery, worn continuously	sec, then maintained dose at 14-	stockings (TED hose) used in
Bailey et al.		Warfarin +	except for bathing and physical	16sec (also monitored partial	both groups before and after
1991	IPC + GCS	GCS	therapy	thromboplastin times)	surgery
			15mg loading dose 36h after		
			surgery, none next day, 5mg	5000 units at 12h internals	
Barber et al.			day after that, then adjusted dose to maintain PR time 10-	5000 units at 12h intervals	
1977	Warfarin	Honorin	20% continued for 3 weeks	starting evening before surgery for 3 weeks	n.r.
17//	vv arrarni	Heparin	20% continued for 5 weeks	IOI 5 WEEKS	anticoagulant up to day7,
			continue prophylactic		other methods employed
Barrellier et al.	LMWH +		anticoagulant drug up to day35	stop prophylactic therapy at	according to each center's
2010	LMWH	LMWH	(almost all used enoxaparin)	day10	usual practice
2010			(unitost un used enoxuputiti)	aujio	

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
		010 up =	durution, dosing,	durution, dosing)	after venography,
					investigators could extend
					prophylaxis with any
					currently available therapy;
					use of intermittent pneumatic
					compression, dextran, and
					any other anticoagulant,
					thrombolytic, or antiplatelet agent was prohibited; use of
	Fondaparinux;	Enoxaparin;	2.5mg once daily and a placebo	30mg twice daily, starting 12-24h	graduated-compression
Bauer et al.	GCS	GCS	once daily, starting 6+-2h after	after surgery, continued until day	stockings and physiotherapy
2001	Recommended	Recommended	surgery, continued until day 5-9	5-9	was recommended
			40mg enoxaparin once daily,	40mg enoxaparin once daily,	
			starting 12h preop, continued	starting 12h preop, continued	
Bergqvist et al.	Enoxaparin +	Enoxaparin	thru hospital discharge, then 21	thru hospital discharge, then	
1996	Enoxaparin	+Placebo	more days	placebo for 21 days	n.r.
				5000U heparin s.c. plus 10 or	
			heparin/SNAC 10mL (1.5g	15mL oral control syrup (SNAC	
	Heparin, Oral;	Heparin; IPC	SNAC/60000 U heparin), plus	and vehicle without heparin)	~82% of each group used
Berkowitz et	IPC (Used In	(Used In 82%)	s.c. saline injections every 6h	every 8h for 12 doses, starting	external pneumatic
al. 2003	82%) Allowed	Allowed	for 12 doses starting 10h postop	10h postop	compression
			1st injection 6-12h after	1st injection evening before	
Bonneux et al.	Fondenerinuv	Enovonorin	operation, 2nd 18-24h after 1st,	surgery, 2nd 12-24h after	graduated compression
2006	Fondaparinux + GCS	Enoxaparin + GCS	continued for 6 weeks; dosage not specified	operation, continued for 6 weeks; dosage not specified	graduated compression stockings
2000			not specifica	ausage not speemed	stockings

Table 176. Individual Study Date	ata - Treatment Details
----------------------------------	-------------------------

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Chin et al. 2009	Enoxaparin	GCS; Group 3: IPC; Group 4: No Treatment	40mg once daily until day 5-7	grp2: graduated compression stockings applied directly to both legs; grp3 intermittent pneumatic compression, 45-52mmHg; grp4: no prophylaxis	n.r.
2007	Liioxapariii	Treatment	tonig once dany until day 5-7	Fondaparinux + graduated compression stockings for 35-49 days applied preoperatively and	11.1.
				worn until last follow up visit; long leg stockings used unless	fondaparinux 2.5 mg daily for 5-9 days starting 6h after
Cohen et al. 2007	Fondaparinux	Fondaparinux + GCS	Fondaparinux only 30mg every 12h in grp1; 40mg once daily in grp2; 1st dose	thigh circumference necessitated use of short leg stockings	closure of the surgical wound, 2nd dose 18-24h later
Colwell et al. 1994	Enoxaparin	Heparin	within 24h postoperative, continued a maximum of 7 days 30mg every 12h, starting	5000 units every 8h, starting within 24h postoperatively for maximum of 7 days 5000 units every 8h, starting	n.r.
Colwell et al. 1995	Enoxaparin	Heparin	within 8h after surgery after adequate hemostasis, continued for 4-14 days	within 8h after surgery after adequate hemostasis, continued for 4-14 days	n.r.
			101 1 1 00000	starting dose 7.5mg, adjusted for INR 2-3, starting as early as 48h	no anticoagulatnts, antithrobotics, or aspirin allowed, nor pneumatic
Colwell et al. 1999	Enoxaparin; GCS Allowed	Warfarin; GCS Allowed	30mg every 12h starting within 24h postop, after hemostasis established, until discharge	preop at investigator's discretion, definitely started within 24h postop, until discharge	compression devices; elastic compression stockings allowed

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Colwell et al. 2006	Fondaparinux; GCS (Used In 68%), IPC (Used In 54%) Allowed	Fondaparinux; GCS (Used In 68%), IPC (Used In 54%) Allowed	2.5mg 8h after surgery and not less than 4h after removal of indwelling catheters, 2nd dose of 2.5mg at least 12h later, then continued once daily for total of 7-10 days CECT+SFT intermittent sequential compression device, on both calves immediately after induction of anesthesia	2.5mg on morning of 1st day after surgery, continued once daily for 7-10 days	intermittent pneumatic compression or plantar compression pump was allowed (68% used elastic compression stockings, 54% ipc); use of aspirin, nsaids, and other anti-inflammatory agents was discouraged, dextran, antiplatelet drugs other than aspirin, thrombolytic treatment, and fibrinolytic agents were prohibited
Colwell et al. 2010	IPC; Low Dose Aspirin Allowed (Used In 63%)	Enoxaparin	(max pressure 50mmHg), continued for 10 days, plus option of 81mg aspirin daily (at discretion of treating surgeon; used in 63% of cases)	enoxaparin 30mg every 12h until discharge (avg discharge ~3 days) and then 40mg once daily, starting morning after surgery and continued for 10 days	n.r.
	Enoxaparin +	Enoxaparin	,		
Comment of	Enoxaparin;	+Placebo;	30 mg 2x/day for 7-10 days,	30mg enoxaparin 2x/day for 7-10	70% reported use of
Comp et al. 2001	GCS Allowed (Used In 70%)	GCS Allowed (Used In 70%)	then 40mg once daily for 3 weeks	days, then placebo once daily for 3 weeks	graduated compression stockings

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Dahl et al. 1997	Dalteparin, GCS, Dextran + Dalteparin	Dalteparin, GCS, Dextran + Placebo	continue 5000IU dalteparin daily for 4 additional weeks (total of 5 weeks)	placebo	evening before operation and for the next 7 days, all patients received single dose of dalteparin 000IU, dextran- 70 given day of surgery and day after, all patients wore below-knee graded elastic stockings on both legs, before operation and for first week after
			2500antiXa U every 12h for 2 days postop, then 5000 U once	5000IU calcium heparin 2x/day for 2 days postoperatively, then dose adjusted according to	
Dechavanne et			daily, started 2h before surgery,	APTT, continued for 10-13 days;	
al. 1989	Dalteparin	Heparin	continued for 10-13 days cect device (intermittent sequential compression device,	1st dose 2h before surgery	n.r.
			max pressure 50mmHg),		30mg every 12h for 7-8 days
Edwards et al. 2008	Enoxaparin + IPC	Enoxaparin	starting at operation on worn for length of hospitalization 5000IU daily for 10 days,	no cect device	after surgery starting morning after surgery
Eriksson et al.			starting evening before	5000IU 3x/day for 10 days,	
1991	Dalteparin	Heparin	operation 15mg 2x/day for 8-11 days,	starting 2h preop	n.r.
Eriksson et al.			starting after induction of	5000IU heparin 3x/day for 8-11	
1996	Desirudin	Heparin	anesthesia	days, starting 2h before surgery 5000IU sodium heparin 3x/day	list of prohibited drugs
Eriksson et al.			15 mg 2x/day for 8-11 days,	for 8-11 days, starting 2h before	
1997	Desirudin	Heparin	starting 30min before operation	operation	list of prohibited drugs

Table 176. Individ	lual Study Data -	Treatment Details
--------------------	-------------------	--------------------------

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Eriksson et al.	-	-	15mg 2x/day for 8-12 days,	40mg once daily for 8-12 days,	×
1997(b)	Desirudin	Enoxaparin	starting 30min before operation	starting evening before surgery	n.r.
	Dabigatran;	Enoxaparin;			
	GCS And	GCS And			elastic compression stockings
	Nsaids (Inc.	Nsaids (Inc.			and nsaids, including low-
	Low Dose	Low Dose		40mg once daily starting evening	dose aspirin, were allowed,
Eriksson et al.	Aspirin)	Aspirin)	300mg once daily; 1st dose 1-	before surgery, continued until	pneumatic compression
2005	Allowed	Allowed	4h after surgery	venography (6-10 days)	devices not allowed
			5mg every 12h, starting 6-8h		
Eriksson et al.	Rivaroxaban;	Enoxaparin;	after surgery and continuing for	40mg once daily for 5-9 days,	elastic compression stockings
2006	GCS Allowed	GCS Allowed	5-9 days	starting evening before surgery	were allowed, ipc not
			5mg every 12h, starting 6-8h		
Eriksson et al.			after surgery and continuing for	40mg once daily for 5-9 days,	intermittent pneumatic
2006b	Rivaroxaban	Enoxaparin	5-9 days	starting evening before surgery	compression not allowed
			5mg every 12h, starting 6-8h		
Eriksson et al.	Rivaroxaban;	Enoxaparin;	after surgery and continuing for	40mg once daily for 5-9 days,	elastic compression stockings
2007	GCS Allowed	GCS Allowed	5-9 days	starting evening before surgery	were allowed, ipc not
	Dabigatran;	Enoxaparin;			
	GCS, Low	GCS, Low			elastic compression stockings
	Dose Aspirin	Dose Aspirin			and low-dose aspirin and
	And Cox-2	And Cox-2	220 mg, once daily for 6-10	40mg once daily starting evening	cox2 inhibitors, were allowed,
Eriksson et al.	Inhibitors	Inhibitors	days, starting with half dose 1-	before surgery, continued for 6-	pneumatic compression
2007b	Allowed	Allowed	4h after surgery	10 days	devices not allowed
	Dabigatran;	Enoxaparin;			
	GCS, Low	GCS, Low			elastic compression stockings
	Dose Aspirin	Dose Aspirin			and low-dose aspirin and
тч <i>с</i> т	And Cox-2	And Cox-2	220mg, once daily for 28-35	40mg once daily starting evening	cox2 inhibitors, were allowed,
Eriksson et al.	Inhibitors	Inhibitors	days, starting with half dose 1-	before surgery, continued for 28-	pneumatic compression
2007c	Allowed	Allowed	4h after surgery	35 days	devices not allowed

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
					about 1/3 used nonpharmacological
	YM150;	Enoxaparin;	several dose groups of ym150:		prophylaxis; after
	Mechanical	Mechanical	3, 10, 30, 60mg once daily,	40mg once daily, starting 12h	venography, patients could
Eriksson et al.	Allowed	Allowed	starting 6-10h postop,	before surgery, continued for 7-	continue on nonstudy drug
2007d	(Used In 1/3)	(Used In $1/3$)	continued for 7-10 days	10 days	prophylaxis
Eriksson et al.			10mg once daily for 31-39	40mg once daily for 31-39 days,	
2008	Rivaroxaban	Enoxaparin	days, starting 6-8h after surgeryseveral dose groups of ym150:5, 10, 30, 60, or 120mg once	starting 12h before surgery	n.r.
			daily, starting 6-10h after	40mg once daily, starting 12h	
Eriksson et al.			wound closure, continued for 5	before surgery, continued for 5	
2010	YM150	Enoxaparin	weeks	weeks	n.r.
		1	220mg once daily, starting 1-4h	40mg once daily, starting the	
Eriksson et al.			after surgery, continued for 28-	evening before surgery,	no ipc or high dose aspirin
2011	Dabigatran	Enoxaparin	35 days	continued for 28-35 days	allowed
	C		40mg once daily starting	5000IU 3x daily starting evening	
Fauno et al.	Enoxaparin +	Heparin +	evening before operation,	before operation, continuing for	
1994	GCS	GCS	continuing for 7-10 days	7-10 days	compression stockings
			1mg daily starting night before		
Feller et al.			surgery and continued for 14		
1992	Warfarin	Warfarin	days	adjusted dose with target INR 2-4	n.r.
			30mg every 12h starting as	7.5mg initial dose (as soon as	
			soon as hemostasis achieved	hemostasis achieved and within	
			and within 8h after surgical	8h after surgical wound closure),	
Fitzgerald et al.	Enoxaparin;	Warfarin;	wound closure, continued for 4-	then INR 2-3, continued for 4-14	graduated compression
2001	GCS Allowed	GCS Allowed	14 days	days	stockings were allowed

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
	*		1mg warfarin daily for 1 week	· · · · · · · · · · · · · · · · · · ·	
Fordyce et al.			before and 3 weeks after		
1991	Warfarin	Placebo	surgery	placebo	n.r.
			A-V Impulse System (foot		graduated compression
Fordyce et al.	Foot Pump +		pump) used when patient in bed		stockings for both legs
1992	GCS	GCS	or sitting at rest	no foot pump	applied in recovery room
			external pneumatic		
			compression (6 chambers, 2	starting 10-14 days	
			thigh, 4 calf) pressure 35-	preoperatively, with dose	
			55mmHg, starting immediately	adjusted to acieve PT index on	
			before surgery and worn at all	day of surgery of 1.14-1.28, and	
			times while in bed, continued	1.5 postop (corresponding to INR	
Francis et al.		Warfarin +	until venography at 6-8 days	of 1.5 and 2.5 respectively),	graduated elastic stockings
1992	IPC + GCS	GCS	postop	,continued until venography	(TED)
			starting 10-14 days		
			preoperatively, 2.5mg		
			alternating with 5mg daily,	starting night before surgery with	
			adjusted dose to achieve INR of	initial dose based on body weight	
			1.5 on day of surgery followed	(5, 7.5, or 10mg), same dose on	
			by increase to target INR of	night of surgery, then target INR	
Francis et al.	Warfarin +	Warfarin +	2.2-3.0, continued until	of 2.2, continued until	thigh-high graduated elastic
1996	GCS	GCS	venography day 5-9	venography postop day 5-9	stockings on both legs
			2500IU 2h before operation,		
			then 2500IU on evening of		
			operation at least 6h after	5-7.5mg (based on weight) for	
			preoperative dose, then 5000IU	the 1st dose the evening before	
			once daily until venography	the operation, 2nd dose same as	
Francis et al.			performed ~7 days	1st, given evening of operation,	
1997	Dalteparin	Warfarin	postoperatively	then INR ~2.5 until venography	n.r.

			Group 1 Details (onset,	Group 2 Details (onset,	
Author	Group 1	Group 2	duration, dosing)	duration, dosing)	Adjuvant Interventions
Fuji et al. 2008	Enoxaparin;	Placebo; GCS	40mg qd starting 24-36h after		only compression bandages
(hip)	GCS Allowed	Allowed	surgery, continued for 14 days	placebo	and stockings were allowed
Fuji et al. 2008	Enoxaparin;	Placebo; GCS	40mg qd starting 24-36h after		only compression bandages
(knee)	GCS Allowed	Allowed	surgery, continued for 14 days	placebo	and stockings were allowed
			2.5mg once daily dose from		
Fuji et al.	Fondaparinux;	Placebo; GCS	day2 to days11-15 (i.e. starting		see article for prohibited
2008b	GCS Allowed	Allowed	24h after surgery)	placebo syringe	items; stockings allowed
			220mg once daily, starting as		
			early as possible on day after		
			surgery or at least 2h after		
			removing indwelling catheter		elastic compression stockings
			and confirming absence of		and dressing allowed; ipc and
			abnormal bleeding from the		other
	Dabigatran;	Placebo; GCS	drainage sites, continued for		anticoagulants/antiplateletsnot
Fuji et al. 2010	GCS Allowed	Allowed	11-14 days	placebo	permitted

			Group 1 Details (onset,	Group 2 Details (onset,	
Author	Group 1	Group 2	duration, dosing)	duration, dosing)	Adjuvant Interventions
				mechanical started immdiately	
				after induction of anesthesia; for	
				THA, used sequential pnuematic	
				calf sleeves, for TKA operated	
				leg was fitted with a foot sleeve	
				for the operation and then	
				switched to the calf sleeve, as in	
				the other leg (device called	
				WizAir continuous enhanced	
				circulation therapy); advised that	
				pump should be activated	
				continuously without activity	
		Aspirin		restrictions; also had 100mg	
Gelfer et al.		(<300mg/Day)	40mg once daily starting within	aspirin once daily starting 12h	
2006	Enoxaparin	+ IPC	12h after operation	after operation	n.r.
	Dabigatran;	Enoxaparin;			
	GCS, Low	GCS, Low			elastic compression stockings
	Dose Aspirin	Dose Aspirin			and low-dose aspirin and
	And Cox-2	And Cox-2	220mg, once daily for 12-15		cox2 inhibitors, were allowed,
Ginsberg et al.	Inhibitors	Inhibitors	days, starting with half dose 6-	30mg 2x/day for 12-15 days,	pneumatic compression
2009	Allowed	Allowed	12h after surgery	starting 12-24h after surgery	devices not allowed

Table 176. Individual	Study Data -	Treatment Details
-----------------------	--------------	-------------------

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
				pneumatic sequential	
				compression boots (6 chambers	
				(2 thigh, 4 calf), presure 35-	
				55mmHg), starting on	
				uninvolved extremity just before	
				operation, and on affected	
				extremity immediately	
			650mg 2x/day, starting day	postoperatively, worn	
Haas et al.	Aspirin		650mg 2x/day, starting day before operation, continuing	continuously except for washing and walking, worn until lung	
1990	$(\geq 300 \text{mg/Day})$	IPC	until discharge	scan at 5-7 days postop	n.r.
1770	(<u>~</u> 500mg/Day)	пс	5000 units calcium heparin	sean at 5-7 days postop	11.1.
			with their preoperative		
			medication, continued 3x/day		
			for 7-10 days (7 days for 1st		
Hampson et al.			half of patients, 10 days for 2nd		
1974	Heparin	Placebo	half)	placebo	n.r.
				warfarin: 1st dose 10mg night	
				before operation, 5mg night of	
				-	
					elastic stockings used during
				¥ •	*
					•
		XX C :		-	
	Acatinia		e e :		•
Harria at al		· 1			-
				A Contraction of the second se	0 1 1
	Heparin Aspirin (≥300mg/Day) + GCS	Placebo Warfarin + GCS; Group 3: Heparin + GCS	half of patients, 10 days for 2nd	warfarin: 1st dose 10mg night	

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Harris et al.	Aspirin		0.6g aspirin twice daily starting the day before operation and continued until venogram and		all aspirin containing compounds were discontinued at least 2 weeks before admission and prohibited throughout the
1977	(≥300mg/Day)	Placebo	usually for additional 2 weeks 900mg 4x/day, starting 24h preop, continued until venography (7-10 days) with pause from night before operation until postop oral	placebo 300mg 4x/day, starting 24h preop, continued until venography (7-10 days) with pause from night before operation until postop oral intake	study
Harris et al. 1982	Aspirin (≥300mg/Day)	Aspirin (≥300mg/Day)	 intake of food was tolerated (total of 36-48h pause) 600mg aspirin 2x/day starting one day preoperatively, resuming when patient able to take pills by mouth (24-36h 	of food was tolerated (total of 36- 48h pause) 150mg aspirin 2x/day starting one day preoperatively, resuming when patient able to take pills by mouth (24-36h postop),	n.r.
Harris et al. 1985	Aspirin (≥300mg/Day)	Aspirin (≥300mg/Day)	postop), continuing 10-14 days (until venography) sequential calf and thigh intermittent compression begun postoperatively in the recovery room (6 chambers: 2 thigh, 4 calf) max pressure 50- 65mmHg, continued until discharge or for 14 days, worn continuously except while	continuing 10-14 days (until venography)	n.r.
Hull et al. 1990	IPC	None	walking	no prophylaxis	n.r.

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
			75 Xa units per kg body weight		
			once daily, starting 18-24h after		
			surgery if no evident bleeding or excessive wound discharge,	10mg warfarin postop on	
			continued until 14th postop day	evening of surgery, then adjusted	
			or until discharge (also placebo	for INR 2-3, for 14 days or until	
Hull et al. 1993	Tinzaparin	Warfarin	capsule)	discharge (also placebo injection)	n.r.
	Dalteparin;	Warfarin;	2500IU within 2h before	initial 10mg dose postoperatively	
	GCS Allowed	GCS Allowed	surgery, then 2500IU 4h	on evening of surgery (age70+ or	
Hull et al. 2000	(Used In 25-	(Used In 25- 30%)	postop, then 5000IU once daily while in hospital (~6 days)	weight<57kg had 5mg dose),	25-30% used graduated
Hull et al. 2000	30%) Dalteparin;	Warfarin;	2500IU within 2h before	then adjusted dose for INR 2-3	compression stockings <10% used graduated
	Gcs Allowed	GCS Allowed	surgery, then 2500IU 4h	warfarin in hospital (see dosage	compression stockings;
Hull et al.	(Used In	(Used In	postop, then 5000IU once daily	in corresponding study), placebo	pneumatic compression and
2000b	<10%)	<10%)	for 35 days	out of hospital	other drugs not allowed
				none; group 3: warfarin, 1st dose	
				(timing not specified) usually	
XX . 1		GCS; Group		10mg, then adjusted for	
Hume et al. 1973	Heparin + GCS	3: Warfarin + GCS	heparin: 5000IU 2h preop and	prothrombin time at 1.5x control value	no aspirin allowed; elastic
Kakkar et al.	005	GCS	every 8h postop 10mg once daily for 31-39	40mg once daily for 10-14 days,	stockings were worn
2008	Rivaroxaban	Enoxaparin	days, starting 6-8h after surgery	starting 12h before surgery	n.r.
2000	isi yaroxuotan	Liloxupuilli	1.2 g aspirin daily in 3 doses,	starting 12h before surgery	11.1.
	Aspirin		starting 48h before operation		
Kim et al. 1998	(≥300mg/Day)	None	and ending 14 days after	no prophylaxis	n.r.

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
		~	· • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	aspirin 325 night before
					surgery and 2x/day while
					eigher in hospital or rehab
					unit, either knee or thigh high
					compression stockings
			. 1 . 61		beneath the pneumatic
			rapid inflation asymmetrical		compression devices
T1.'	Aspirin	Aspirin	compression device (knee high	sequential compression device	recommended to continue at
Lachiewicz et al. 2004	(≥300mg/Day)	(≥300mg/Day)	sleeve with 2 chambers (45-	(knee-high sleeve with 3	home both aspirin and
al. 2004	+ IPC	+ IPC	52mmHg)	chambers (45mmHg)	compression stockings thigh length graded
					compression stockings for
			50 units anti_xa per kg body		both legs, applied 1h before
Lassen et al.	Tinzaparin +		weight once daily, started 2h		operation, used until
1991	GCS	GCS	preop, continued for 7 days	saline once daily	venography at day8-10
1771	005	005	dalteparin 5000 units once	sume once dury	venogrupny at augo 10
			daily, starting 12h before	dalteparin 5000 units once daily,	
	Dalteparin +	Dalteparin +	operation and continuing for 7	starting 12h before operation and	
Lassen et al.	Dalteparin;	Placebo; GCS	days; then continued until day	continuing for 7 days; then	compression stockings were
1998	GCS Allowed	Allowed	35	placebo until day 35	allowed
			dosage stratified by body	dosage stratified by body weight:	
			weight: 3500, 5000, 6500IU,	2500, 3500, 4500IU, starting 2h	
Lassen et al.			starting 12h before surgery,	before surgery, continued once	
2000	Tinzaparin	Tinzaparin	continued once daily for 8 days	daily for 8 days	n.r.

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
					after venography, investigators could extend prophylaxis with any currently available therapy;
					use of intermittent pneumatic compression, dextran, and any other anticoagulant,
			2.5mg once daily and placebo,	40mg enoxaparin and a placebo,	thrombolytic, or antiplatelet agent was prohibited; use of
	Fondaparinux;	Enoxaparin;	starting a mean of 6h after	starting 12h before surgery,	graduated-compression
Lassen et al.	GCS	GCS	operation, continued till days 5-	second 12-24h after operation,	stockings and physiotherapy
2002	Recommended	Recommended	9	continued to days 5-9	was recommended
				enox: 30 mg 2x/day, timing same	
		. .		as apixaban; group 3: warfarin:	
Lassen et al.		Enoxaparin;	2.5mg bid, started 12-24h after	INR 1.8-3, starting with 5mg on	
2007	Apixaban	Group 3: Warfarin	surgery, continued for 12 days (until venography)	evening of day of surgery, continued for 12 days	n.r.
Lassen et al.	пріхадан	vv arrarm	10mg once daily for 10-14	40mg once daily, starting 12h	11.1.
2008	Rivaroxaban	Enoxaparin	days, starting 6-8h after surgery	before surgery, for 10-14 days	n.r.
		-	2.5mg orally 2x/day and		
			placebo injection, starting 12-	30mg s.c. every 12h and placebo	
Lassen et al.		.	24h after surgery, continued for	tablets, starting 12-24h after	
2009	Apixaban	Enoxaparin	10-14 days	surgery, continued for 10-14 days	n.r.
			2.5mg orally 2x/day and placebo injection, starting 12-		
Lassen et al.			24h after surgery, continued for	40mg/day for 10-14 days,	
2010	Apixaban	Enoxaparin	10-14 days	starting 12h before surgery	n.r.

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Lassen et al. 2010b	Apixaban	Enoxaparin	2.5mg orally 2x/day and placebo injection, starting 12- 24h after surgery, continued for 32-38 days	40mg/day for 32-38 days, starting 12h before surgery warfarin goal of INR 2-3 using a	n.r.
Leclerc et al.			30mg every 12h starting morning of 1st day after surgery until 14 days or	medications started evening of day of surgery, continued for 14 days or until discharge,	no other agents or stocking
1996	Enoxaparin	Warfarin	discharge, whichever first 30mg twice daily beginggin 12- 24h postop and continued for	whichever 1st calcium heparin 7500 units twice daily, beginning 12-24h postop	used
Levine et al.			14 days or until discharge if	and continued for 14 days or	
1991 Leyvraz et al.	Enoxaparin	Heparin	earlier	until discharge if earlier started with 3500IU, then	n.r.
1983	Heparin	Heparin	3500IU heparin every 8h aspirin + thigh high external pneumatic compression boots applied in recovery room, worn continously except when bathing or walking until	adjusted dose based on APTT	n.r.
	Aspirin		venogram performed on postop		aspirin 325 mg 2x/day
Lieberman et al. 1994	(≥300mg/Day) + IPC	Aspirin (≥300mg/Day)	day 6-8 (6 chambers 2 thigh, 4 calf, 35-55mmHg)	aspirin only, no boots	starting on day of operation continuing for 3 weeks

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
				10mg warfarin on night of surgery, none the next day, then daily doses adjusted to maintain the prothrombin time between	use of aspirin-containing
			325 mg aspirin twice daily	1.2-1.5 control value; convestion	drugs prohibited during study;
Lotke et al.	Aspirin	Warfarin,	begun on day of admission for	to aspirin prophylaxis after 7-10?	all NSAIDs discontinued 7
1996	(≥300mg/Day)	Then Aspirin	6 weeks after surgery	days	days before admission
Managanalli at			5000H Langer Ob modil	5000IU every 8h until discharge	
Manganelli et al. 1998	Heparin	Heparin	5000IU every 8h until discharge	and continued until 30th postop	n.r.
al. 1990	nepaini	nepam	5000 units calcium heparin 2h	day	11.1.
Mannucci et al.			preop and every 8h postop until		
1976	Heparin	None	fully ambulatory on crutches	no treatment	none
	•			compression: intermittent low-	
				pressure pneumatic compression	
				device (2 thigh and calf cuffs that	
				inflate alternately, max pressure	
				30mmHg), applied to	
				nonoperated limb before anesthesia, and operated limb at	
McKenna et al.	Aspirin	IPC; Group 3:		end of operation; group 3:	
1980	(≥300mg/Day)	Placebo	1300mg 3x/day until discharge	placebo: 1 tablet 3x/day	n.r.
			sodium heparin, 5000 units	r	
			every 8h starting morning of		
Moskovitz et	Heparin +		day of surgery continued for 7		
al. 1978	GCS	GCS	days	placebo	compressive stockings

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
			intermittent external pneumatic	10mg night before operation,	
			compression boots (6 chambers	5mg night of operation, then	
			(2 thigh, 4 calf), 45-55mmHg), worn bilaterally continuosly	adjusted dose to maintain prothrombin time at 15 sec,	
Paiement et al.			except when washing and	continued 2 until 2 days after	
1987	IPC	Warfarin	walking)	venogram (10th day postop)	n.r.
1707	пс	vv arranni	5 week of 160 mg daily enteric-	venogram (roth day postop)	11.1.
			coated aspirin or matching	5 week of 160 mg daily enteric-	
			placebo started immediately	coated aspirin or matching	
			after randomization (before	placebo started immediately after	
			surgery) with 1st dose chewed	randomization (before surgery)	
			or broken; recommended that	with 1st dose chewed or broken;	
			non-study aspirin and other	recommended that non-study	non-study aspirin taken in
PEP Trial			NSAIDs be avoided unless	aspirin and other NSAIDs be	hospital by 5%, other
Collaborative	Aspirin		specifically indicated during	avoided unless specifically	NSAIDs 27%, unfractionated
Group 2000	(<300mg/Day)	Placebo	study	indicated during study	heparin 2%, lmwh 35%
			40mg daily starting 12h		
			preoperatively and continued	5000IU 3x daily starting 2h	
Planes et al.	F	TT	for 14 days or until discharge if	before operation, continuing for	-1
1988	Enoxaparin	Heparin	earlier	14 days or discharge if earlier	elastic bandaging of the legs
			40mg daily starting 12h poston	20mg 1h after anesthesia, then 40mg daily starting 12h postop,	
			40mg daily starting 12h postop, continuing for ? Days	continuing for ? Days	
Planes et al.			(venography was performed	(venography was performed 12-	
1991	Enoxaparin	Enoxaparin	(venography was performed 12-15 days)	(venography was performed 12- 15 days)	elastic bandaging of the legs

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
	Enoxaparin +	Enoxaparin			advised to wear compression stockings on legs during day, to avoid nsaids, other selected treatments allowed when necessary; anticoagulant
Planes et al.	Enoxaparin; GCS	+Placebo; GCS	40mg enoxaparin once daily, continued thru discharge, then	40mg enoxaparin once daily, continued thru discharge, then	agents, antiplatelet agents, and intramuscular injections
1996	Recommended	Recommended	continued for 21 more days	placebo for 21 more days	not allowed
			40mg (4000 anti-Factor IU Xa)		elastic bandaging of the legs, elevation of the foot of the
			starting 12h preoperatively,	4500 anti-Factor IU Xa starting	bed recommended but not
Planes et al. 1999	Enovonaria	Tingonomin	then 12h postop, then once	12h preoperatively, then 12h	universally applied (~70% in
1999	Enoxaparin	Tinzaparin	daily 1mg daily starting 7 days	postop, then once daily 5000IU 3x/day starting 2h before	each group)
Poller et al.			before surgery continued until	operation continued until	
1995	Warfarin	Heparin	venography (day 9-14)	venography (day 9-14)	n.r. all received 5mg/d starting on
					2nd preoperative day, after
Prandoni et al.	Warfarin +	Warfarin +	continue warfarin 4 more	discontinue warfarin at hospital	surgery dosage adjusted for
2002	Warfarin	None	weeks, INR 2-3 3x 5000 IU heparin sodium for	discharge (~day9)	INR 2-3
			3 days after surgery; as the PTT		5000IU heparin sodium night
	Henerin	Henerin	did not reach 40 seconds, the		before operation as well as in
Rader et al.	Heparin + GCS +	Heparin + GCS +	dosage was increased to 3x 7500 IU on the fourth day (goal	40mg enoxaparin once daily as	the morning and evening of the operation day;
1998	Heparin	Enoxaparin	of 40 sec PTT)	long as hospitalized (~16 days)	antithrombosis stockings

Table 176. Individual Study Data	a - Treatment Details
----------------------------------	-----------------------

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
			0.6g aspirin twice daily starting		
			when able to take oral	facing large (a schierer 1.5.2-	
			medicines, usually in the	warfarin doses to achieve 1.5-2x	
			recovery room or on the morning after operation and	prothrombin time, starting the evening after operation and	
			continued until fully	continued until fully ambulatory;	
			ambulatory, usually 3-5 weeks	contraindication to warfarin:	
			after operation;	active peptic ulcer, severe	
			contraindication to aspirin:	diastolic hypertension, bleeding	
Salzman et al.	Aspirin		active peptic ulceration or	diathesis, GI bleeding, or gross	
1971	(≥300mg/Day)	Warfarin	allergy to aspirin	hematuria	n.r.
Samama et al.	Enoxaparin +	Placebo +			gradual compression
1997	GCS	GCS	40mg once daily for 10+-2 days	placebo	stockings
			5000IU of calcium heparin	AV Impulse System to both feet	
Santori et al.			3x/day for 10 days, starting day	starting immediately after	
1994	Heparin	Foot Pump	before operation	operation for 7-10 days	n.r.
G (1	. .	и : сса	40mg daily starting 12h	5000IU starting 8h	1
Senaran et al.	Enoxaparin;	Heparin; GCS	preoperatively for 7-10 days	preoperatively and continued 3x	elastic compression stockings
2006	GCS Allowed	Allowed	(until discharge)	a day for 7-10 days	allowed
	Heparin +		1000 units of heparin 5 minutes		650mg aspirin daily during hospitalization, elastic
	Aspirin	Aspirin	before operation, 500 units		stockings on both limbs when
Sharrock et al.	(≥300mg/Day)	$(\geq 300 \text{mg/Day})$	given every 30 minutes under		pateint arrived in recovery
1990	+ GCS	+ GCS	end of operation	placebo	room
	Enoxaparin;	Enoxaparin;	40mg once daily; starting	30mg every 12h, starting within	
Spiro et al.	GCS Allowed	GCS Allowed	within 24h after surgery,	24h after surgery, continued for	57% used graduated
1994	(Used In 57%)	(Used In 57%)	continued for as long as 7 days	as long as 7 days	compression stockings

Table 176. Individual Study Data - Treatment Details

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
			Flowtron DVT garment worn		
			on oppposite leg during operation, second garment		
			applied at end of procedure		
			(Flowtron = intermittent	40mg daily beginning evening	
Stone et al.			pneumatic calf compression	before operation coninued until	
1996	IPC	Enoxaparin	garment)	discharge, usually 10 days	n.r.
Taukalus at al			2500IU for 1st 2 doses (at 2h		
Torholm et al. 1991	Dalteparin	Placebo	preop and 12h postop), then 5000IU once daily for 6 days	placebo	n.r.
1771	Danoparin	Tideebb	30mg twice daily starting 12-	placebo twice daily starting 12-	11.1.
Turpie et al.			24h after surgery continued for	24h after surgery continued for	
1986	Enoxaparin	Placebo	14 days or until discharge	14 days or until discharge	n.r.
			once daily starting 6h after end	30mg enoxaparin every 12h	
Turpie et al.		- .	of surgery (dose 3 mg) for 5-10	starting 12-24h after end of	
2001	Fondaparinux	Enoxaparin	days	surgery, for 5-10 days	n.r.
					after venography,
					investigators could extend prophylaxis with any
					currently available therapy;
					use of intermittent pneumatic
					compression, dextran, and
					any other anticoagulant,
					thrombolytic, or antiplatelet
					agent was prohibited; use of
T 1	Fondaparinux;	Enoxaparin;	2.5mg once daily and placebo,	30mg enoxaparin twice daily,	graduated-compression
Turpie et al. 2002	GCS Recommended	GCS Recommended	starting 4-8h after operation, continued till days 5-9	starting 12-24h after surgery, for	stockings and physiotherapy was recommended
2002	Recommended	Recommended	continued un days 3-9	5-9 days	was recommended

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
			5mg every 12h, starting 6-8h		
Turpie et al.	Rivaroxaban;	Enoxaparin;	after surgery and continuing for	30mg 2x/day for 5-9 days,	elastic compression stockings
2005	GCS Allowed	GCS Allowed	5-9 days	starting morning after surgery	were allowed, ipc not
Turpie et al.			10mg once daily for 11-15	30mg 2x/day for 11-15 days,	
2009	Rivaroxaban	Enoxaparin	days, starting 6-8h after surgery	starting 12-24h after surgery	n.r.
					adjusted dose warfarin before discharge; no elastic
Vives et al.			target PT 14-16 seconds,	2mg/d during outpatient period,	supportive stockings were
2001	Warfarin	Warfarin	continued for total of 6 weeks	continued for total of 6 weeks	used
			5000IU 2h preop and then		
VTCSG 1975	Heparin	None	every 8h for 10 days	none	n.r.
					bilateral thigh-length
Warwick et al.	Enoxaparin +		40mg at 12h before operation,		graduated compression
1995	GCS	GCS	and 12 and 36h postop	no enox	stockings
				foot pump slippers applied in	
			40mg 12h before surgery and	recovery room and used	
Warwick et al.	Enoxaparin +	Foot Pump +	every 24h thereafter until 8th	whenever patient was not weight-	graduated compression
1998	GCS	GCS	postop day	bearing (130mmHg)	stockings for 6 weeks
				foot pump slippers applied in recovery room and used	
			40mg 12h before surgery and	whenever patient was not weight-	
Warwick et al.	Enoxaparin +	Foot Pump +	every 24h thereafter until	bearing until discharge	graduated compression
2002	GCS	GCS	discharge	(130mmHg)	stockings (below-knee)
	Heparin +				325mg 2x/day for 1 month;
Westrich et al.	Aspirin	Aspirin	intraoperative dose of		intermittent pneumatic
2005	(≥300mg/Day)	(≥300mg/Day)	unfractionated heparin 15 U/kg	placebo	compression was not used

Table 176. Individual Study Data - Treatment Details

Table 176. Individual S	Study Data -	Treatment Details
-------------------------	--------------	--------------------------

Author	Group 1	Group 2	Group 1 Details (onset, duration, dosing)	Group 2 Details (onset, duration, dosing)	Adjuvant Interventions
Westrich et al. 2006	Aspirin (≥300mg/Day) + IPC	Enoxaparin + Ipc	325 mg enteric-coated aspirin twice daily, starting on night of surgery in recovery room, and continued for 4 weeks postop	30mg twice daily starting 2h after epidural catheter removal (~48h postop) until discharge; upon discharge 40mg once daily for 3 weeks	pneumatic compression device: VenaFlow highi-flow calf compression device, used upon arrival in recovery until discharge
Wilson et al. 1994	Warfarin; IPC Allowed (Used In 73%)	Warfarin; IPC Allowed (Used In 73%)	fixed dose 2mg/d warfarin during outpatient period, continued for 1 month after discharge	adjusted dose with target PT range of 15-17 seconds, continued for 1 month after discharge	both groups had same adjusted dose warfarin before discharge; 73% used ipc enoxaparin (40mg once
Windisch et al. 2010	Foot Pump + Enoxaparin + GCS	Enoxaparin + GCS	A-V Impulse System (foot pump), enoxaparin, stockings 650mg aspirin 2x/day starting evening before operation, and	no foot pump; enoxaparin and stockings	daily), thigh-length anti- embolic or compression stockings
	Aspirin	GCS + IPC; Group 3:	 thigh-high elastic stockings and intermittent pneumatic compression boots (thigh high, 6 chambers 35-55mmHg) worn during operation and continuously until day before 	mechanical only: same as grp1 except no aspirin; group 3: mechanical and 7.5 or 10mg warfarin evening before operation, then dose to maintain	
Woolson et al. 1991	$(\geq 300 Mg/Day)$ + GCS + IPC	Warfarin + GCS + IPC	discharge (~7 days) except when bathed or walked	prothrombin time at 1.2-1.3x control (14-16 sec) 20mg 2x/day for 10 days, starting	n.r.
Yokote et al. 2011	Fondaparinux + IPC	Enoxaparin + IPC; Group 3: Placebo + IPC	2.5mg once daily for 10 days, starting 18h postop + IPC device for 2 days	17h postop + ipc for 2 days;group 3: placebo + ipc for 2 days	ipc

Table 177.	Study Da	ta - Patient	t and Fun	ding Details

Author	Group1	Group2	Joint	N1	N2	Mean Age	Industry Funding	Any Author Conflict of Interest
Agnelli et al. 2007	LY517717	Enoxaparin	Both	106	90	63	Yes	Yes
Avikainen et al. 1995	Enoxaparin	Heparin	Hip	83	84	66	NR	NR
Bailey et al. 1991	IPC + GCS	Warfarin + GCS	Hip	50	45	65	Yes	NR
Barber et al. 1977	Warfarin	Heparin	Hip	58	19	66	NR	NR
Barrellier et al. 2010	LMWH + LMWH	LMWH Enoxaparin; GCS	Knee	422	420	71	No	No
Bauer et al. 2001	Fondaparinux; GCS Recommended	Recommended	Knee	517	517	68	Yes	Yes
Bergqvist et al. 1996	Enoxaparin + Enoxaparin Heparin, Oral; IPC (Used In 82%)	Enoxaparin +Placebo Heparin; IPC (Used In	Hip	131	131	70	Yes	Yes
Berkowitz et al. 2003	Allowed	82%) Allowed	Hip	43	41	63	Yes	Yes
Bonneux et al. 2006	Fondaparinux + GCS	Enoxaparin + GCS	Knee	55	54 110;	66	No	No
C1 1 1 1 1 1 1 1 1 1	—	GCS; Group 3: IPC;		110	N3:110;	-		
Chin et al. 2009	Enoxaparin	Group 4: No Treatment	Knee	110	N4:110	67	NR	NR
Cohen et al. 2007	Fondaparinux	Fondaparinux + GCS	Hip	404	391	65	NR	Yes
Colwell et al. 1994	Enoxaparin	Heparin	Hip	195	209	65	Yes	Yes
Colwell et al. 1995	Enoxaparin	Heparin Warfarin; GCS	Knee	228	225	68	NR	NR
Colwell et al. 1999	Enoxaparin; GCS Allowed Fondaparinux; GCS (Used In 68%),	Allowed Fondaparinux; GCS (Used In 68%), IPC	Hip	1516	1495	64	Yes	Yes
Colwell et al. 2006	IPC (Used In 54%) Allowed	(Used In 54%) Allowed	Both	1003	997	67	Yes	NR

Author	Group1	Group2	Joint	N1	N2	Mean Age	Industry Funding	of Interest
	IPC; Low Dose Aspirin Allowed							
Colwell et al. 2010	(Used In 63%)	Enoxaparin	Hip	198	194	63	Yes	Yes
		Enoxaparin +Placebo;						
	Enoxaparin + Enoxaparin; GCS	GCS Allowed (Used In						
Comp et al. 2001	Allowed (Used In 70%)	70%)	Both	441	432	65	Yes	Yes
	Dalteparin, GCS, Dextran +	Dalteparin, GCS,						
Dahl et al. 1997	Dalteparin	Dextran + Placebo	Hip	117	110	71	NR	NR
Dechavanne et al. 1989	Dalteparin	Heparin	Hip	41	40	64	Yes	Yes
Edwards et al. 2008	Enoxaparin + IPC	Enoxaparin	Both	141	136	67	Yes	NR
Eriksson et al. 1991	Dalteparin	Heparin	Hip	67	69	69	No	No
Eriksson et al. 1996	Desirudin	Heparin	Hip	277	277	66	Yes	Yes
Eriksson et al. 1997	Desirudin	Heparin	Hip	223	220	68	Yes	Yes
Eriksson et al. 1997(b)	Desirudin	Enoxaparin	Hip	1028	1023	66	Yes	Yes
		Enoxaparin; GCS And						
	Dabigatran; GCS And Nsaids (Inc.	Nsaids (Inc. Low Dose						
Eriksson et al. 2005	Low Dose Aspirin) Allowed	Aspirin) Allowed	Both	385	392	65	Yes	Yes
		Enoxaparin; GCS						
Eriksson et al. 2006	Rivaroxaban; GCS Allowed	Allowed	Hip	136	132	65	Yes	Yes
Eriksson et al. 2006b	Rivaroxaban	Enoxaparin	Hip	142	157	65	Yes	Yes
		Enoxaparin; GCS						
Eriksson et al. 2007	Rivaroxaban; GCS Allowed	Allowed	Hip	80	162	65	Yes	Yes
	Dabigatran; GCS, Low Dose	Enoxaparin; GCS, Low						
	Aspirin And Cox-2 Inhibitors	Dose Aspirin And Cox-				10		
Eriksson et al. 2007b	Allowed	2 Inhibitors Allowed	Knee	679	694	68	Yes	Yes

								commet
Author	Group1	Group2	Joint	N1	N2	Mean Age	Industry Funding	of Interest
Aution	Dabigatran; GCS, Low Dose	Enoxaparin; GCS, Low	JUIII	111	142	Age	Fullung	merest
	Aspirin And Cox-2 Inhibitors	Dose Aspirin And Cox-						
Eriksson et al. 2007c	Allowed	2 Inhibitors Allowed	Hip	1146	1154	64	Yes	Yes
		Enoxaparin;	1					
	YM150; Mechanical Allowed	Mechanical Allowed						
Eriksson et al. 2007d	(Used In 1/3)	(Used In 1/3)	Hip	36	36	63	Yes	Yes
Eriksson et al. 2008	Rivaroxaban	Enoxaparin	Hip	2209	2224	63	Yes	Yes
Eriksson et al. 2010	YM150	Enoxaparin	Hip	156	166	59	Yes	Yes
Eriksson et al. 2011	Dabigatran	Enoxaparin	Hip	1010	1003	62	Yes	Yes
Fauno et al. 1994	Enoxaparin + GCS	Heparin + GCS	Knee	92	93	70	Yes	Yes
Feller et al. 1992	Warfarin	Warfarin	Hip	100	100	NR	NR	NR
		Warfarin; GCS						
Fitzgerald et al. 2001	Enoxaparin; GCS Allowed	Allowed	Knee	173	176	68	Yes	Yes
Fordyce et al. 1991	Warfarin	Placebo	Hip	74	74	68	NR	NR
Fordyce et al. 1992	Foot Pump + GCS	GCS	Hip	39	40	70	NR	No
Francis et al. 1992	IPC + GCS	Warfarin + GCS	Hip	110	110	64	No	NR
Francis et al. 1996	Warfarin + GCS	Warfarin + GCS	Knee	103	105	69	No	NR
Francis et al. 1997	Dalteparin	Warfarin	Hip	271	279	63	Yes	Indirect
Fuji et al. 2008 (hip)	Enoxaparin; GCS Allowed	Placebo; GCS Allowed	Hip	102	101	63	Yes	Yes
Fuji et al. 2008 (knee)	Enoxaparin; GCS Allowed	Placebo; GCS Allowed	Knee	91	89	69	Yes	Yes
Fuji et al. 2008b	Fondaparinux; GCS Allowed	Placebo; GCS Allowed	Both	165	169	66	Yes	NR
Fuji et al. 2010	Dabigatran; GCS Allowed	Placebo; GCS Allowed	Knee	129	124	71	Yes	Yes
		Aspirin (<300mg/Day)						
Gelfer et al. 2006	Enoxaparin	+ IPC	Both	60	61	68	No	NR

								Commet
Author	Group1	Group2	Joint	N1	N2	Mean Age	Industry Funding	of Interest
Aunor	Dabigatran; GCS, Low Dose	Enoxaparin; GCS, Low	Joint	111	112	ngu	Funding	merest
	Aspirin And Cox-2 Inhibitors	Dose Aspirin And Cox-						
Ginsberg et al. 2009	Allowed	2 Inhibitors Allowed	Knee	857	868	66	Yes	Yes
Haas et al. 1990	Aspirin (≥300mg/Day)	IPC	Knee	58	61	69	No	NR
Hampson et al. 1974	Heparin	Placebo	Hip	48	52	68	NR	NR
		Warfarin + GCS;						
		Group 3: Heparin +			55;			
Harris et al. 1974	Aspirin (≥300mg/Day) + GCS	GCS	Hip	51	N3:20	NR	Yes	NR
Harris et al. 1977	Aspirin (≥300mg/Day)	Placebo	Hip	44	51	NR	Yes	NR
Harris et al. 1982	Aspirin (≥300mg/Day)	Aspirin (≥300mg/Day)	Hip	90	92	NR	No	NR
Harris et al. 1985	Aspirin (≥300mg/Day)	Aspirin (≥300mg/Day)	Hip	48	43	NR	Yes	NR
Hull et al. 1990	IPC	None	Hip	152	158	65	No	NR
Hull et al. 1993	Tinzaparin	Warfarin	Both	715	721	66	Yes	NR
	_	Warfarin; GCS						
	Dalteparin; GCS Allowed (Used In	Allowed (Used In 25-						
Hull et al. 2000	25-30%)	30%)	Hip	496	489	63	Yes	Yes
		Warfarin; GCS						
U-11 - 1 2000h	Dalteparin; Gcs Allowed (Used In	Allowed (Used In	TT:	100	100	\mathcal{C}^{2}	V	V
Hull et al. 2000b	<10%)	<10%) GCS; Group 3:	Hip	199	180 19;	63	Yes	Yes
Hume et al. 1973	Heparin + GCS	Warfarin + GCS	Hip	18	N3:17	NR	Yes	NR
Kakkar et al. 2008	Rivaroxaban	Enoxaparin	Hip	1228	1229	62	Yes	Yes
Kim et al. 1998	Aspirin (≥300mg/Day)	None	Hip	50	50	NR	NR	NR
		Aspirin (≥300mg/Day)	mp	20	00		1 1 1 1	
Lachiewicz et al. 2004	Aspirin (≥300mg/Day) + IPC	+ IPC	Knee	206	217	67	Yes	No
Lassen et al. 1991	Tinzaparin + GCS	GCS	Hip	105	105	67	NR	NR

								Commet
Author	Group1	Group2	Joint	N1	N2	Mean Age	Industry Funding	of Interest
Autior	Dalteparin + Dalteparin; GCS	Dalteparin + Placebo;	JUIII	111	142	Age	Funding	merest
Lassen et al. 1998	Allowed	GCS Allowed	Hip	140	141	69	NR	NR
Lassen et al. 2000	Tinzaparin	Tinzaparin Enoxaparin; GCS	Hip	96	94	67	NR	NR
Lassen et al. 2002	Fondaparinux; GCS Recommended	Recommended Enoxaparin; Group 3:	Hip	1140	1133 149;	66	Yes	No
Lassen et al. 2007	Apixaban	Warfarin	Knee	155	N3:151	67	Yes	Yes
Lassen et al. 2008	Rivaroxaban	Enoxaparin	Knee	1220	1239	68	Yes	Yes
Lassen et al. 2009	Apixaban	Enoxaparin	Knee	1599	1596	66	Yes	Yes
Lassen et al. 2010	Apixaban	Enoxaparin	Knee	1528	1529	67	Yes	Yes
Lassen et al. 2010b	Apixaban	Enoxaparin	Hip	2708	2699	61	Yes	Yes
Leclerc et al. 1996	Enoxaparin	Warfarin	Knee	336	334	69	Yes	Yes
Levine et al. 1991	Enoxaparin	Heparin	Hip	333	332	66	Yes	NR
Leyvraz et al. 1983	Heparin	Heparin	Hip	41	38	69	NR	NR
Lieberman et al. 1994	Aspirin (≥300mg/Day) + IPC	Aspirin (≥300mg/Day)	Hip	113	118	66	No	No
Lotke et al. 1996	Aspirin (≥300mg/Day)	Warfarin, Then Aspirin	Both	166	146	67	No	NR
Manganelli et al. 1998	Heparin	Heparin	Hip	28	33	66	NR	NR
Mannucci et al. 1976	Heparin	None	Hip	45	51 10;	60	No	NR
McKenna et al. 1980	Aspirin (≥300mg/Day)	IPC; Group 3: Placebo	Knee	12	N3:12	65	NR	NR
Moskovitz et al. 1978	Heparin + GCS	GCS	Hip	35	32	NR	No	NR
Paiement et al. 1987 PEP Trial Collaborative	IPC	Warfarin	Hip	66 2047	72 2041	NR 67	Yes Yes	NR NR
Group 2000 Planes et al. 1988	Aspirin (<300mg/Day) Enoxaparin	Placebo Heparin	Both Hip	2047 124	2041 112	66	NR	NR
r falles et al. 1900	Elloxapathi	перапі	пір	124	112	00	INK	INK

Conflict

								Commet
A (1		a	.	N 14		Mean	Industry	of
Author	Group1	Group2	Joint	N1	N2	Age	Funding	Interest
Planes et al. 1991	Enoxaparin	Enoxaparin	Hip	65	61	67	NR	Indirect
	Enoxaparin + Enoxaparin; GCS	Enoxaparin +Placebo;				- 0		
Planes et al. 1996	Recommended	GCS Recommended	Hip	90	89	69	Yes	Yes
Planes et al. 1999	Enoxaparin	Tinzaparin	Hip	219	221	65	Yes	Yes
Poller et al. 1995	Warfarin	Heparin	Both	31	37	67	NR	NR
Prandoni et al. 2002	Warfarin + Warfarin	Warfarin + None Heparin + GCS +	Hip	184	176	68	NR	NR
Rader et al. 1998	Heparin + GCS + Heparin	Enoxaparin	Both	116	130	NR	NR	NR
Salzman et al. 1971	Aspirin (≥300mg/Day)	Warfarin	Hip	43	43	50	Yes	NR
Samama et al. 1997	Enoxaparin + GCS	Placebo + GCS	Hip	85	85	67	Yes	Yes
Santori et al. 1994	Heparin	Foot Pump	Hip	65	67	71	No	No
Senaran et al. 2006	Enoxaparin; GCS Allowed Heparin + Aspirin (≥300mg/Day) +	Heparin; GCS Allowed Aspirin (≥300mg/Day)	Hip	50	50	54	Yes	NR
Sharrock et al. 1990	GCS Enoxaparin; GCS Allowed (Used In	+ GCS Enoxaparin; GCS	Hip	60	66	64	No	No
Spiro et al. 1994	57%)	Allowed (Used In 57%)	Hip	199	208	65	Yes	Yes
Stone et al. 1996	IPC	Enoxaparin	Hip	25	25	64	NR	NR
Torholm et al. 1991	Dalteparin	Placebo	Hip	58	54	66	NR	No
Turpie et al. 1986	Enoxaparin	Placebo	Hip	50	50	67	No	NR
Turpie et al. 2001	Fondaparinux	Enoxaparin Enoxaparin; GCS	Hip	177	260	67	Yes	Yes
Turpie et al. 2002	Fondaparinux; GCS Recommended	Recommended Enoxaparin; GCS	Hip	1128	1129	67	Yes	No
Turpie et al. 2005	Rivaroxaban; GCS Allowed	Allowed	Knee	102	104	66	Yes	Yes
Turpie et al. 2009	Rivaroxaban	Enoxaparin	Knee	1526	1508	65	Yes	Yes

Author	Group1	Group2	Joint	N1	N2	Mean Age	Industry Funding	Conflict of Interest
Vives et al. 2001	Warfarin	Warfarin	Both	113	109	64	No	NR
VTCSG 1975	Heparin	None	Hip	30	30	64	Yes	NR
Warwick et al. 1995	Enoxaparin + GCS	GCS	Hip	78	78	NR	No	Indirect
Warwick et al. 1998	Enoxaparin + GCS	Foot Pump + GCS	Hip	143	147	68	No	Yes
Warwick et al. 2002	Enoxaparin + GCS	Foot Pump + GCS	Knee	112	117	72	NR	Yes
Westrich et al. 2005	Heparin + Aspirin (≥300mg/Day)	Aspirin (≥300mg/Day)	Hip	69	65	73	No	NR
Westrich et al. 2006	Aspirin (≥300mg/Day) + IPC Warfarin; IPC Allowed (Used In	Enoxaparin + Ipc Warfarin; IPC Allowed	Knee	136	139	69	Yes	NR
Wilson et al. 1994	73%)	(Used In 73%)	Both	49	47	58	No	NR
Windisch et al. 2010	Foot Pump + Enoxaparin + GCS Aspirin (≥300Mg/Day) + GCS +	Enoxaparin + GCS GCS + IPC; Group 3:	Knee	40	40 73;	69	NR	NR
Woolson et al. 1991	IPC	Warfarin + GCS + IPC Enoxaparin + IPC; Group 3: Placebo +	Hip	70	N3:69 86;	65	No	No
Yokote et al. 2011	Fondaparinux + IPC	IPC	Hip	85	N3:85	63	No	No

APPENDIX XVI CONCLUSIONS OF OTHER SYSTEMATIC REVIEWS

Author	Title	Summery	Quality Evaluation
Autioi	Meta regression analysis to	Summary	Evaluation
	indirectly compare dalteparin		
	to enoxaparin for the		
	prevention of venous	The findings suggested comparable safety	
Dranitsaris	thromboembolic events	and efficacy between dalteparin and	
2011	following total hip replacement	enoxaparin in TKR patients.	No
2011	Tono wing total inp replacement	Apixaban in non-inferior to subcutaneous	110
		enoxaparin when used for the same	
	Apixaban versus enoxaparin in	duration, with considerable advantage	
	patients with total knee	regarding safety profile of major bleeding	
Huang 2011	arthroplasty	after TKA.	Yes
	Rivaroxaban versus enoxaparin	Rivaroxaban was more effective than the	
	for thromboprophylaxis after	recommended dose of enoxaparin and had	
	total hip or knee arthroplasty: a	a similar safety profile for	
	meta-analysis of randomized	thromboprophylaxis after hip and knee	
Cao 2010	controlled trials	arthroplasty	Yes
	Review article:	There is robust evidence to support an	
Kurmis	thromboprophylaxis after total	extended course (>14 days) of	
2010	hip replacement	thromboprophylaxis after THR.	No
	Rivaroxaban for		
	thromboprophylaxis in patients	Rivaroxaban has demonstrated	
Melillo	undergoing major orthopedic	comparable safety and superior efficacy to	
2010	surgery	enoxaparin.	No
		Direct thrombin inhibitors are as effective	
		in the prevention of major venous	
		thromboembolism in THR or TKR as	
		LMWH and vitamin K antagonists.	
		However, they show higher mortality and	
		cause more bleeding than LMWH. No	
	Direct thrombin inhibitors	severe hepatic complications were	
	versus vitamin K antagonists or	reported in the analysed studies. Use of	
	low molecular weight heparins	ximelagatran is not recommended for	
	for prevention of venous	VTE prevention in patients who have	
	thromboembolism following	undergone orthopedic surgery. More	
Salazar	total hip or knee replacement	studies are necessary regarding	
2010	(Review)	dabigatran.	Yes

Table 178. S	Systematic Review Conclusions - Pr	cophylaxis	
		Clinically relevant VTEs are a rare	
		complication following THR. The lower	
	Meta-analysis of low molecular	risk of VTE narrows the risk benefit of	
	weight heparin versus placebo	potent pharmacological	
	in patients undergoing total hip	thromboprophylaxis. We do not support	
	replacement and post-operative	their use in patients undergoing THR	
Tasker	morbidity and mortality since	without additional thromboembolic risk	
2010	their introduction	factors.	No
		The VTE rates with aspirin were not	
		significantly different than the rates for	
		vitamin K antagonists (VKA), low	
		molecular weight heparins (LMWH), and	
		pentasaccharides. The operative site	
		bleeding relative risks of VKA, LMWH,	
	Venous Thromboembolism	and pentasaccharides versus aspirin, are	
	Prophylaxis After Major	4.9, 6.4, and 4.2, respectively. A pooled	
	Orthopaedic Surgery: A Pooled	analysis of RCTs supports the use of	
Brown	Analysis of Randomized	aspirin for VTE prophylaxis after major	
2009	Controlled Trials	orthopaedic surgery.	No
		DBG (220 mg and 150 mg once daily) is	
		not inferior to enoxaparin (40 mg once	
		daily and 30 mg twice daily) in terms of	
		major VTE or VTE-related events	
		(secondary outcome). Meta-analysis	
		shows that 220 mg DBG is not inferior to	
		enoxaparin (40 mg once daily or 30 mg	
		twice daily) in reducing total VTE and all-	
		cause mortality (primary outcome) in total	
		hip or knee replacement, whereas there is	
		uncertainty around the clinical	
		effectiveness of 150 mg DBG for this	
		outcome. In the MTC analysis DBG	
	Dabigatran etexilate for the	compared favourably with the other	
	prevention of venous	interventions, with the exception of	
	thromboembolism in patients	extended enoxaparin and fondaparinux.	
	undergoing elective	The adverse event profile was not	
Holmes	hip and knee surgery: a single	significantly different in those receiving	
2009	technology appraisal	DBG and those receiving enoxaparin.	Yes

Table 178.	Systematic	Review	Conclusions	- Prophylaxis

	Assessing the Safety Profiles of New Anticoagulants for Major	The definitions of bleeding events that clinical trials of thromboprophylaxis use in their assessment of new anticoagulants strongly influences each drug's perceived safety profile and may underestimate bleeding risks. Clinical studies of new anticoagulants urgently need standardization of bleeding definitions to allow intertrial	
	Orthopedic	comparability and to ensure consistent	
Hull 2009	Surgery Thromboprophylaxis	reporting of clinically relevant outcomes.	No
Lazo- Langner 2009	Lessons From Ximelagatran: Issues for Future Studies Evaluating New Oral Direct Thrombin Inhibitors for Venous Thromboembolism Prophylaxis in Orthopedic Surgery	This study suggested that the risk-benefit profile of ximelagatran—and probably other similar agents— depends on the type of surgery, the initial timing of administration, and probably the dose. These issues should be explicitly explored in future trials evaluating new direct thrombin inhibitors.	Yes
	Combined intermittent		
Kakkos	pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism in high-risk	Combined modalities should be used in the prevention of venous thromboembolism in the types of high risk groups studied in the current systematic	
2008	patients (Review)	review.	Yes
Sharrock	Potent Anticoagulants are Associated with a Higher All- Cause Mortality Rate After Hip and	The recommendations from the Chest Physicians Consensus Statement advocate low-molecular-weight heparin or warfarin for prophylaxis after THA and TKA. These recommendations often result in physicians feeling compelled to prescribe these anticoagulants to avoid potential litigation. The increased risk of bleeding complications has encouraged several experienced surgeons who perform joint arthroplasty to emphasize caution in the use of these anticoagulants. We believe the American College of Chest Physicians should reconsider their guidelines to reflect the fact that PE occurs despite the use of potent anticoagulants and may, in fact, expose patients to increased mortality	
2008	Knee Arthroplasty	after surgery.	No

en
se
Yes
10
ed
1
re
l. No
ch
bo
r
of
t. No
с
-

$\frac{1}{1} able 1/8.5 $	ystematic Review Conclusions - Pi	rophylaxis	
		Enoxaparin has demonstrated efficacy and	
		safety in VTE prevention in medical	
		patients, whereas information is limited or	
		lacking for dalteparin and tinzaparin. Total	
		hip replacement (THR) trials have been	
		conducted with all US-marketed LMWHs	
		and have demonstrated the efficacy and	
		safety of each agent. Trials specifically	
		establishing the efficacy of an LMWH in	
		total knee replacement surgery (TKR)	
		have been published for enoxaparin. One	
		combination THR and TKR trial has been	
		published for tinzaparin. These trial	
		outcomes have positioned the LMWHs as	
	Venous Thromboembolism	key alternatives to adjusted-dose warfarin	
	Prevention with LMWHs in	for VTE prophylaxis in orthopedic	
	Medical	surgery. Inherent differences between	
Deitelzweig	and Orthopedic Surgery	LMWHs prevent the extrapolation of	
2003	Patients	clinical outcomes from 1 trial to another.	No
		Tinzaparin is safe and effective for	
		prevention and treatment of DVT.	
		Consistent once-daily dosing may	
Nutescu	Tinzaparin: Considerations for	facilitate self-administration of tinzaparin	
2003	Use in Clinical Practice	in the outpatient setting.	No
	Reduction of Out-of-Hospital		
	Symptomatic Venous		
	Thromboembolism by		
	Extended	The absolute reduction in symptomatic	
	Thromboprophylaxis With	venous thromboembolism attributed to	
	Low-Molecular-Weight	extended prophylaxis in some studies and	
O'Donnell	Heparin Following Elective	meta-analyses seems to have been	
2003	Hip Arthroplasty	overestimated.	No
			1.0

Table 178. Sy	stematic Review Conclusions - Pr	rophylaxis	
		Fondaparinux is the first of a new class of	
		synthetic factor Xa inhibitors that	
		demonstrated greater efficacy compared	
		with enoxaparin for the prevention of VTE	
		in rnajor orthopedic surgery without an	
		increase in clinically relevant bleeding.	
		Given the favorable cost-effectiveness	
		analysis and improved efficacy profile,	
		fondaparinux should be considered for	
		formula addition for DVT prophylaxis in	
		patients undergoing hip and knee	
		replacement surgery. in patients	
		undergoing hip fracture surgery,	
		fondaparinux should be considered the	
		DVT prophylaxis of choice. Extended	
		thromboprophylaxis up to 28dais resulted	
		in additional reduction in VTE (both	
	Fondaparinux for Prevention of	symptomatic and venography-proven	
	Venous Thromboembolism in	DVT) in patients with hip fracture	
Tran 2003	Major Orthopedic Surgery	surgery.	No
		Our results support the hypothesis that	
		with LMWH there is a relationship	
		between dose and reduction of risk of	
		asymptomatic total or proximal DVT. We	
		found no convincing evidence that starting	
		prophylaxis preoperatively in major	
	Optimal low-molecular-weight	orthopaedic surgery is associated with a	
Zufferey	heparin regimen in major	better benefit-risk ratio than starting	
2003	orthopaedic surgery	postoperatively	No
		Fondaparinux has shown efficacy in the	
		prevention of venous thromboembolism in	
		patients undergoing hip or knee	
		replacement surgery. Largescale clinical	
		trials of its potential efficacy in deep vein	
		thrombosis and acute coronary syndromes	
		are ongoing. Use of fondaparinux may be	
		associated with an increased bleeding risk,	
		and patients should be assessed	
		individually to ensure that the possible	
		benefits outweigh the risks. Routine use of	
		fondaparinux as a replacement for low-	
	Fondaparinux: A New	molecular-weight heparin is not	
Cheng 2002	Antithrombotic Agent	recommended at this time.	No
			2.0

Table 178. Sy	stematic Review Conclusions - Pr	rophylaxis	
		In patients who undergo hip or knee	
		replacement and receive short-duration	
		anticoagulant prophylaxis, symptomatic	
		nonfatal venous thromboembolism	
		will occur in about 1 of 32 patients and	
		fatal pulmonary embolism will occur in	
		about 1 of 1000 patients within 3 months	
		of the surgery. Although the prevalence	
		of asymptomatic deep vein thrombosis is	
		more than 2-fold higher after knee	
	Short-Duration Prophylaxis	replacement than after hip replacement 7	
	Against Venous	to 10 days after surgery, in the subsequent	
	Thromboembolism	3 months, symptomatic venous	
Douketis	After Total Hip or Knee	thromboembolism is more likely to occur	
2002	Replacement	after hip replacement.	No
	ł	We find no convincing evidence that	
		starting prophylaxis preoperatively is	
	Preoperative or Postoperative	associated with a lower incidence of	
	Start	venous thromboembolism than starting	
	of Prophylaxis for Venous	postoperatively. Perioperative regimens	
	Thromboembolism	may lower the risk of postoperative	
	With Low-Molecular-Weight	thrombosis, but if so, this positive effect is	
Strebel	Heparin	offset by an increase in postoperative	
2002	in Elective Hip Surgery?	major bleeding.	No
		For total DVT, all agents except dextran	
		and aspirin protected significantly better	
		than placebo (P .0001). For proximal	
		DVT rates, low-molecular-weight heparin	
		was significantly better than warfarin (P	
		.0002). There was a trend that aspirin was	
		better than warfarin (P .0106). No	
		significant difference was found for	
	A Meta-Analysis of	symptomatic pulmonary embolism, fatal	
Brookenthal	Thromboembolic Prophylaxis	pulmonary embolism, major hemorrhage,	
2001	in Total Knee Arthroplasty	or total mortality.	No
2001	In Total Knee Thunoplasty	Among patients undergoing total hip or	110
	Extended duration prophylaxis	knee replacement, extended-duration	
	against venous	prophylaxis significantly reduces the	
	thromboembolism after total	frequency of symptomatic venous	
	hip or knee replacement: a	thromboembolism. The reduction in risk is	
Eikelboom	meta-analysis of the	equivalent to about 20 symptomatic events	
2001	randomised trials	per 1000 patients treated.	Yes
2001	Tanuonniseu utais	per 1000 partents iteated.	105

<u> Table 178. Sy</u>	ystematic Review Conclusions - Pr	ophylaxis	
		Extended LMWH prophylaxis showed	
		consistent effectiveness and safety in the	
		trials (regardless of study variations in	
	Extended Out-of-Hospital	clinical practice and length of hospital	
	Low-Molecular-Weight	stay) for venographic deep venous	
	Heparin Prophylaxis against	thrombosis and symptomatic venous	
	Deep Venous Thrombosis in	thromboembolism. The aggregate findings	
	Patients after Elective Hip	support the need for extended outof-	
	Arthroplasty: A Systematic	hospital prophylaxis in patients	
Hull 2001	Review	undergoing hip arthroplasty surgery.	Yes
	Timing of Initial	The timing of initiating low-molecular	
	Administration of Low-	weight heparin significantly influences	
	Molecular-Weight Heparin	antithrombotic effectiveness. The practice	
	Prophylaxis Against Deep Vein	of delayed initiation of low molecular-	
	Thrombosis in Patients	weight heparin prophylaxis results in	
	Following Elective Hip	suboptimal antithrombotic effectiveness	
Hull 2001	Arthroplasty	without a substantive safety advantage.	Yes
	· ·	The best prophylactic agent in terms of	
		both efficacy and safety was warfarin,	
		followed by pneumatic compression, and	
		the least effective and safe was low-dose	
		heparin. Warfarin provided the lowest risk	
		of both proximal deep venous thrombosis	
		and symptomatic pulmonary embolism.	
		However, there were no identifiable	
		significant differences in the rates of fatal	
		pulmonary embolism or death among the	
		agents. Significant risks of minor and	
		major bleeding complications were	
		• • •	
		observed with greater frequency with	
	A meta-analysis of	observed with greater frequency with certain prophylactic agents, particularly	
	A meta-analysis of thromboembolic prophylaxis	certain prophylactic agents, particularly	
Freedman	A meta-analysis of thromboembolic prophylaxis following elective total hip	e 1 i	

Table 178. Sy	stematic Review Conclusions - P		
		Our findings have shown that pneumatic	
		compression had the lowest incidence of	
		thromboembolism and is an acceptable	
		form of prophylaxis in TKA. Aspirin	
		alone was inadequate. Warfarin alone is	
		used routinely in many institutions, but it	
		too had a greater incidence of associated	
		thromboembolism than LMWH and	
		pneumatic compression. Although the	
		LMWHs appear to give a reduction	
		in thromboembolism, complications are	
		ubiquitous in all published studies and	
		included haemorrhagic problems as well	
		as thrombocytopenia. No statistically	
	Meta-analysis of	significant difference was noted between	
Westrich	thromboembolic prophylaxis	the above prophylactic regimes due to the	
2000	after total knee arthroplasty	very small incidence of symptomatic PE.	Yes
	¥	Graduated compression stockings reduce	
		the overall cross-sectional area of	
		the limb, increase the linear velocity of	
		venous flow, reduce venous wall	
		distension and improve valvular function.	
		Fifteen randomized controlled trials of	
		graduated compression stockings alone	
		were reviewed. Stockings reduced the	
		relative risk of DVT by 64 per cent in	
		general surgical patients and 57 per cent	
		following total hip replacement. The effect	
		of stockings was enhanced by	
		combination with pharmacological agents	
		such as heparin; the combination is	
		recommended in patients at moderate or	
	Graduated compression	high risk of DVT. Knee-length stockings	
	I I I I I I I I I I I I I I I I I I I	• • •	
	stockings in the prevention of	are as effective and should replace above-	
	stockings in the prevention of venous	are as effective and should replace above- knee stockings. Complications are rare	

Table 178. Sy	stematic Review Conclusions - P	rophylaxis	
		Our findings support the need for a	
		randomized comparison of preoperative	
		and postoperative initiation of	
	Preoperative vs Postoperative	pharmacological prophylaxis of DVT.	
	Initiation of Low-Molecular-	Such a trial would resolve the divergent	
	Weight Heparin Prophylaxis	practices for DVT prophylaxis between	
	Against Venous	Europe and the North American countries,	
	Thromboembolism in Patients	the United States and Canada, and would	
	Undergoing Elective Hip	affect the treatment for thousands of	
Hull 1999	Replacement	patients on both continents.	No
	*	Low molecular weight heparin is more	
		efficacious than either adjusted	
		dose heparin or adjusted dose warfarin,	
Howard	Low molecular weight heparin	when used to prevent DVT and proximal	
1998	decreases	DVT following total knee arthroplasty.	Yes
		IPC devices significantly decreased the	- **
		relative risk of DVT compared with	
		placebo among major orthopedic surgery	
	Meta-analysis of effectiveness	patients; compared with warfarin, the	
	of intermittent pneumatic	incidence of DVT was similar overall, but	
	compression devices with a	IPC was better at preventing calf DVT	
	comparison of thigh-high to	while warfarin was better at preventing	
Vanek 1998	knee-high sleeves	proximal DVT	No
,		Dalteparin is the second LMWH to	110
		receive approval by the Food and Drug	
		Administration. Dalteparin is indicated for	
		prophylaxis against DVT in patients	
		undergoing abdominal surgery. Clinical	
		studies have shown that single daily doses	
Howard	Dalteparin: a low-molecular-	of dalteparin provide a safe and effective	
1997	weight heparin	alternative to fixed-dose UH therapy.	No
1777		Danaparoid is an antithrombotic agent	110
		with characteristics that distinguish it from	
		heparin and LMWHs. Based on the	
		efficacy and safety data reviewed,	
		danaparoid should be considered one of	
		the drugs of choice for the prevention of	
		thromboembolic complications in patients	
		undergoing orthopedic hip procedures and	
		the drug of choice for the management of	
	Danaparoid in the prevention	any patient with heparin-induced	
Skoutakis	of thromboembolic	thrombocytopenia who requires	
1997	complications	anticoagulant therapy.	No
177/	complications	anneoaguiant merapy.	INU

Table 1/8. Sy	stematic Review Conclusions - Pi	rophylaxis	
		Our study demonstrates that there is not	
		enough evidence in the literature to	
		conclude that any form of	
		pharmacological thromboprophylaxis	
		decreases the death rate after total hip	
		replacement. For this reason	
		guidelines which recommend their routine	
Murray	Thromboprophylaxis and death	use to prevent death after hip replacement	
1996	after total hip replacement	are not justified.	No
	r r	Thromboprophylaxis with recommended	
		dosages of LMWH was significantly more	
		effective than both placebo (no	
		prophylaxis), dextran 70 and low-dose	
		unfractionated heparin (UH) (5,000 [U	
		thrice daily) in terms of protection against	
		objectively diagnosed deep vein	
		thrombosis (DVT), which is the main	
		source of postoperative pulmonary	
		embolism. The efficacy of LMWH	
		was similar to that of adjusted-dose UH	
		but only 2 studies have been conducted	
		with this regimen so far. When combined	
		with 0.5 mp dihydroergotanine (DHE),	
	Deviewenting the sub-scie	UH was as effective as LMWH but DHE	
	Perioperative thrombosis	bears a definite risk of circulatory	
	prophylaxis with low	disturbances in the lower limbs. In all	
D : 1004	molecular weight heparins in	studies LMWH prophylaxis was side	NT
Borris 1994	elective hip surgery	under the clinical conditions.	No
		The results suggest that low-molecular-	
		weight heparin and compression stockings	
		have the greatest relative efficacy in	
		preventing venous thromboembolism	
	A meta-analysis of methods to	following total hip replacement. Low-	
	prevent venous	molecular-weight heparin may be more	
Imperiale	thromboembolism following	effective, though at a small risk of	
1994	total hip replacement	clinically important bleeding.	Yes
	Efficacy and Cost of Low-		
	Molecular-Weight Heparin		
	Compared with Standard	Low-molecular-weight heparin is more	
	Heparin for the Prevention of	effective and is at least as safe as standard	
Anderson	Deen Vain Thromhogic often	honorin for the provention of doop wein	
	Deep Vein Thrombosis after	heparin for the prevention of deep vein	

Multiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, thrombosis in elective hip Mohr 1993 Multiple agents or combinations are effective prophylaxis for deep venous thrombosis in elective hip Mohr 1993 Surgery Low molecular weight heparin consistently performed well. Yes Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular	Table 1/8. Sy	stematic Review Conclusions - Pr	rophylaxis	
Superior or equivalent to other antithrombotic agents, including heparin, n preventing the formation of venous thromboembolism. In addition, enoxaparin appears to possess an equivalent or lower incidence of bleeding complications when compared with heparin prophylaxis. NoCarter 1993thromboembolic complicationsMultiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well. YesMohr 1993surgeryLow molecular weight heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			Clinical studies performed throughout the	
Enoxaparin: the low- molecular-weight heparin for prevention of postoperativeantithrombotic agents, including heparin, n preventing the formation of venous thromboembolism. In addition, enoxaparin appears to possess an equivalent or lower incidence of bleeding complications when compared with heparin prophylaxis.NoCarter 1993thromboembolic complicationsMultiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryLow molecular weight heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			world have shown that enoxaparin is	
In preventing the formation of venousEnoxaparin: the low- molecular-weight heparin for prevention of postoperativethromboembolism. In addition, enoxaparin appears to possess an equivalent or lower incidence of bleeding complications when compared with heparin prophylaxis. NoCarter 1993thromboembolic complicationsNoMultiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryConsistently performed well.YesLow molecular weight heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecularYes			superior or equivalent to other	
In preventing the formation of venousEnoxaparin: the low- molecular-weight heparin for prevention of postoperativethromboembolism. In addition, enoxaparin appears to possess an equivalent or lower incidence of bleeding complications when compared with heparin prophylaxis. NoCarter 1993thromboembolic complicationsNoMultiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryConsistently performed well.YesLow molecular weight heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecularYes			antithrombotic agents, including heparin,	
molecular-weight heparin for prevention of postoperative thromboembolic complicationsappears to possess an equivalent or lower incidence of bleeding complications when compared with heparin prophylaxis.NoCarter 1993Multiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular				
prevention of postoperative thromboembolic complicationsincidence of bleeding complications when compared with heparin prophylaxis.NoMultiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular		Enoxaparin: the low-	thromboembolism. In addition, enoxaparin	
Carter 1993thromboembolic complicationscompared with heparin prophylaxis.NoMultiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryconsistently performed well.YesLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular		molecular-weight heparin for	appears to possess an equivalent or lower	
Multiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, thrombosis in elective hip Mohr 1993 Multiple agents or combinations are effective prophylaxis for deep venous thrombosis in elective hip Mohr 1993 Surgery Low molecular weight heparin consistently performed well. Yes Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular		prevention of postoperative	incidence of bleeding complications when	
Multiple agents or combinations are effective prophylaxis for deep venous thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryconsistently performed well.YesLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular	Carter 1993		• •	No
thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered 				
thrombosis, but none decreases the rate to zero, There was overlap in the 95% confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			effective prophylaxis for deep venous	
Confidence intervals for the probability of deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryconsistently performed well.YesLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			thrombosis, but none decreases the rate to	
deep venous thrombosis for various agents and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			zero, There was overlap in the 95%	
and especially for the probabilities for proximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.Mohr 1993surgeryconsistently performed well.YesLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			confidence intervals for the probability of	
Prophylactic agents for venous thrombosis in elective hipproximal thrombi. Many agents have not been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryConsistently performed well.YesLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			deep venous thrombosis for various agents	
Prophylactic agents for venous thrombosis in elective hip Mohr 1993been compared directly with each other, but low-molecular weight heparin consistently performed well.YesMohr 1993surgeryConsistently performed well.YesLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			and especially for the probabilities for	
thrombosis in elective hip Mohr 1993but low-molecular weight heparin consistently performed well.YesMohr 1993SurgeryLow molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			proximal thrombi. Many agents have not	
Mohr 1993 surgery consistently performed well. Yes Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular Yes		Prophylactic agents for venous	been compared directly with each other,	
Low molecular weight heparins seem to have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular		thrombosis in elective hip	but low-molecular weight heparin	
have a higher benefit to risk ratio than unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular	Mohr 1993	surgery	consistently performed well.	Yes
unfractionated heparin in preventing perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			Low molecular weight heparins seem to	
perioperative thrombosis. However, it remains to be shown in a suitably powered clinical trial whether low molecular			have a higher benefit to risk ratio than	
remains to be shown in a suitably powered clinical trial whether low molecular			unfractionated heparin in preventing	
clinical trial whether low molecular			perioperative thrombosis. However, it	
			remains to be shown in a suitably powered	
Low molecular weight heparin weight heparin reduces the risk of fatal				
		Low molecular weight heparin	weight heparin reduces the risk of fatal	
	Leizorovicz		pulmonary embolism compared with	
1992 thrombosis heparin. No	1992	thrombosis	heparin.	No

Author	Title	Summary	Quality Evaluation
		In conclusion, our data support the recent trend	
		towards the increased use of regional anaesthesia.	
	A comparison of	Furthermore, epidural anaesthesia/analgesia has	
	regional and general	been shown to improve the post-operative	
	anaesthesia for total	outcomes by relieving pain, reducing pulmonary	
	replacement of the hip	complications, allowing early mobilisation and	
Hu 2009	or knee	shortening the length of hospital stay	No
		There was insufficient evidence from RCTs alone	
		to conclude if anesthetic technique influenced	
		mortality, cardiovascular morbidity other than	
		postoperative hypotension, or the incidence of	
		DVT and PE in the setting of routine	
		thromboprophylaxis. Our systematic review does	
		not suggest a difference in blood loss or duration of	
		surgery in patients receiving GA and/or systemic	
		analgesia versus RA and/or RA for TKA.	
	Does Regional	However, RA does reduce postoperative pain and	
	Anesthesia Improve	opioid-related adverse effects for TKA. Length of	
Macfarlane	Outcome After Total	stay also may be reduced and rehabilitation	
2009	Knee Arthroplasty?	facilitated by RA compared with GA.	Yes
		There is insufficient evidence from RCTs alone to	
		conclude if anaesthetic technique influenced	
		mortality, cardiovascular morbidity, or the	
		incidence of DVT and PE when using	
		thromboprophylaxis. Blood loss may be reduced in	
		patients receiving RA rather than GA for THA.	
		Compared with systemic analgesia, regional	
	Does Regional	analgesia can reduce postoperative pain, morphine	
	Anaesthesia Improve	consumption, and nausea and vomiting. Length of	
	Outcome After Total	stay is not reduced and rehabilitation does not	
Macfarlane	Hip Arthroplasty? A	appear to be facilitated by RA or analgesia for	
2009	Systematic Review	THA.	Yes
	The effect of		
	neuraxial blocks on	In summary neuraxial blocks have a clear and	
	surgical blood loss	definite effect on surgical blood loss, but this effect	
	and blood transfusion	do not usually lead to a reduction in the number of	
	requirements: a meta-	transfused patients except for patients undergoing	
Guay 2006	analysis	total hip replacement and spinal fusion.	No

Table 179. Systematic Review Conclusions – Neuraxial Anesthesia

Author	Title	Summary	Quality Evaluation
		Patients undergoing elective THR under neuraxial	
		anesthesia seem to have better outcomes than those	
		under GA. Our data indicate that neuraxial block is	
		associated with a decrease in intraoperative blood	
		loss and the number of patients requiring blood	
		transfusions. It is not known whether some of the	
	A Comparison of	beneficial effects such as reduced incidence of	
	Neuraxial Block	DVT and PE provided by neuraxial block are	
	Versus General	applicable to today's practice when compared with	
	Anesthesia for	investigations performed 20 years ago. However,	
	Elective Total Hip	our findings indicate that neuraxial block should be	
Mauermann	Replacement: A	considered as a valid and potentially beneficial	
2006	Meta-Analysis	technique for elective THR.	No

Table 180. Systematic Review Conclusions – Ultrasound Screening

A (7		c.	Quality
Author	Title	Summary	Evaluation
		Several studies have shown a low VTED rate when	
		compression ultrasound is used for screening as part of a	
		clinical algorithm after knee arthroplasty. However, the only	
		large RCT evaluating ultrasound screening failed to show a	
	Surveillance for	reduction in morbidity. The benefits of surveillance depend	
	venous	on practice-specific factors, including the type and duration	
	thromboembolic	of prophylaxis, the rate of VTED associated with that	
Berry	disease after total	protocol, and the accuracy of screening tests used for that	
2001	knee arthroplasty	surveillance.	No

APPENDIX XVII BIBLIOGRAPHIES INCLUDED STUDIES

Abraham P, Ternisien C, Hubert L, Pidhorz L, Saumet JL. Does venous microemboli detection add to the interpretation of D-dimer values following orthopedic surgery? *Ultrasound Med Biol* 1999;25(4):637-640.

Aderinto J, Brenkel IJ. Pre-operative predictors of the requirement for blood transfusion following total hip replacement. *J Bone Joint Surg Br* 2004;86(7):970-973.

Agnelli G, Haas S, Ginsberg JS, Krueger KA, Dmitrienko A, Brandt JT. A phase II study of the oral factor Xa inhibitor LY517717 for the prevention of venous thromboembolism after hip or knee replacement. *J Thromb Haemost* 2007;5(4):746-753.

Amin AK, Clayton RAE, Patton JT, Gaston M, Cook RE, Brenkel IJ. Total knee replacement in morbidly obese patients: Results of a prospective, matched study. *Journal of Bone and Joint Surgery - Series B* 2006;88(10):1321-1326.

Avikainen V, von BH, Partio E et al. Low molecular weight heparin (enoxaparin) compared with unfractionated heparin in prophylaxis of deep venous thrombosis and pulmonary embolism in patients undergoing hip replacement. *Ann Chir Gynaecol* 1995;84(1):85-90.

Bahl V, Hu HM, Henke PK, Wakefield TW, Campbell DA, Jr., Caprini JA. A validation study of a retrospective venous thromboembolism risk scoring method. *Ann Surg* 2010;251(2):344-350.

Bailey JP, Kruger MP, Solano FX, Zajko AB, Rubash HE. Prospective randomized trial of sequential compression devices vs low-dose warfarin for deep venous thrombosis prophylaxis in total hip arthroplasty. *J Arthroplasty* 1991;6 Suppl:S29-S35.

Barber HM, Feil EJ, Galasko CS et al. A comparative study of dextran-70, warfarin and low-dose heparin for the prophylaxis of thrombo-embolism following total hip replacement. *Postgrad Med J* 1977;53(617):130-133.

Barrellier MT, Lebel B, Parienti JJ, Mismetti P, Dutheil JJ, Vielpeau C. Short versus extended thromboprophylaxis after total knee arthroplasty: a randomized comparison. *Thromb Res* 2010;126(4):e298-e304.

Bauer KA, Eriksson BI, Lassen MR, Turpie AG. Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after elective major knee surgery. *N Engl J Med* 2001;345(18):1305-1310.

Beksac B, Gonzalez D, V, Salvati EA. Thromboembolic disease after total hip arthroplasty: who is at risk? *Clin Orthop Relat Res* 2006;453:211-224.

Bergqvist D, Benoni G, Bjorgell O et al. Low-molecular-weight heparin (enoxaparin) as prophylaxis against venous thromboembolism after total hip replacement. *N Engl J Med* 1996;335(10):696-700.

Berkowitz SD, Marder VJ, Kosutic G, Baughman RA. Oral heparin administration with a novel drug delivery agent (SNAC) in healthy volunteers and patients undergoing elective total hip arthroplasty. *J Thromb Haemost* 2003;1(9):1914-1919.

Bong MR, Patel V, Chang E, Issack PS, Hebert R, Di Cesare PE. Risks associated with blood transfusion after total knee arthroplasty. *J Arthroplasty* 2004;19(3):281-287.

Bonnett CA, Lapin R, Docuyanan GB. Total hip replacement in Jehovah's Witnesses under spinal anesthesia without transfusion. *Orthop Rev* 1987;16(1):43-47.

Bonneux IM, Bellemans J, Fabry G. Evaluation of wound healing after total knee arthroplasty in a randomized prospective trial comparing fondaparinux with enoxaparin. *Knee* 2006;13(2):118-121.

Borghi B, Casati A. Incidence and risk factors for allogenic blood transfusion during major joint replacement using an integrated autotransfusion regimen. The Rizzoli Study Group on Orthopaedic Anaesthesia. *Eur J Anaesthesiol* 2000;17(7):411-417.

Borghi B, Casati A, Iuorio S et al. Frequency of hypotension and bradycardia during general anesthesia, epidural anesthesia, or integrated epidural-general anesthesia for total hip replacement. *J Clin Anesth* 2002;14(2):102-106.

Borghi B, Casati A, Iuorio S et al. Effect of different anesthesia techniques on red blood cell endogenous recovery in hip arthroplasty. *J Clin Anesth* 2005;17(2):96-101.

Bounameaux H, Miron MJ, Blanchard J, de MP, Hoffmeyer P, Leyvraz PF. Measurement of plasma D-dimer is not useful in the prediction or diagnosis of postoperative deep vein thrombosis in patients undergoing total knee arthroplasty. *Blood Coagul Fibrinolysis* 1998;9(8):749-752.

Chan KH, Mann KS, Chan TK. The significance of thrombocytopenia in the development of postoperative intracranial hematoma. *J Neurosurg* 1989;71(1):38-41.

Chee YH, Teoh KH, Sabnis BM, Ballantyne JA, Brenkel IJ. Total hip replacement in morbidly obese patients with osteoarthritis: Results of a prospectively matched study. *Journal of Bone and Joint Surgery - Series B* 2010;92(8):1066-1071.

Chelly JE, Schilling D. Thromboprophylaxis and peripheral nerve blocks in patients undergoing joint arthroplasty. *J Arthroplasty* 2008;23(3):350-354.

Chelly JE, Szczodry DM, Neumann KJ. International normalized ratio and prothrombin time values before the removal of a lumbar plexus catheter in patients receiving warfarin after total hip replacement. *Br J Anaesth* 2008;101(2):250-254.

Chin PL, Amin MS, Yang KY, Yeo SJ, Lo NN. Thromboembolic prophylaxis for total knee arthroplasty in Asian patients: a randomised controlled trial. *J Orthop Surg (Hong Kong)* 2009;17(1):1-5.

Chu CP, Yap JC, Chen PP, Hung HH. Postoperative outcome in Chinese patients having primary total knee arthroplasty under general anaesthesia/intravenous patient-controlled analgesia compared to spinal-epidural anaesthesia/analgesia. *Hong Kong Med J* 2006;12(6):442-447.

Cohen AT, Skinner JA, Warwick D, Brenkel I. The use of graduated compression stockings in association with fondaparinux in surgery of the hip. A multicentre, multinational, randomised, open-label, parallel-group comparative study. *J Bone Joint Surg Br* 2007;89(7):887-892.

Colwell CW, Jr., Spiro TE, Trowbridge AA et al. Use of enoxaparin, a low-molecularweight heparin, and unfractionated heparin for the prevention of deep venous thrombosis after elective hip replacement. A clinical trial comparing efficacy and safety. Enoxaparin Clinical Trial Group. *J Bone Joint Surg Am* 1994;76(1):3-14.

Colwell CW, Jr., Spiro TE, Trowbridge AA, Stephens JW, Gardiner GA, Jr., Ritter MA. Efficacy and safety of enoxaparin versus unfractionated heparin for prevention of deep venous thrombosis after elective knee arthroplasty. Enoxaparin Clinical Trial Group. *Clin Orthop Relat Res* 1995;(321):19-27.

Colwell CW, Jr., Collis DK, Paulson R et al. Comparison of enoxaparin and warfarin for the prevention of venous thromboembolic disease after total hip arthroplasty. Evaluation during hospitalization and three months after discharge. *J Bone Joint Surg Am* 1999;81(7):932-940.

Colwell CW, Jr., Kwong LM, Turpie AG, Davidson BL. Flexibility in administration of fondaparinux for prevention of symptomatic venous thromboembolism in orthopaedic surgery. *J Arthroplasty* 2006;21(1):36-45.

Colwell CW, Jr., Froimson MI, Mont MA et al. Thrombosis prevention after total hip arthroplasty: a prospective, randomized trial comparing a mobile compression device with low-molecular-weight heparin. *J Bone Joint Surg Am* 2010;92(3):527-535.

Comp PC, Spiro TE, Friedman RJ et al. Prolonged enoxaparin therapy to prevent venous thromboembolism after primary hip or knee replacement. Enoxaparin Clinical Trial Group. *J Bone Joint Surg Am* 2001;83-A(3):336-345.

D'Ambrosio A, Borghi B, Damato A, D'Amato G, Antonacci D, Valeri F. Reducing perioperative blood loss in patients undergoing total hip arthroplasty. *Int J Artif Organs* 1999;22(1):47-51.

Dahl OE, Andreassen G, Aspelin T et al. Prolonged thromboprophylaxis following hip replacement surgery--results of a double-blind, prospective, randomised, placebo-controlled study with dalteparin (Fragmin). *Thromb Haemost* 1997;77(1):26-31.

Dauphin A, Raymer KE, Stanton EB, Fuller HD. Comparison of general anesthesia with and without lumbar epidural for total hip arthroplasty: effects of epidural block on hip arthroplasty. *J Clin Anesth* 1997;9(3):200-203.

Dechavanne M, Ville D, Berruyer M et al. Randomized trial of a low-molecular-weight heparin (Kabi 2165) versus adjusted-dose subcutaneous standard heparin in the prophylaxis of deep-vein thrombosis after elective hip surgery. *Haemostasis* 1989;19(1):5-12.

Della Ratta RK, Corapi MJ, Horowitz BR, Calio AJ. Risk of postoperative upper gastrointestinal tract hemorrhage in patients with active peptic ulcer disease undergoing nonulcer surgery. *Arch Intern Med* 1993;153(18):2141-2144.

Della Valle CJ, Steiger DJ, DiCesare PE. Duplex ultrasonography in patients suspected of postoperative pulmonary embolism following total joint arthroplasty. *Am J Orthop* (*Belle Mead NJ*) 2003;32(8):386-388.

Despotis GJ, Filos KS, Zoys TN, Hogue CW, Jr., Spitznagel E, Lappas DG. Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements: a multivariate analysis in cardiac surgical patients. *Anesth Analg* 1996;82(1):13-21.

Dorman BH, Spinale FG, Bailey MK, Kratz JM, Roy RC. Identification of patients at risk for excessive blood loss during coronary artery bypass surgery: thromboelastography versus coagulation screen. *Anesth Analg* 1993;76(4):694-700.

Edwards JZ, Pulido PA, Ezzet KA, Copp SN, Walker RH, Colwell CW, Jr. Portable compression device and low-molecular-weight heparin compared with low-molecular-weight heparin for thromboprophylaxis after total joint arthroplasty. *J Arthroplasty* 2008;23(8):1122-1127.

ElMalik EM, Ibrahim AI, Gahli AM, Saad MS, Bahar YM. Risk factors in prostatectomy bleeding: preoperative urinary infection is the only reversible factor. *Eur Urol* 2000;37(2):199-204.

Eriksson BI, Kalebo P, Anthymyr BA, Wadenvik H, Tengborn L, Risberg B. Prevention of deep-vein thrombosis and pulmonary embolism after total hip replacement. Comparison of low-molecular-weight heparin and unfractionated heparin. *J Bone Joint Surg Am* 1991;73(4):484-493.

Eriksson BI, Ekman S, Kalebo P, Zachrisson B, Bach D, Close P. Prevention of deepvein thrombosis after total hip replacement: direct thrombin inhibition with recombinant hirudin, CGP 39393. *Lancet* 1996;347(9002):635-639.

Eriksson BI, Ekman S, Lindbratt S et al. Prevention of thromboembolism with use of recombinant hirudin. Results of a double-blind, multicenter trial comparing the efficacy of desirudin (Revasc) with that of unfractionated heparin in patients having a total hip replacement. *J Bone Joint Surg Am* 1997;79(3):326-333.

Eriksson BI, Wille-Jorgensen P, Kalebo P et al. A comparison of recombinant hirudin with a low-molecular-weight heparin to prevent thromboembolic complications after total hip replacement. *N Engl J Med* 1997;337(19):1329-1335.

Eriksson BI, Dahl OE, Buller HR et al. A new oral direct thrombin inhibitor, dabigatran etexilate, compared with enoxaparin for prevention of thromboembolic events following total hip or knee replacement: the BISTRO II randomized trial. *J Thromb Haemost* 2005;3(1):103-111.

Eriksson BI, Borris L, Dahl OE et al. Oral, direct Factor Xa inhibition with BAY 59-7939 for the prevention of venous thromboembolism after total hip replacement. *J Thromb Haemost* 2006;4(1):121-128.

Eriksson BI, Borris LC, Dahl OE et al. A once-daily, oral, direct Factor Xa inhibitor, rivaroxaban (BAY 59-7939), for thromboprophylaxis after total hip replacement. *Circulation* 2006;114(22):2374-2381.

Eriksson BI, Dahl OE, Rosencher N et al. Oral dabigatran etexilate vs. subcutaneous enoxaparin for the prevention of venous thromboembolism after total knee replacement: the RE-MODEL randomized trial. *J Thromb Haemost* 2007;5(11):2178-2185.

Eriksson BI, Borris LC, Dahl OE et al. Dose-escalation study of rivaroxaban (BAY 59-7939)--an oral, direct Factor Xa inhibitor--for the prevention of venous thromboembolism in patients undergoing total hip replacement. *Thromb Res* 2007;120(5):685-693.

Eriksson BI, Turpie AG, Lassen MR et al. A dose escalation study of YM150, an oral direct factor Xa inhibitor, in the prevention of venous thromboembolism in elective primary hip replacement surgery. *J Thromb Haemost* 2007;5(8):1660-1665.

Eriksson BI, Dahl OE, Rosencher N et al. Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial. *Lancet* 2007;370(9591):949-956.

Eriksson BI, Borris LC, Friedman RJ et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty. *N Engl J Med* 2008;358(26):2765-2775.

Eriksson BI, Turpie AG, Lassen MR et al. Prevention of venous thromboembolism with an oral Factor Xa inhibitor, YM150, after total hip arthroplasty. A dose finding study (ONYX-2). *J Thromb Haemost* 2010.

Eriksson BI, Dahl OE, Huo MH et al. Oral dabigatran versus enoxaparin for thromboprophylaxis after primary total hip arthroplasty (RE-NOVATE II). A randomised, double-blind, non-inferiority trial. *Thromb Haemost* 2011;105(4).

Eroglu A, Uzunlar H, Erciyes N. Comparison of hypotensive epidural anesthesia and hypotensive total intravenous anesthesia on intraoperative blood loss during total hip replacement. *J Clin Anesth* 2005;17(6):420-425.

Fauno P, Suomalainen O, Rehnberg V et al. Prophylaxis for the prevention of venous thromboembolism after total knee arthroplasty. A comparison between unfractionated and low-molecular-weight heparin. *J Bone Joint Surg Am* 1994;76(12):1814-1818.

Feller JA, Parkin JD, Phillips GW, Hannon PJ, Hennessy O, Huggins RM. Prophylaxis against venous thrombosis after total hip arthroplasty. *Aust N Z J Surg* 1992;62(8):606-610.

Firanescu CE, Martens EJ, Schonberger JP, Soliman Hamad MA, van Straten AH. Postoperative blood loss in patients undergoing coronary artery bypass surgery after preoperative treatment with clopidogrel. A prospective randomised controlled study. *Eur J Cardiothorac Surg* 2009;36(5):856-862.

Fitzgerald RH, Jr., Spiro TE, Trowbridge AA et al. Prevention of venous thromboembolic disease following primary total knee arthroplasty. A randomized, multicenter, open-label, parallel-group comparison of enoxaparin and warfarin. *J Bone Joint Surg Am* 2001;83-A(6):900-906.

Fordyce MJ, Baker AS, Staddon GE. Efficacy of fixed minidose warfarin prophylaxis in total hip replacement. *BMJ* 1991;303(6796):219-220.

Fordyce MJ, Ling RS. A venous foot pump reduces thrombosis after total hip replacement. *J Bone Joint Surg Br* 1992;74(1):45-49.

Francis CW, Pellegrini VD, Jr., Marder VJ et al. Comparison of warfarin and external pneumatic compression in prevention of venous thrombosis after total hip replacement. *JAMA* 1992;267(21):2911-2915.

Francis CW, Pellegrini VD, Jr., Leibert KM et al. Comparison of two warfarin regimens in the prevention of venous thrombosis following total knee replacement. *Thromb Haemost* 1996;75(5):706-711.

Francis CW, Pellegrini VD, Jr., Totterman S et al. Prevention of deep-vein thrombosis after total hip arthroplasty. Comparison of warfarin and dalteparin. *J Bone Joint Surg Am* 1997;79(9):1365-1372.

Frizzelli R, Tortelli O, Di C, V, Ghirardi R, Pinzi C, Scarduelli C. Deep venous thrombosis of the neck and pulmonary embolism in patients with a central venous catheter admitted to cardiac rehabilitation after cardiac surgery: a prospective study of 815 patients. *Intern Emerg Med* 2008;3(4):325-330.

Fuji T, Fujita S, Ochi T. Fondaparinux prevents venous thromboembolism after joint replacement surgery in Japanese patients. *Int Orthop* 2008;32(4):443-451.

Fuji T, Ochi T, Niwa S, Fujita S. Prevention of postoperative venous thromboembolism in Japanese patients undergoing total hip or knee arthroplasty: two randomized, doubleblind, placebo-controlled studies with three dosage regimens of enoxaparin. *J Orthop Sci* 2008;13(5):442-451. Fuji T, Fujita S, Ujihira T, Sato T. Dabigatran Etexilate Prevents Venous Thromboembolism After Total Knee Arthroplasty in Japanese Patients With a Safety Profile Comparable to Placebo. *Journal of Arthroplasty* 2010;25(8):1267-1274.

Fujita S, Hirota S, Oda T, Kato Y, Tsukamoto Y, Fuji T. Deep venous thrombosis after total hip or total knee arthroplasty in patients in Japan. *Clin Orthop Relat Res* 2000;(375):168-174.

Gandhi R, Razak F, Tso P, Davey JR, Mahomed NN. Metabolic syndrome and the incidence of symptomatic deep vein thrombosis following total knee arthroplasty. *J Rheumatol* 2009;36(10):2298-2301.

Gelfer Y, Tavor H, Oron A, Peer A, Halperin N, Robinson D. Deep vein thrombosis prevention in joint arthroplasties: continuous enhanced circulation therapy vs low molecular weight heparin. *J Arthroplasty* 2006;21(2):206-214.

Gerlach R, Tolle F, Raabe A, Zimmermann M, Siegemund A, Seifert V. Increased risk for postoperative hemorrhage after intracranial surgery in patients with decreased factor XIII activity: implications of a prospective study. *Stroke* 2002;33(6):1618-1623.

Ghaffarinejad MH, Fazelifar AF, Shirvani SM et al. The effect of preoperative aspirin use on postoperative bleeding and perioperative myocardial infarction in patients undergoing coronary artery bypass surgery. *Cardiology Journal* 2007;14(5):453-457.

Ginsberg JS, Davidson BL, Comp PC et al. Oral thrombin inhibitor dabigatran etexilate vs North American enoxaparin regimen for prevention of venous thromboembolism after knee arthroplasty surgery. *J Arthroplasty* 2009;24(1):1-9.

Golueke PJ, Garrett WV, Thompson JE, Smith BL, Talkington CM. Interruption of the vena cava by means of the Greenfield filter: expanding the indications. *Surgery* 1988;103(1):111-117.

Gravlee GP, Arora S, Lavender SW et al. Predictive value of blood clotting tests in cardiac surgical patients. *Ann Thorac Surg* 1994;58(1):216-221.

Guerin S, Collins C, Kapoor H, McClean I, Collins D. Blood transfusion requirement prediction in patients undergoing primary total hip and knee arthroplasty. *Transfus Med* 2007;17(1):37-43.

Guijarro R, Montes J, San RC et al. Venous thromboembolism and bleeding after total knee and hip arthroplasty. Findings from the Spanish National Discharge Database. *Thromb Haemost* 2010;105(4).

Haas SB, Insall JN, Scuderi GR, Windsor RE, Ghelman B. Pneumatic sequentialcompression boots compared with aspirin prophylaxis of deep-vein thrombosis after total knee arthroplasty. *J Bone Joint Surg Am* 1990;72(1):27-31. Hampson WG, Harris FC, Lucas HK et al. Failure of low-dose heparin to prevent deepvein thrombosis after hip-replacement arthroplasty. *Lancet* 1974;2(7884):795-797.

Harris WH, Salzman EW, Athanasoulis C, Waltman AC, Baum S, DeSanctis RW. Comparison of warfarin, low-molecular-weight dextran, aspirin, and subcutaneous heparin in prevention of venous thromboembolism following total hip replacement. *J Bone Joint Surg Am* 1974;56(8):1552-1562.

Harris WH, Salzman EW, Athanasoulis CA, Waltman AC, DeSanctis RW. Aspirin prophylaxis of venous thromboembolism after total hip replacement. *N Engl J Med* 1977;297(23):1246-1249.

Harris WH, Athanasoulis CA, Waltman AC, Salzman EW. High and low-dose aspirin prophylaxis against venous thromboembolic disease in total hip replacement. *J Bone Joint Surg Am* 1982;64(1):63-66.

Harris WH, Athanasoulis CA, Waltman AC, Salzman EW. Prophylaxis of deep-vein thrombosis after total hip replacement. Dextran and external pneumatic compression compared with 1.2 or 0.3 gram of aspirin daily. *J Bone Joint Surg Am* 1985;67(1):57-62.

Hatef DA, Kenkel JM, Nguyen MQ et al. Thromboembolic risk assessment and the efficacy of enoxaparin prophylaxis in excisional body contouring surgery. *Plast Reconstr Surg* 2008;122(1):269-279.

Hole A, Terjesen T, Breivik H. Epidural versus general anaesthesia for total hip arthroplasty in elderly patients. *Acta Anaesthesiol Scand* 1980;24(4):279-287.

Horlocker TT, Wedel DJ, Schlichting JL. Postoperative epidural analgesia and oral anticoagulant therapy. *Anesth Analg* 1994;79(1):89-93.

Hsieh PH, Chen LH, Lee MS, Chen CH, Yang WE, Shih CH. Hip arthroplasty in patients with cirrhosis of the liver. *J Bone Joint Surg Br* 2003;85(6):818-821.

Hull R, Raskob G, Pineo G et al. A comparison of subcutaneous low-molecular-weight heparin with warfarin sodium for prophylaxis against deep-vein thrombosis after hip or knee implantation. *N Engl J Med* 1993;329(19):1370-1376.

Hull RD, Raskob GE, Gent M et al. Effectiveness of intermittent pneumatic leg compression for preventing deep vein thrombosis after total hip replacement. *JAMA* 1990;263(17):2313-2317.

Hull RD, Pineo GF, Francis C et al. Low-molecular-weight heparin prophylaxis using dalteparin extended out-of-hospital vs in-hospital warfarin/out-of-hospital placebo in hip arthroplasty patients: a double-blind, randomized comparison. North American Fragmin Trial Investigators. *Arch Intern Med* 2000;160(14):2208-2215.

Hull RD, Pineo GF, Francis C et al. Low-molecular-weight heparin prophylaxis using dalteparin in close proximity to surgery vs warfarin in hip arthroplasty patients: a double-

blind, randomized comparison. The North American Fragmin Trial Investigators. *Arch Intern Med* 2000;160(14):2199-2207.

Hume M, Kuriakose TX, Zuch L, Turner RH. 125I fibrinogen and the prevention of venous thrombosis. *Arch Surg* 1973;107(5):803-806.

Hurbanek JG, Jaffer AK, Morra N, Karafa M, Brotman DJ. Postmenopausal hormone replacement and venous thromboembolism following hip and knee arthroplasty. *Thromb Haemost* 2004;92(2):337-343.

Husted H, Otte KS, Kristensen BB, Orsnes T, Wong C, Kehlet H. Low risk of thromboembolic complications after fast-track hip and knee arthroplasty. *Acta Orthop* 2010;81(5):599-605.

Innocenti M, Civinini R, Carulli C, Villano M, Linari S, Morfini M. A modular total knee arthroplasty in haemophilic arthropathy. *Knee* 2007;14(4):264-268.

Johnson R, Green JR, Charnley J. Pulmonary embolism and its prophylaxis following the Charnley total hip replacement. *Clin Orthop Relat Res* 1977;(127):123-132.

Jorgensen LN, Rasmussen LS, Nielsen PT, Leffers A, Albrecht-Beste E. Antithrombotic efficacy of continuous extradural analgesia after knee replacement. *Br J Anaesth* 1991;66(1):8-12.

Joseph JE, Low J, Courtenay B, Neil MJ, McGrath M, Ma D. A single-centre prospective study of clinical and haemostatic risk factors for venous thromboembolism following lower limb arthroplasty. *Br J Haematol* 2005;129(1):87-92.

Juelsgaard P, Larsen UT, Sorensen JV, Madsen F, Soballe K. Hypotensive epidural anesthesia in total knee replacement without tourniquet: reduced blood loss and transfusion. *Reg Anesth Pain Med* 2001;26(2):105-110.

Kakkar AK, Brenner B, Dahl OE et al. Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial. *Lancet* 2008;372(9632):31-39.

Kallis P, Tooze JA, Talbot S, Cowans D, Bevan DH, Treasure T. Pre-operative aspirin decreases platelet aggregation and increases post-operative blood loss--a prospective, randomised, placebo controlled, double-blind clinical trial in 100 patients with chronic stable angina. *Eur J Cardiothorac Surg* 1994;8(8):404-409.

Karlsson M, Ternstrom L, Hyllner M, Baghaei F, Nilsson S, Jeppsson A. Plasma fibrinogen level, bleeding, and transfusion after on-pump coronary artery bypass grafting surgery: a prospective observational study. *Transfusion* 2008;48(10):2152-2158.

Keeney JA, Clohisy JC, Curry MC, Maloney WJ. Efficacy of combined modality prophylaxis including short-duration warfarin to prevent venous thromboembolism after total hip arthroplasty. *J Arthroplasty* 2006;21(4):469-475.

Kelsey JL, Wood PH, Charnley J. Prediction of thromboembolism following total hip replacement. *Clin Orthop Relat Res* 1976;(114):247-258.

Khansarinia S, Dennis JW, Veldenz HC, Butcher JL, Hartland L. Prophylactic Greenfield filter placement in selected high-risk trauma patients. *J Vasc Surg* 1995;22(3):231-235.

Kim YH, Choi IY, Park MR, Park TS, Cho JL. Prophylaxis for deep vein thrombosis with aspirin or low molecular weight dextran in Korean patients undergoing total hip replacement. A randomized controlled trial. *Int Orthop* 1998;22(1):6-10.

Kosir MA, Kozol RA, Perales A et al. Is DVT prophylaxis overemphasized? A randomized prospective study. *Journal of Surgical Research* 1996;60(2):289-292.

Lachiewicz PF, Kelley SS, Haden LR. Two mechanical devices for prophylaxis of thromboembolism after total knee arthroplasty. A prospective, randomised study. *J Bone Joint Surg Br* 2004;86(8):1137-1141.

Larcom PG, Lotke PA, Steinberg ME, Holland G, Foster S. Magnetic resonance venography versus contrast venography to diagnose thrombosis after joint surgery. *Clin Orthop Relat Res* 1996;(331):209-215.

Larocque BJ, Gilbert K, Brien WF. A point score system for predicting the likelihood of blood transfusion after hip or knee arthroplasty. *Transfusion* 1997;37(5):463-467.

Lassen MR, Borris LC, Christiansen HM et al. Prevention of thromboembolism in 190 hip arthroplasties. Comparison of LMW heparin and placebo. *Acta Orthop Scand* 1991;62(1):33-38.

Lassen MR, Borris LC, Anderson BS et al. Efficacy and safety of prolonged thromboprophylaxis with a low molecular weight heparin (dalteparin) after total hip arthroplasty--the Danish Prolonged Prophylaxis (DaPP) Study. *Thromb Res* 1998;89(6):281-287.

Lassen MR, Borris LC, Jensen HP, Poulsen KA, Ejstrud P, Andersen BS. Dose relation in the prevention of proximal vein thrombosis with a low molecular weight heparin (tinzaparin) in elective hip arthroplasty. *Clin Appl Thromb Hemost* 2000;6(1):53-57.

Lassen MR, Bauer KA, Eriksson BI, Turpie AG. Postoperative fondaparinux versus preoperative enoxaparin for prevention of venous thromboembolism in elective hip-replacement surgery: a randomised double-blind comparison. *Lancet* 2002;359(9319):1715-1720.

Lassen MR, Davidson BL, Gallus A, Pineo G, Ansell J, Deitchman D. The efficacy and safety of apixaban, an oral, direct factor Xa inhibitor, as thromboprophylaxis in patients following total knee replacement. *J Thromb Haemost* 2007;5(12):2368-2375.

Lassen MR, Ageno W, Borris LC et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty. *N Engl J Med* 2008;358(26):2776-2786.

Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Portman RJ. Apixaban or enoxaparin for thromboprophylaxis after knee replacement. *N Engl J Med* 2009;361(6):594-604.

Lassen MR, Gallus A, Raskob GE, Pineo G, Chen D, Ramirez LM. Apixaban versus enoxaparin for thromboprophylaxis after hip replacement. *N Engl J Med* 2010;363(26):2487-2498.

Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Hornick P. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial. *Lancet* 2010;375(9717):807-815.

Leclerc JR, Geerts WH, Desjardins L et al. Prevention of venous thromboembolism after knee arthroplasty. A randomized, double-blind trial comparing enoxaparin with warfarin. *Ann Intern Med* 1996;124(7):619-626.

Leizorovicz A. Epidemiology of post-operative venous thromboembolism in Asian patients. Results of the SMART venography study. *Haematologica* 2007;92(9):1194-1200.

Lemos MJ, Sutton D, Hozack WJ, Balderston RA, Booth RE, Jr., Rothman RH. Pulmonary embolism in total hip and knee arthroplasty. Risk factors in patients on warfarin prophylaxis and analysis of the prothrombin time as an indicator of warfarin's prophylactic effect. *Clin Orthop Relat Res* 1992;(282):158-163.

Levine MN, Hirsh J, Gent M et al. Prevention of deep vein thrombosis after elective hip surgery. A randomized trial comparing low molecular weight heparin with standard unfractionated heparin. *Ann Intern Med* 1991;114(7):545-551.

Leyvraz PF, Richard J, Bachmann F et al. Adjusted versus fixed-dose subcutaneous heparin in the prevention of deep-vein thrombosis after total hip replacement. *N Engl J Med* 1983;309(16):954-958.

Lieberman JR, Huo MM, Hanway J, Salvati EA, Sculco TP, Sharrock NE. The prevalence of deep venous thrombosis after total hip arthroplasty with hypotensive epidural anesthesia. *J Bone Joint Surg Am* 1994;76(3):341-348.

Lotke PA, Palevsky H, Keenan AM et al. Aspirin and warfarin for thromboembolic disease after total joint arthroplasty. *Clin Orthop Relat Res* 1996;(324):251-258.

Lowe GD, Haverkate F, Thompson SG et al. Prediction of deep vein thrombosis after elective hip replacement surgery by preoperative clinical and haemostatic variables: the ECAT DVT Study. European Concerted Action on Thrombosis. *Thromb Haemost* 1999;81(6):879-886.

Mahomed NN, Barrett JA, Katz JN et al. Rates and outcomes of primary and revision total hip replacement in the United States medicare population. *J Bone Joint Surg Am* 2003;85-A(1):27-32.

Mahomed NN, Barrett J, Katz JN, Baron JA, Wright J, Losina E. Epidemiology of total knee replacement in the United States Medicare population. *J Bone Joint Surg Am* 2005;87(6):1222-1228.

Manganelli D, Pazzagli M, Mazzantini D et al. Prolonged prophylaxis with unfractioned heparin is effective to reduce delayed deep vein thrombosis in total hip replacement. *Respiration* 1998;65(5):369-374.

Mannucci PM, Citterio LE, Panajotopoulos N. Low-dose heparin and deep-vein thrombosis after total hip replacement. *Thromb Haemost* 1976;36(1):157-164.

Marchant MH, Jr., Viens NA, Cook C, Vail TP, Bolognesi MP. The impact of glycemic control and diabetes mellitus on perioperative outcomes after total joint arthroplasty. *J Bone Joint Surg Am* 2009;91(7):1621-1629.

Marx RG, Wotherspoon S, Stephens D, Davey JR. Patient factors affecting autologous and allogeneic blood transfusion rates in total hip arthroplasty. *Am J Orthop (Belle Mead NJ)* 2001;30(12):867-871.

Maurer SG, Chen AL, Hiebert R, Pereira GC, Di Cesare PE. Comparison of outcomes of using spinal versus general anesthesia in total hip arthroplasty. *Am J Orthop (Belle Mead NJ)* 2007;36(7):E101-E106.

McKenna R, Galante J, Bachmann F, Wallace DL, Kaushal PS, Meredith P. Prevention of venous thromboembolism after total knee replacement by high-dose aspirin or intermittent calf and thigh compression. *Br Med J* 1980;280(6213):514-517.

Memtsoudis SG, Besculides MC, Gaber L, Liu S, Gonzalez D, V. Risk factors for pulmonary embolism after hip and knee arthroplasty: a population-based study. *Int Orthop* 2009;33(6):1739-1745.

Mesa-Ramos F, Mesa-Ramos M, Maquieira-Canosa C, Carpintero P. Predictors for blood transfusion following total knee arthroplasty: a prospective randomised study. *Acta Orthop Belg* 2008;74(1):83-89.

Modig J, Borg T, Karlstrom G, Maripuu E, Sahlstedt B. Thromboembolism after total hip replacement: role of epidural and general anesthesia. *Anesth Analg* 1983;62(2):174-180.

Modig J, Maripuu E, Sahlstedt B. Thromboembolism following total hip replacement. A prospective investigation of 94 patients with emphasis on the efficacy of lumbar epidural anesthesia in prophylaxis. *Regional Anesthesia* 1986;11(2):72-79.

Modig J, Karlstrom G. Intra- and post-operative blood loss and haemodynamics in total hip replacement when performed under lumbar epidural versus general anaesthesia. *Eur J Anaesthesiol* 1987;4(5):345-355.

Moran M, Walmsley P, Gray A, Brenkel IJ. Does body mass index affect the early outcome of primary total hip arthroplasty? *J Arthroplasty* 2005;20(7):866-869.

Moskovitz PA, Ellenberg SS, Feffer HL et al. Low-dose heparin for prevention of venous thromboembolism in total hip arthroplasty and surgical repair of hip fractures. *J Bone Joint Surg Am* 1978;60(8):1065-1070.

Mraovic B, Hipszer BR, Epstein RH, Pequignot EC, Parvizi J, Joseph JI. Preadmission hyperglycemia is an independent risk factor for in-hospital symptomatic pulmonary embolism after major orthopedic surgery. *J Arthroplasty* 2010;25(1):64-70.

Nathan S, Aleem MA, Thiagarajan P, Das DS. The incidence of proximal deep vein thrombosis following total knee arthroplasty in an Asian population: a Doppler ultrasound study. *J Orthop Surg (Hong Kong)* 2003;11(2):184-189.

Nelson CL, Bowen WS. Total hip arthroplasty in Jehovah's Witnesses without blood transfusion. *J Bone Joint Surg Am* 1986;68(3):350-353.

Niemi TT, Pitkanen M, Syrjala M, Rosenberg PH. Comparison of hypotensive epidural anaesthesia and spinal anaesthesia on blood loss and coagulation during and after total hip arthroplasty. *Acta Anaesthesiol Scand* 2000;44(4):457-464.

Niimi R, Hasegawa M, Sudo A, Shi D, Yamada T, Uchida A. Evaluation of soluble fibrin and D-dimer in the diagnosis of postoperative deep vein thrombosis. *Biomarkers* 2010;15(2):149-157.

Nuttall GA, Henderson N, Quinn M et al. Excessive bleeding and transfusion in a prior cardiac surgery is associated with excessive bleeding and transfusion in the next surgery. *Anesth Analg* 2006;102(4):1012-1017.

Obeid FN, Bowling WM, Fike JS, Durant JA. Efficacy of prophylactic inferior vena cava filter placement in bariatric surgery. *Surg Obes Relat Dis* 2007;3(6):606-608.

Paiement G, Wessinger SJ, Waltman AC, Harris WH. Low-dose warfarin versus external pneumatic compression for prophylaxis against venous thromboembolism following total hip replacement. *J Arthroplasty* 1987;2(1):23-26.

Parvizi J, Viscusi ER, Frank HG, Sharkey PF, Hozack WJ, Rothman RR. Can epidural anesthesia and warfarin be coadministered? *Clin Orthop Relat Res* 2007;456:133-137.

Pearse EO, Caldwell BF, Lockwood RJ, Hollard J. Early mobilisation after conventional knee replacement may reduce the risk of postoperative venous thromboembolism. *J Bone Joint Surg Br* 2007;89(3):316-322.

Pedersen AB, Sorensen HT, Mehnert F, Overgaard S, Johnsen SP. Risk factors for venous thromboembolism in patients undergoing total hip replacement and receiving routine thromboprophylaxis. *J Bone Joint Surg Am* 2010;92(12):2156-2164.

Pellegrini VD, Jr., Donaldson CT, Farber DC, Lehman EB, Evarts CM. The John Charnley Award: prevention of readmission for venous thromboembolic disease after total hip arthroplasty. *Clin Orthop Relat Res* 2005;441:56-62.

Pellegrini VD, Jr., Donaldson CT, Farber DC, Lehman EB, Evarts CM. The Mark Coventry Award: Prevention of readmission for venous thromboembolism after total knee arthroplasty. *Clin Orthop Relat Res* 2006;452:21-27.

PEP Trial Collaborative Group. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. *Lancet* 2000;355(9212):1295-1302.

Planes A, Vochelle N, Mazas F et al. Prevention of postoperative venous thrombosis: a randomized trial comparing unfractionated heparin with low molecular weight heparin in patients undergoing total hip replacement. *Thromb Haemost* 1988;60(3):407-410.

Planes A, Vochelle N, Fagola M, Feret J, Bellaud M. Prevention of deep vein thrombosis after total hip replacement. The effect of low-molecular-weight heparin with spinal and general anaesthesia. *J Bone Joint Surg Br* 1991;73(3):418-422.

Planes A, Vochelle N, Darmon JY, Fagola M, Bellaud M, Huet Y. Risk of deep-venous thrombosis after hospital discharge in patients having undergone total hip replacement: double-blind randomised comparison of enoxaparin versus placebo. *Lancet* 1996;348(9022):224-228.

Planes A, Samama MM, Lensing AW et al. Prevention of deep vein thrombosis after hip replacement--comparison between two low-molecular heparins, tinzaparin and enoxaparin. *Thromb Haemost* 1999;81(1):22-25.

Poller L, Thomson JM, MacCallum PK, Nicholson DA, Weighill FJ, Lemon JG. Minidose warfarin and failure to prevent deep vein thrombosis after joint replacement surgery despite inhibiting the postoperative rise in plasminogen activator inhibitor activity. *Clin Appl Thromb Hemost* 1995;1(4):267-273.

Prandoni P, Bruchi O, Sabbion P et al. Prolonged thromboprophylaxis with oral anticoagulants after total hip arthroplasty: a prospective controlled randomized study. *Arch Intern Med* 2002;162(17):1966-1971.

Rader CP, Kramer C, Konig A, Hendrich C, Eulert J. Low-molecular-weight heparin and partial thromboplastin time-adjusted unfractionated heparin in thromboprophylaxis after total knee and total hip arthroplasty. *J Arthroplasty* 1998;13(2):180-185.

Rashiq S, Shah M, Chow AK, O'Connor PJ, Finegan BA. Predicting allogeneic blood transfusion use in total joint arthroplasty. *Anesth Analg* 2004;99(4):1239-44, table.

Robinson KS, Anderson DR, Gross M et al. Ultrasonographic screening before hospital discharge for deep venous thrombosis after arthroplasty: the post-arthroplasty screening study. A randomized, controlled trial. *Ann Intern Med* 1997;127(6):439-445.

Rose PS, Johnson CA, Hungerford DS, McFarland EG. Total Knee Arthroplasty in Ehlers-Danlos Syndrome. *Journal of Arthroplasty* 2004;19(2):190-196.

Ryu YJ, Chun EM, Shim SS, Kim JS, Kim YH. Risk factors for pulmonary complications, including pulmonary embolism, after total knee arthroplasty (TKA) in elderly Koreans. *Arch Gerontol Geriatr* 2010.

Saleh E, McClelland DB, Hay A, Semple D, Walsh TS. Prevalence of anaemia before major joint arthroplasty and the potential impact of preoperative investigation and correction on perioperative blood transfusions. *Br J Anaesth* 2007;99(6):801-808.

Salzman EW, Harris WH, DeSanctis RW. Reduction in venous thromboembolism by agents affecting platelet function. *N Engl J Med* 1971;284(23):1287-1292.

Samama CM, Clergue F, Barre J, Montefiore A, Ill P, Samii K. Low molecular weight heparin associated with spinal anaesthesia and gradual compression stockings in total hip replacement surgery. Arar Study Group. *Br J Anaesth* 1997;78(6):660-665.

Samama CM, Ravaud P, Parent F, Barre J, Mertl P, Mismetti P. Epidemiology of venous thromboembolism after lower limb arthroplasty: the FOTO study. *J Thromb Haemost* 2007;5(12):2360-2367.

Santori FS, Vitullo A, Stopponi M, Santori N, Ghera S. Prophylaxis against deep-vein thrombosis in total hip replacement. Comparison of heparin and foot impulse pump. *J Bone Joint Surg Br* 1994;76(4):579-583.

Schmidt B, Michler R, Klein M, Faulmann G, Weber C, Schellong S. Ultrasound screening for distal vein thrombosis is not beneficial after major orthopedic surgery. A randomized controlled trial. *Thromb Haemost* 2003;90(5):949-954.

Senaran H, Acaroglu E, Ozdemir HM, Atilla B. Enoxaparin and heparin comparison of deep vein thrombosis prophylaxis in total hip replacement patients. *Arch Orthop Trauma Surg* 2006;126(1):1-5.

Sharrock NE, Brien WW, Salvati EA, Mineo R, Garvin K, Sculco TP. The effect of intravenous fixed-dose heparin during total hip arthroplasty on the incidence of deep-vein thrombosis. A randomized, double-blind trial in patients operated on with epidural anesthesia and controlled hypotension. *J Bone Joint Surg Am* 1990;72(10):1456-1461.

Shih LY, Cheng CY, Chang CH, Hsu KY, Hsu RW, Shih HN. Total knee arthroplasty in patients with liver cirrhosis. *J Bone Joint Surg Am* 2004;86-A(2):335-341.

Sikkema T, Boerboom AL, Meijer K. A comparison between the complications and longterm outcome of hip and knee replacement therapy in patients with and without haemophilia; a controlled retrospective cohort study. *Haemophilia* 2010.

Soohoo NF, Zingmond DS, Lieberman JR, Ko CY. Optimal timeframe for reporting short-term complication rates after total knee arthroplasty. *J Arthroplasty* 2006;21(5):705-711.

Soohoo NF, Farng E, Lieberman JR, Chambers L, Zingmond DS. Factors that predict short-term complication rates after total hip arthroplasty. *Clin Orthop Relat Res* 2010;468(9):2363-2371.

Spiro TE, Johnson GJ, Christie MJ et al. Efficacy and safety of enoxaparin to prevent deep venous thrombosis after hip replacement surgery. *Annals of Internal Medicine* 1994;121(2):81-89.

Stevens RD, Van GE, Flory N, Fournier R, Gamulin Z. Lumbar plexus block reduces pain and blood loss associated with total hip arthroplasty. *Anesthesiology* 2000;93(1):115-121.

Stone MH, Limb D, Campbell P, Stead D, Culleton G. A comparison of intermittent calf compression and enoxaparin for thromboprophylaxis in total hip replacement. A pilot study. *Int Orthop* 1996;20(6):367-369.

Torholm C, Broeng L, Jorgensen PS et al. Thromboprophylaxis by low-molecular-weight heparin in elective hip surgery. A placebo controlled study. *J Bone Joint Surg Br* 1991;73(3):434-438.

Turpie AG, Levine MN, Hirsh J et al. A randomized controlled trial of a low-molecularweight heparin (enoxaparin) to prevent deep-vein thrombosis in patients undergoing elective hip surgery. *N Engl J Med* 1986;315(15):925-929.

Turpie AG, Gallus AS, Hoek JA. A synthetic pentasaccharide for the prevention of deepvein thrombosis after total hip replacement. *N Engl J Med* 2001;344(9):619-625.

Turpie AG, Bauer KA, Eriksson BI, Lassen MR. Postoperative fondaparinux versus postoperative enoxaparin for prevention of venous thromboembolism after elective hip-replacement surgery: a randomised double-blind trial. *Lancet* 2002;359(9319):1721-1726.

Turpie AG, Fisher WD, Bauer KA et al. BAY 59-7939: an oral, direct factor Xa inhibitor for the prevention of venous thromboembolism in patients after total knee replacement. A phase II dose-ranging study. *J Thromb Haemost* 2005;3(11):2479-2486.

Turpie AG, Lassen MR, Davidson BL et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial. *Lancet* 2009;373(9676):1673-1680.

Twyman R, Kirwan T, Fennelly M. Blood loss reduced during hip arthroplasty by lumbar plexus block. *J Bone Joint Surg Br* 1990;72(5):770-771.

Vaughn BK, Knezevich S, Lombardi AV, Jr., Mallory TH. Use of the Greenfield filter to prevent fatal pulmonary embolism associated with total hip and knee arthroplasty. *J Bone Joint Surg Am* 1989;71(10):1542-1548.

Venous Thrombosis Clinical Study Group. Small doses of subcutaneous sodium heparin in the prevention of deep vein thrombosis after elective hip operations. *Br J Surg* 1975;62(5):348-350.

Vives MJ, Hozack WJ, Sharkey PF, Moriarty L, Sokoloff B, Rothman RH. Fixed minidose versus-adjusted low-dose warfarin after total joint arthroplasty: a randomized prospective study. *J Arthroplasty* 2001;16(8):1030-1037.

Walsh M, Preston C, Bong M, Patel V, Di Cesare PE. Relative risk factors for requirement of blood transfusion after total hip arthroplasty. *J Arthroplasty* 2007;22(8):1162-1167.

Warwick D, Bannister GC, Glew D et al. Perioperative low-molecular-weight heparin. Is it effective and safe. *J Bone Joint Surg Br* 1995;77(5):715-719.

Warwick D, Harrison J, Glew D, Mitchelmore A, Peters TJ, Donovan J. Comparison of the use of a foot pump with the use of low-molecular-weight heparin for the prevention of deep-vein thrombosis after total hip replacement. A prospective, randomized trial. *J Bone Joint Surg Am* 1998;80(8):1158-1166.

Warwick D, Harrison J, Whitehouse S, Mitchelmore A, Thornton M. A randomised comparison of a foot pump and low-molecular-weight heparin in the prevention of deep-vein thrombosis after total knee replacement. *J Bone Joint Surg Br* 2002;84(3):344-350.

Warwick D, Friedman RJ, Agnelli G et al. Insufficient duration of venous thromboembolism prophylaxis after total hip or knee replacement when compared with the time course of thromboembolic events: findings from the Global Orthopaedic Registry. *J Bone Joint Surg Br* 2007;89(6):799-807.

Westrich GH, Salvati EA, Sharrock N, Potter HG, Sanchez PM, Sculco TP. The effect of intraoperative heparin administered during total hip arthroplasty on the incidence of proximal deep vein thrombosis assessed by magnetic resonance venography. *J Arthroplasty* 2005;20(1):42-50.

Westrich GH, Bottner F, Windsor RE, Laskin RS, Haas SB, Sculco TP. VenaFlow plus Lovenox vs VenaFlow plus aspirin for thromboembolic disease prophylaxis in total knee arthroplasty. *J Arthroplasty* 2006;21(6 Suppl 2):139-143.

White RH, McCurdy SA, Marder RA. Early morbidity after total hip replacement: rheumatoid arthritis versus osteoarthritis. *J Gen Intern Med* 1990;5(4):304-309.

White RH, Zhou H, Romano PS. Incidence of idiopathic deep venous thrombosis and secondary thromboembolism among ethnic groups in California. *Ann Intern Med* 1998;128(9):737-740.

White RH, Gettner S, Newman JM, Trauner KB, Romano PS. Predictors of rehospitalization for symptomatic venous thromboembolism after total hip arthroplasty. *N Engl J Med* 2000;343(24):1758-1764.

Williams-Russo P, Sharrock NE, Mattis S, Szatrowski TP, Charlson ME. Cognitive effects after epidural vs general anesthesia in older adults: A randomized trial. *Journal of the American Medical Association* 1995;274(1):44-50.

Williams-Russo P, Sharrock NE, Haas SB et al. Randomized trial of epidural versus general anesthesia: outcomes after primary total knee replacement. *Clin Orthop Relat Res* 1996;(331):199-208.

Wilson MG, Pei LF, Malone KM, Polak JF, Creager MA, Goldhaber SZ. Fixed low-dose versus adjusted higher-dose warfarin following orthopedic surgery. A randomized prospective trial. *J Arthroplasty* 1994;9(2):127-130.

Windisch C, Kolb W, Kolb K, Grutzner P, Venbrocks R, Anders J. Pneumatic compression with foot pumps facilitates early postoperative mobilisation in total knee arthroplasty. *Int Orthop* 2010.

Wittmann PH, Wittmann FW. Total hip replacement surgery without blood transfusion in Jehovah's Witnesses. *Br J Anaesth* 1992;68(3):306-307.

Won MH, Lee GW, Lee TJ, Moon KH. Prevalence and Risk Factors of Thromboembolism After Joint Arthroplasty Without Chemical Thromboprophylaxis in an Asian Population. *J Arthroplasty* 2011.

Woods AI, Blanco AN, Chuit R et al. Major haemorrhage related to surgery in patients with type 1 and possible type 1 von Willebrand disease. *Thromb Haemost* 2008;100(5):797-802.

Woolson ST, Watt JM. Intermittent pneumatic compression to prevent proximal deep venous thrombosis during and after total hip replacement. A prospective, randomized study of compression alone, compression and aspirin, and compression and low-dose warfarin. *J Bone Joint Surg Am* 1991;73(4):507-512.

Wu CL, Perkins FM. Oral anticoagulant prophylaxis and epidural catheter removal. *Reg Anesth* 1996;21(6):517-524.

Yokote R, Matsubara M, Hirasawa N, Hagio S, Ishii K, Takata C. Is routine chemical thromboprophylaxis after total hip replacement really necessary in a Japanese population? *J Bone Joint Surg Br* 2011;93(2):251-256.

Yong SK, Callaghan JJ, Soon YK, Ki WK, Chi HH, Young KW. Arthroplasty of the hip in patients with aplastic anemia. *Journal of Bone and Joint Surgery - Series A* 2000;82(9):1231-1239.

EXCLUDED STUDIES

Effect of aspirin on postoperative venous thrombosis. Report of the Steering Committee of a trial sponsored by the Medical Research Council. *Lancet* 1972;2(7775):441-445.

Low-molecular-weight heparin (enoxaparin) vs dextran 70. The prevention of postoperative deep vein thrombosis after total hip replacement. The Danish Enoxaparin Study Group. *Arch Intern Med* 1991;151(8):1621-1624.

Prevention of deep vein thrombosis with low molecular-weight heparin in patients undergoing total hip replacement. A randomized trial. The German Hip Arthroplasty Trial (GHAT) Group. *Arch Orthop Trauma Surg* 1992;111(2):110-120.

RD heparin compared with warfarin for prevention of venous thromboembolic disease following total hip or knee arthroplasty. RD Heparin Arthroplasty Group. *J Bone Joint Surg Am* 1994;76(8):1174-1185.

Collaborative overview of randomised trials of antiplatelet therapy--III: Reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients. Antiplatelet Trialists' Collaboration. *BMJ* 1994;308(6923):235-246.

Abad JI, Gomez-Outes A, Martinez-Gonzalez J, Rocha E. A prospective observational study on the effectiveness and safety of bemiparin, first dose administered 6 h after knee or hip replacement surgery. *Arch Orthop Trauma Surg* 2007;127(8):665-670.

Abraham P, Hubert L, Guerin C, Pidhorz L, Saumet J-L. Despite imperfect sensitivity, ultrasound thrombosis detection following arthroplasty is useful. *International Journal of Angiology* 2002;11(1):12-16.

Adib T, Belli A, McCall J et al. The use of inferior vena caval filters prior to major surgery in women with gynaecological cancer. *BJOG* 2008;115(7):902-907.

Adolf J, Fritsche HM, Haas S et al. Comparison of 3,000 IU aXa of the low molecular weight heparin certoparin with 5,000 IU aXa in prevention of deep vein thrombosis after total hip replacement. German Thrombosis Study Group. *Int Angiol* 1999;18(2):122-126.

Agnelli G, Volpato R, Radicchia S et al. Detection of asymptomatic deep vein thrombosis by real-time B-mode ultrasonography in hip surgery patients. *Thromb Haemost* 1992;68(3):257-260.

Agnelli G, Ranucci V, Veschi F, Rinonapoli E, Lupattelli L, Nenci GG. Clinical outcome of orthopaedic patients with negative lower limb venography at discharge. *Thromb Haemost* 1995;74(4):1042-1044.

Agnelli G, Bolis G, Capussotti L et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: the @RISTOS project. *Ann Surg* 2006;243(1):89-95.

Agnelli G, Eriksson BI, Cohen AT et al. Safety assessment of new antithrombotic agents: lessons from the EXTEND study on ximelagatran. *Thromb Res* 2009;123(3):488-497.

Agren A, Kolmert T, Wiman B, Schulman S. Low PAI-1 activity in relation to the risk for perioperative bleeding complications in transurethral resection of the prostate. *Thromb Res* 2007;119(6):715-721.

Agu O, Hamilton G, Baker D. Graduated compression stockings in the prevention of venous thromboembolism. *Br J Surg* 1999;86(8):992-1004.

Aguirre FV, Topol EJ, Ferguson JJ et al. Bleeding complications with the chimeric antibody to platelet glycoprotein IIb/IIIa integrin in patients undergoing percutaneous coronary intervention. EPIC Investigators. *Circulation* 1995;91(12):2882-2890.

Ahmed W, Mehmood M, Akhter N, Shah MA. Role of inferior vena cava filter implantation in preventing pulmonary embolism. *J Coll Physicians Surg Pak* 2007;17(6):350-352.

Akowuah E, Shrivastava V, Jamnadas B et al. Comparison of two strategies for the management of antiplatelet therapy during urgent surgery. *Ann Thorac Surg* 2005;80(1):149-152.

Al-Mousawi F, Malki A, Al-Aradi A, Al-Bagali M, Al-Sadadi A, Booz MMY. Total hip replacement in sickle cell disease. *International Orthopaedics* 2002;26(3):157-161.

Al-Mousawi F. Complications and failures of hip replacement in sickle cell disease. *Bahrain Medical Bulletin* 2004;26(4):134-138.

Al SF, Almahmeed W, Al HS et al. Global Risk Profile Verification in Patients with Venous Thromboembolism (GRIP VTE) in 5 Gulf countries. *Clin Appl Thromb Hemost* 2009;15(3):289-296.

Aleskog AE, Killander A, Olsson K, Eriksson L, Kristensen J. Preoperative evaluation of primary hemostasis in patients with thrombocytopenia using the Thrombostat 4000. *Semin Thromb Hemost* 1995;21 Suppl 2:59-65.

Alfaro-Adrian J, Bayona F, Rech JA, Murray DW. One- or two-stage bilateral total hip replacement. *Journal of Arthroplasty* 1999;14(4):439-445.

Alfaro MJ, Paramo JA, Rocha E. Prophylaxis of thromboembolic disease and plateletrelated changes following total hip replacement: a comparative study of aspirin and heparin-dihydroergotamine. *Thromb Haemost* 1986;56(1):53-56.

Alghamdi AA, Moussa F, Fremes SE. Does the use of preoperative aspirin increase the risk of bleeding in patients undergoing coronary artery bypass grafting surgery? Systematic review and meta-analysis. *J Card Surg* 2007;22(3):247-256.

Allen HW, Liu SS, Ware PD, Nairn CS, Owens BD. Peripheral nerve blocks improve analgesia after total knee replacement surgery. *Anesth Analg* 1998;87(1):93-97.

Amaragiri SV, Lees TA. Elastic compression stockings for prevention of deep vein thrombosis (Cochrane Review) [with con sumer summary]. *Cochrane Database of Systematic Reviews* 2000;Issue 1\.

Amaranath L, Cascorbi HF, Singh-Amaranath AV, Frankmann DB. Relation of anesthesia to total hip replacement and control of operative blood loss. *Anesth Analg* 1975;54(5):641-648.

Amin AK, Patton JT, Cook RE, Brenkel IJ. Does obesity influence the clinical outcome at five years following total knee replacement for osteoarthritis? *J Bone Joint Surg Br* 2006;88(3):335-340.

Amrein PC, Ellman L, Harris WH. Aspirin-induced prolongation of bleeding time and perioperative blood loss. *JAMA* 1981;245(18):1825-1828.

Amstutz HC, Friscia DA, Dorey F, Carney BT. Warfarin prophylaxis to prevent mortality from pulmonary embolism after total hip replacement. *J Bone Joint Surg Am* 1989;71(3):321-326.

An HS, Mikhail WE, Jackson WT, Tolin B, Dodd GA. Effects of hypotensive anesthesia, nonsteroidal antiinflammatory drugs, and polymethylmethacrylate on bleeding in total hip arthroplasty patients. *J Arthroplasty* 1991;6(3):245-250.

Anand S, Asumu T. Patient acceptance of a foot pump device used for thromboprophylaxis. *Acta Orthop Belg* 2007;73(3):386-389.

Andersen BS, Jensen HP, Borris LC et al. Survival in patients undergoing total hip arthroplasty in relation to thromboprophylaxis with low molecular weight heparin: A long-term follow-up study. *International Journal of Risk and Safety in Medicine* 1996;8(3):251-259.

Andersen BS, Matzsch T, Bergqvist D, Eriksson BI, Torholm C. Location of postoperative deep vein thrombosis in relation to age and survival. *International Journal of Risk and Safety in Medicine* 1997;10(4):229-234.

Anderson DR, O'Brien BJ, Levine MN, Roberts R, Wells PS, Hirsh J. Efficacy and cost of low-molecular-weight heparin compared with standard heparin for the prevention of deep vein thrombosis after total hip arthroplasty. *Ann Intern Med* 1993;119(11):1105-1112.

Anderson DR, O'Brien BJ. Cost effectiveness of the prevention and treatment of deep vein thrombosis and pulmonary embolism. *Pharmacoeconomics* 1997;12(1):17-29.

Anderson DR, Gross M, Robinson KS et al. Ultrasonographic screening for deep vein thrombosis following arthroplasty fails to reduce posthospital thromboembolic

complications: the Postarthroplasty Screening Study (PASS). *Chest* 1998;114(2 Suppl Evidence):119S-122S.

Anderson DR, Wilson SJ, Blundell J et al. Comparison of a nomogram and physicianadjusted dosage of warfarin for prophylaxis against deep-vein thrombosis after arthroplasty. *J Bone Joint Surg Am* 2002;84-A(11):1992-1997.

Anderson L, Kammerer WS, Greer RB, III. Risk factor assessment in 101 total hip arthroplasties: a medical perspective. *Clin Orthop Relat Res* 1979;(141):50-54.

Andrade EO, Binda FA, Silva AM, Costa TD, Fernandes MC, Fernandes MC. Risk factors and prophylaxis for venous thromboembolism in hospitals in the city of Manaus, Brazil. *J Bras Pneumol* 2009;35(2):114-121.

Andrew JG, Palan J, Kurup HV, Gibson P, Murray DW, Beard DJ. Obesity in total hip replacement. *J Bone Joint Surg Br* 2008;90(4):424-429.

Ansari K, Dalal K, Patel M. Risk stratification and utilisation of thrombo-embolism prophylaxis in a medical-surgical ICU: a hospital-based study. *J Indian Med Assoc* 2007;105(9):536, 538, 540.

Ansari S, Warwick D, Ackroyd CE, Newman JH. Incidence of fatal pulmonary embolism after 1,390 knee arthroplasties without routine prophylactic anticoagulation, except in high-risk cases. *J Arthroplasty* 1997;12(6):599-602.

Antevil JL, Sise MJ, Sack DI et al. Retrievable vena cava filters for preventing pulmonary embolism in trauma patients: a cautionary tale. *J Trauma* 2006;60(1):35-40.

Arcelus JI, Monreal M, Caprini JA et al. Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE Registry. *Thromb Haemost* 2008;99(3):546-551.

Ares-Rodriguez O, Martinez AH, Fernandez AH, Castellet E, Quilis AN. Survival curve and factors related to drainage during the first 24 h after total knee arthroplasty. *Knee Surg Sports Traumatol Arthrosc* 2008;16(6):585-589.

Arnesen H, Dahl OE, Aspelin T, Seljeflot I, Kierulf P, Lyberg T. Sustained prothrombotic profile after hip replacement surgery: the influence of prolonged prophylaxis with dalteparin. *J Thromb Haemost* 2003;1(5):971-975.

Arnold DM, Anderson J, Kearon C. Rational testing: Preoperative risk assessment for bleeding and thromboembolism. *BMJ* 2009;339(7722):692-693.

Asaf T, Reuveni H, Yermiahu T et al. The need for routine pre-operative coagulation screening tests (prothrombin time PT/partial thromboplastin time PTT) for healthy children undergoing elective tonsillectomy and/or adenoidectomy. *Int J Pediatr Otorhinolaryngol* 2001;61(3):217-222.

Asano H, Matsubara M, Suzuki K, Morita S, Shinomiya K. Prevention of pulmonary embolism by a foot sole pump. *J Bone Joint Surg Br* 2001;83(8):1130-1132.

Ascani A, Radicchia S, Parise P, Nenci GG, Agnelli G. Distribution and occlusiveness of thrombi in patients with surveillance detected deep vein thrombosis after hip surgery. *Thromb Haemost* 1996;75(2):239-241.

Asensio A, Ramos A, Munez E, Vilanova JL, Torrijos P, Garcia FJ. Preoperative low molecular weight heparin as venous thromboembolism prophylaxis in patients at risk for prosthetic infection after knee arthroplasty. *Infect Control Hosp Epidemiol* 2005;26(12):903-909.

Asensio A, Antolin FJ, Sanchez-Garcia JM et al. Timing of DVT prophylaxis and risk of postoperative knee prosthesis infection. *Orthopedics* 2010;33(11):800.

Assia EI, Raskin T, Kaiserman I, Rotenstreich Y, Segev F. Effect of aspirin intake on bleeding during cataract surgery. *J Cataract Refract Surg* 1998;24(9):1243-1246.

Austin MS, Parvizi J, Grossman S, Restrepo C, Klein GR, Rothman RH. The inferior vena cava filter is effective in preventing fatal pulmonary embolus after hip and knee arthroplasties. *J Arthroplasty* 2007;22(3):343-348.

Awidi A, Obeidat N, Magablah A, Bsoul N. Risk stratification for venous thromboembolism in hospitalized patients in a developing country: A prospective study. *Journal of Thrombosis and Thrombolysis* 2009;28(3):309-313.

Axelsson K, Johanzon E, Essving P, Weckstrom J, Ekback G. Postoperative extradural analgesia with morphine and ropivacaine. A double-blind comparison between placebo and ropivacaine 10 mg/h or 16 mg/h. *Acta Anaesthesiol Scand* 2005;49(8):1191-1199.

Aziz F, Spate K, Wong J, Aruny J, Sumpio B. Changing Patterns in the Use of Inferior Vena Cava Filters: Review of a Single Center Experience. *Journal of the American College of Surgeons* 2007;205(4):564-569.

Babcock SL, Higginbotham CC, Lampman RM et al. Venous duplex imaging for surveillance of patients undergoing total joint arthroplasty: A three-year study. *Journal of Vascular Technology* 1994;18(2):75-79.

Babis GC, Sakellariou VI, Johnson EO, Soucacos PN. Incidence and prevention of thromboembolic events in one stage bilateral total hip arthroplasty: a systematic review. *Curr Vasc Pharmacol* 2011;9(1):24-32.

Bachmann F, McKenna R, Meredith P, Carta S. Low pressure intermittent compression to calves and thighs: a successful new method for prevention of postoperative thrombosis. <ORIGINAL> INTERMITTIERENDE PNEUMATISCHE KOMPRESSION VON UNTER- UND OBERSCHENKEL; EINE NEUE ERFOLGREICHE METHODE ZUR POSTOPERATIVEN THROMBOSEPROPHYLAXE. SCHWEIZMEDWSCHR 1976;106:1819-1821. Badreldin A, Kroener A, Kamiya H, Lichtenberg A, Hekmat K. Effect of clopidogrel on perioperative blood loss and transfusion in coronary artery bypass graft surgery. *Interact Cardiovasc Thorac Surg* 2010;10(1):48-52.

Bae DK, Yoon KH, Kim HS, Song SJ. Total knee arthroplasty in hemophilic arthropathy of the knee. *J Arthroplasty* 2005;20(5):664-668.

Bagaria V, Modi N, Panghate A, Vaidya S. Incidence and risk factors for development of venous thromboembolism in Indian patients undergoing major orthopaedic surgery: results of a prospective study. *Postgrad Med J* 2006;82(964):136-139.

Baker P, Dowen D, McMurtry I. The effect of surgeon volume on the need for transfusion following primary unilateral hip and knee arthroplasty. *Surgeon* 2011;9(1):13-17.

Balderston RA, Graham TS, Booth RE, Jr., Rothman RH. The prevention of pulmonary embolism in total hip arthroplasty. Evaluation of low-dose warfarin therapy. *J Arthroplasty* 1989;4(3):217-221.

Bara L, Planes A, Samama MM. Occurrence of thrombosis and haemorrhage, relationship with anti-Xa, anti-IIa activities, and D-dimer plasma levels in patients receiving a low molecular weight heparin, enoxaparin or tinzaparin, to prevent deep vein thrombosis after hip surgery. *Br J Haematol* 1999;104(2):230-240.

Barber A, Green D, Galluzzo T, Ts'ao CH. The bleeding time as a preoperative screening test. *Am J Med* 1985;78(5):761-764.

Barnes CL, Nelson CL, Nix ML, McCowan TC, Lavender RC, Barnes RW. Duplex scanning versus venography as a screening examination in total hip arthroplasty patients. *Clin Orthop Relat Res* 1991;(271):180-189.

Barnes RW, Brand RA, Clarke W, Hartley N, Hoak JC. Efficacy of graded-compression antiembolism stockings in patients undergoing total hip arthroplasty. *Clin Orthop Relat Res* 1978;(132):61-67.

Baron JA, Barrett J, Katz JN, Liang MH. Total hip arthroplasty: use and select complications in the US Medicare population. *Am J Public Health* 1996;86(1):70-72.

Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN. Bilateral total knee replacement: staging and pulmonary embolism. *J Bone Joint Surg Am* 2006;88(10):2146-2151.

Baser O, Supina D, Sengupta N, Wang L, Kwong L. Clinical and cost outcomes of venous thromboembolism in Medicare patients undergoing total hip replacement or total knee replacement surgery. *Curr Med Res Opin* 2010.

Baser O, Supina D, Sengupta N, Wang L, Kwong L. Impact of postoperative venous thromboembolism on Medicare recipients undergoing total hip replacement or total knee replacement surgery. *Am J Health Syst Pharm* 2010;67(17):1438-1445.

Basilico FC, Sweeney G, Losina E et al. Risk factors for cardiovascular complications following total joint replacement surgery. *Arthritis Rheum* 2008;58(7):1915-1920.

Bauersachs RM, Berger K, Hankowitz J et al. Prophylaxis, diagnosis and therapy of surgery-related complications in orthopedic and trauma surgery: An observational survey (CHANGE). *European Journal of Trauma* 2005;31(2):158-167.

Becattini C, Agnelli G. Acute pulmonary embolism: risk stratification in the emergency department. *Intern Emerg Med* 2007;2(2):119-129.

Bedair H, Berli M, Gezer S, Jacobs JJ, Della Valle CJ. Hematologic genetic testing in high-risk patients before knee arthroplasty: a pilot study. *Clin Orthop Relat Res* 2011;469(1):131-137.

Beiderlinden M, Eikermann M, Lehmann N, Adamzik M, Peters J. Risk factors associated with bleeding during and after percutaneous dilational tracheostomy. *Anaesthesia* 2007;62(4):342-346.

Beisaw NE, Comerota AJ, Groth HE et al. Dihydroergotamine/heparin in the prevention of deep-vein thrombosis after total hip replacement. A controlled, prospective, randomized multicenter trial. *J Bone Joint Surg Am* 1988;70(1):2-10.

Beksac B, Gonzalez D, V, Anderson J, Sharrock NE, Sculco TP, Salvato EA. Symptomatic thromboembolism after one-stage bilateral THA with a multimodal prophylaxis protocol. *Clin Orthop Relat Res* 2007;463:114-119.

Bell TH, Berta D, Ralley F et al. Factors affecting perioperative blood loss and transfusion rates in primary total joint arthroplasty: a prospective analysis of 1642 patients. *Can J Surg* 2009;52(4):295-301.

Ben-Galim P, Steinberg EL, Rosenblatt Y, Parnes N, Menahem A, Arbel R. A miniature and mobile intermittent pneumatic compression device for the prevention of deep-vein thrombosis after joint replacement. *Acta Orthop Scand* 2004;75(5):584-587.

Benevenia J, Bibbo C, Patel DV, Grossman MG, Bahramipour PF, Pappas PJ. Inferior vena cava filters prevent pulmonary emboli in patients with metastatic pathologic fractures of the lower extremity. *Clin Orthop Relat Res* 2004;(426):87-91.

Benko T, Cooke EA, McNally MA, Mollan RAB. Graduated compression stockings: Knee length or thigh length. *Clinical Orthopaedics and Related Research* 2001;(383):197-203. Berczi V, Bottomley JR, Thomas SM, Taneja S, Gaines PA, Cleveland TJ. Long-term retrievability of IVC filters: should we abandon permanent devices? *Cardiovasc Intervent Radiol* 2007;30(5):820-827.

Berend KR, Morris MJ, Lombardi AV, Jr. Unicompartmental knee arthroplasty: incidence of transfusion and symptomatic thromboembolic disease. *Orthopedics* 2010;33(9 Suppl):8-10.

Berger JS, Frye CB, Harshaw Q, Edwards FH, Steinhubl SR, Becker RC. Impact of clopidogrel in patients with acute coronary syndromes requiring coronary artery bypass surgery: a multicenter analysis. *J Am Coll Cardiol* 2008;52(21):1693-1701.

Bergqvist D, Efsing HO, Hallbook T, Hedlund T. Thromboembolism after elective and post-traumatic hip surgery--a controlled prophylactic trial with dextran 70 and low-dose heparin. *Acta Chir Scand* 1979;145(4):213-218.

Bergqvist D, Gudmundsson G, Hallbook T. Does thromboprophylaxis increase the risk for infectious complications after total hip replacement? *Vasa* 1985;14(3):269-271.

Bergqvist D, Burmark US, Frisell J et al. Low molecular weight heparin once daily compared with conventional low-dose heparin twice daily. A prospective double-blind multicentre trial on prevention of postoperative thrombosis. *Br J Surg* 1986;73(3):204-208.

Bergqvist D, Lowe G. Venous thromboembolism in patients undergoing laparoscopic and arthroscopic surgery and in leg casts. *Arch Intern Med* 2002;162(19):2173-2176.

Berman AT, Geissele AE, Bosacco SJ. Blood loss with total knee arthroplasty. *Clin Orthop Relat Res* 1988;(234):137-138.

Bern M, Deshmukh RV, Nelson R et al. Low-dose warfarin coupled with lower leg compression is effective prophylaxis against thromboembolic disease after hip arthroplasty. *J Arthroplasty* 2007;22(5):644-650.

Bern MM, Bierbaum B, Wetzner S, Brennan W, McAlister S. Very low dose warfarin as prophylaxis against ultrasound detected deep vein thrombosis following primary hip replacement. *Am J Hematol* 2002;71(2):69-74.

Berry DJ. Surveillance for venous thromboembolic disease after total knee arthroplasty. *Clin Orthop Relat Res* 2001;(392):257-266.

Best AJ, Williams S, Crozier A, Bhatt R, Gregg PJ, Hui AC. Graded compression stockings in elective orthopaedic surgery. An assessment of the in vivo performance of commercially available stockings in patients having hip and knee arthroplasty. *J Bone Joint Surg Br* 2000;82(1):116-118.

Beuhler KO, D'Lima DD, Colwell CW, Jr., Otis SM, Walker RH. Venous thromboembolic disease after hybrid hip arthroplasty with negative duplex screening. *Clin Orthop Relat Res* 1999;(361):168-177.

Biau D, Mullins MM, Judet T, Piriou P. Is anyone too old for a total knee replacement? *Clinical Orthopaedics and Related Research* 2006;(448):180-184.

Billingsley EM, Maloney ME. Intraoperative and postoperative bleeding problems in patients taking warfarin, aspirin, and nonsteroidal antiinflammatory agents. A prospective study. *Dermatol Surg* 1997;23(5):381-383.

Binkert CA, Drooz AT, Caridi JG et al. Technical success and safety of retrieval of the G2 filter in a prospective, multicenter study. *J Vasc Interv Radiol* 2009;20(11):1449-1453.

Bischof M, Leuppi JD, Sendi P. Cost-effectiveness of extended venous thromboembolism prophylaxis with fondaparinux in hip surgery patients. *Expert Review of Pharmacoeconomics and Outcomes Research* 2006;6(2):171-180.

Bizzarri F, Scolletta S, Tucci E et al. Perioperative use of tirofiban hydrochloride (Aggrastat) does not increase surgical bleeding after emergency or urgent coronary artery bypass grafting. *J Thorac Cardiovasc Surg* 2001;122(6):1181-1185.

Bjornara BT, Gudmundsen TE, Dahl OE. Frequency and timing of clinical venous thromboembolism after major joint surgery. *J Bone Joint Surg Br* 2006;88(3):386-391.

Bjortuft O, Brosstad F, Boe J. Bronchoscopy with transbronchial biopsies: measurement of bleeding volume and evaluation of the predictive value of coagulation tests. *Eur Respir J* 1998;12(5):1025-1027.

Blanchard J, Meuwly JY, Leyvraz PF et al. Prevention of deep-vein thrombosis after total knee replacement. Randomised comparison between a low-molecular-weight heparin (nadroparin) and mechanical prophylaxis with a foot-pump system. *J Bone Joint Surg Br* 1999;81(4):654-659.

Blankenship JC, Balog C, Sapp SK et al. Reduction in vascular access site bleeding in sequential abciximab coronary intervention trials. *Catheter Cardiovasc Interv* 2002;57(4):476-483.

Blasdale C, Lawrence CM. Perioperative international normalized ratio level is a poor predictor of postoperative bleeding complications in dermatological surgery patients taking warfarin. *Br J Dermatol* 2008;158(3):522-526.

Blinder D, Manor Y, Martinowitz U, Taicher S. Dental extractions in patients maintained on oral anticoagulant therapy: comparison of INR value with occurrence of postoperative bleeding. *Int J Oral Maxillofac Surg* 2001;30(6):518-521.

Blom A, Pattison G, Whitehouse S, Taylor A, Bannister G. Early death following primary total hip arthroplasty: 1,727 procedures with mechanical thrombo-prophylaxis. *Acta Orthop* 2006;77(3):347-350.

Blome M, Isgro F, Kiessling AH et al. Relationship between factor XIII activity, fibrinogen, haemostasis screening tests and postoperative bleeding in cardiopulmonary bypass surgery. *Thromb Haemost* 2005;93(6):1101-1107.

Boberg KM, Brosstad F, Egeland T, Egge T, Schrumpf E. Is a prolonged bleeding time associated with an increased risk of hemorrhage after liver biopsy? *Thromb Haemost* 1999;81(3):378-381.

Bolognesi MP, Marchant MH, Jr., Viens NA, Cook C, Pietrobon R, Vail TP. The impact of diabetes on perioperative patient outcomes after total hip and total knee arthroplasty in the United States. *J Arthroplasty* 2008;23(6 Suppl 1):92-98.

Bombardini T, Borghi B, Mattioli R, Figus E. Proximal deep vein thrombosis: the use of the echoDoppler for diagnosis and therapeutic indications. *Chir Organi Mov* 1995;80(1):61-64.

Bongard O, Wicky J, Peter R et al. D-dimer plasma measurement in patients undergoing major hip surgery: use in the prediction and diagnosis of postoperative proximal vein thrombosis. *Thromb Res* 1994;74(5):487-493.

Bono CM, Watters WC, III, Heggeness MH et al. An evidence-based clinical guideline for the use of antithrombotic therapies in spine surgery. *Spine J* 2009;9(12):1046-1051.

Borgen PO, Dahl OE, Reikeras O. Preoperative versus postoperative initiation of dalteparin thromboprophylaxis in THA. *Hip Int* 2010;20(3):301-307.

Borghi B, Casati A. Thromboembolic complications after total hip replacement. *Int Orthop* 2002;26(1):44-47.

Borly L, Wille-Jorgensen P, Rasmussen MS. Systematic review of thromboprophylaxis in colorectal surgery -- an update. *Colorectal Dis* 2005;7(2):122-127.

Borris LC, Sorensen JV, Lassen MR et al. Components of coagulation and fibrinolysis during thrombosis prophylaxis with a low molecular weight heparin (Enoxaparin) versus Dextran 70 in hip arthroplasty. *Thromb Res* 1991;63(1):21-28.

Borris LC, Lassen MR, Jensen HP, Andersen BS, Poulsen KA. Perioperative thrombosis prophylaxis with low molecular weight heparins in elective hip surgery. Clinical and economic considerations. *Int J Clin Pharmacol Ther* 1994;32(5):262-268.

Borris LC, Breindahl M, Ryge C, Sommer HM, Lassen MR. Prothrombin fragment 1+2 in urine as an indicator of sustained coagulation activation after total hip arthroplasty. *Thromb Res* 2007;121(3):369-376.

Borris LC, Breindahl M, Lassen MR, Pap AF, Misselwitz F. Differences in urinary prothrombin fragment 1 + 2 levels after total hip replacement in relation to venous thromboembolism and bleeding events. *J Thromb Haemost* 2008;6(10):1671-1679.

Bottaro FJ, Ceresetto JM. How should we define major bleeding events in thromboprophylaxis? *Journal of Bone and Joint Surgery - Series A* 2010;92(15):2617-2618.

Bould M, Freeman BJ, Pullyblank A, Newman JH. Blood loss in sequential bilateral total knee arthroplasty. *J Arthroplasty* 1998;13(1):77-79.

Bounameaux H. Integrating pharmacologic and mechanical prophylaxis of venous thromboembolism. *Thrombosis and Haemostasis* 1999;82(2):931-937.

Bowditch MG, Villar RN. Do obese patients bleed more? A prospective study of blood loss at total hip replacement. *Ann R Coll Surg Engl* 1999;81(3):198-200.

Bowler DJ, Bale E, O'Byrne J. Factor V Leiden: prevalence and thromboembolic complications after total hip replacement in Ireland. *Ir J Med Sci* 2007;176(4):273-277.

Bozic KJ, Vail TP, Pekow PS, Maselli JH, Lindenauer PK, Auerbach AD. Does Aspirin Have a Role in Venous Thromboembolism Prophylaxis in Total Knee Arthroplasty Patients? *J Arthroplasty* 2009.

Bozic KJ, Maselli J, Pekow PS, Lindenauer PK, Vail TP, Auerbach AD. The influence of procedure volumes and standardization of care on quality and efficiency in total joint replacement surgery. *J Bone Joint Surg Am* 2010;92(16):2643-2652.

Bozic KJ, Vail TP, Pekow PS, Maselli JH, Lindenauer PK, Auerbach AD. Does aspirin have a role in venous thromboembolism prophylaxis in total knee arthroplasty patients? *Journal of Arthroplasty* 2010;25(7):1053-1060.

Bradley JG, Krugener GH, Jager HJ. The effectiveness of intermittent plantar venous compression in prevention of deep venous thrombosis after total hip arthroplasty. *J Arthroplasty* 1993;8(1):57-61.

Brinker MR, Reuben JD, Mull JR, Cox DD, Daum WJ, Parker JR. Comparison of general and epidural anesthesia in patients undergoing primary unilateral THR. *Orthopedics* 1997;20(2):109-115.

Brookenthal KR, Freedman KB, Lotke PA, Fitzgerald RH, Lonner JH. A meta-analysis of thromboembolic prophylaxis in total knee arthroplasty. *J Arthroplasty* 2001;16(3):293-300.

Brooks PJ, Keramati M, Wickline A. Thromboembolism in patients undergoing total knee arthroplasty with epidural analgesia. *J Arthroplasty* 2007;22(5):641-643.

Brothers TE, Frank CE, Frank B et al. Is duplex venous surveillance worthwhile after arthroplasty? *J Surg Res* 1997;67(1):72-78.

Brotherton SL, Roberson JR, de Andrade JR, Fleming LL. Staged versus simultaneous bilateral total knee replacement. *J Arthroplasty* 1986;1(4):221-228.

Brotman DJ, Jaffer AK, Hurbanek JG, Morra N. Warfarin prophylaxis and venous thromboembolism in the first 5 days following hip and knee arthroplasty. *Thromb Haemost* 2004;92(5):1012-1017.

Brown GA. Venous Thromboembolism Prophylaxis After Major Orthopaedic Surgery: A Pooled Analysis of Randomized Controlled Trials. *Journal of Arthroplasty* 2009;24(6 SUPPL.):77-83.

Brueckner S, Reinke U, Roth-Isigkeit A, Eleftheriadis S, Schmucker P, Siemens HJ. Comparison of general and spinal anesthesia and their influence on hemostatic markers in patients undergoing total hip arthroplasty. *J Clin Anesth* 2003;15(6):433-440.

Bucci MN, Papadopoulos SM, Chen JC, Campbell JA, Hoff JT. Mechanical prophylaxis of venous thrombosis in patients undergoing craniotomy: a randomized trial. *Surg Neurol* 1989;32(4):285-288.

Buchan DS, Bajorek B. Incidence of venous thromboembolism and thromboprophylaxis after total hip or knee arthroplasty. *Journal of Pharmacy Practice and Research* 2008;38(3):200-204.

Buchanan RR, Kraag G. Is there a lower incidence of deep venous thrombosis after joint replacement in rheumatoid arthritis? *J Rheumatol* 1980;7(4):551-554.

Buckenmaier III CC, Xenos JS, Nilsen SM. Lumbar plexus block with perineural catheter and sciatic nerve block for total hip arthroplasty. *Journal of Arthroplasty* 2002;17(4):499-502.

Buehler KO, D'Lima DD, Petersilge WJ, Colwell CW, Jr., Walker RH. Late deep venous thrombosis and delayed weightbearing after total hip arthroplasty. *Clin Orthop Relat Res* 1999;(361):123-130.

Burnett RS, Clohisy JC, Wright RW et al. Failure of the American College of Chest Physicians-1A protocol for lovenox in clinical outcomes for thromboembolic prophylaxis. *J Arthroplasty* 2007;22(3):317-324.

Burns ER, Billett HH, Frater RW, Sisto DA. The preoperative bleeding time as a predictor of postoperative hemorrhage after cardiopulmonary bypass. *J Thorac Cardiovasc Surg* 1986;92(2):310-312.

Busato A, Roder C, Herren S, Eggli S. Influence of high BMI on functional outcome after total hip arthroplasty. *Obesity Surgery* 2008;18(5):595-600.

Cafferata HT, Morrison S, Duer C, DePalma RG. Venous thromboembolism in trauma patients: standardized risk factors. *J Vasc Surg* 1998;28(2):250-259.

Callaghan JJ, Warth LC, Hoballah JJ, Liu SS, Wells CW. Evaluation of deep venous thrombosis prophylaxis in low-risk patients undergoing total knee arthroplasty. *J Arthroplasty* 2008;23(6 Suppl 1):20-24.

Cammerer U, Dietrich W, Rampf T, Braun SL, Richter JA. The predictive value of modified computerized thromboelastography and platelet function analysis for postoperative blood loss in routine cardiac surgery. *Anesth Analg* 2003;96(1):51-7, table.

Camporese G, Bernardi E, Prandoni P et al. Low-molecular-weight heparin versus compression stockings for thromboprophylaxis after knee arthroscopy: a randomized trial. *Ann Intern Med* 2008;149(2):73-82.

Cao YB, Zhang JD, Shen H, Jiang YY. Rivaroxaban versus enoxaparin for thromboprophylaxis after total hip or knee arthroplasty: a meta-analysis of randomized controlled trials. *Eur J Clin Pharmacol* 2010;66(11):1099-1108.

Capdevila X, Barthelet Y, Biboulet P, Ryckwaert Y, Rubenovitch J, D'Athis F. Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery. *Anesthesiology* 1999;91(1):8-15.

Caprini JA, Arcelus JI, Hasty JH, Tamhane AC, Fabrega F. Clinical assessment of venous thromboembolic risk in surgical patients. *Semin Thromb Hemost* 1991;17 Suppl 3:304-312.

Caprini JA, Arcelus JI, Motykie G, Kudrna JC, Mokhtee D, Reyna JJ. The influence of oral anticoagulation therapy on deep vein thrombosis rates four weeks after total hip replacement. *J Vasc Surg* 1999;30(5):813-820.

Caprini JA, Arcelus JI, Reyna JJ. Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease. *Semin Hematol* 2001;38(2 Suppl 5):12-19.

Caprini JA. Risk assessment as a guide for the prevention of the many faces of venous thromboembolism. *Am J Surg* 2010;199(1 Suppl):S3-10.

Caprini JA. Risk assessment as a guide to thrombosis prophylaxis. *Curr Opin Pulm Med* 2010.

Carroll RC, Chavez JJ, Snider CC, Meyer DS, Muenchen RA. Correlation of perioperative platelet function and coagulation tests with bleeding after cardiopulmonary bypass surgery. *J Lab Clin Med* 2006;147(4):197-204.

Carter CA, Skoutakis VA, Spiro TE et al. Enoxaparin: The low-molecular-weight heparin for prevention of postoperative thromboembolic complications. *Annals of Pharmacotherapy* 1993;27(10):1223-1230.

Caruana JA, Anain PM, Pham DT. The pulmonary embolism risk score system reduces the incidence and mortality of pulmonary embolism after gastric bypass. *Surgery* 2009;146(4):678-683.

Castellano P, Lopez-Escamez JA. American Society of Anesthesiology classification may predict severe post-tonsillectomy haemorrhage in children. *J Otolaryngol* 2003;32(5):302-307.

Cha SI, Lee SY, Kim CH et al. Venous thromboembolism in Korean patients undergoing major orthopedic surgery: a prospective observational study using computed tomographic (CT) pulmonary angiography and indirect CT venography. *J Korean Med Sci* 2010;25(1):28-34.

Chan A, Iannucci A, Dager WE. Systemic anticoagulant prophylaxis for central catheterassociated venous thrombosis in cancer patients. *Ann Pharmacother* 2007;41(4):635-641.

Chan EW. Role for aspirin after total hip replacement? *Journal of Pharmacy Practice* and Research 2006;36(3):214-217.

Chan JC, Roche SJ, Lenehan B, O'sullivan M, Kaar K. Compliance and satisfaction with foot compression devices: an orthopaedic perspective. *Arch Orthop Trauma Surg* 2007;127(7):567-571.

Chandrasekaran S, Ariaretnam SK, Tsung J, Dickison D. Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis. *ANZ J Surg* 2009;79(7-8):526-529.

Chang SS, Duong DT, Wells N, Cole EE, Smith JA, Jr., Cookson MS. Predicting blood loss and transfusion requirements during radical prostatectomy: the significant negative impact of increasing body mass index. *J Urol* 2004;171(5):1861-1865.

Charalambous C, Cleanthous S, Tryfonidis M, Goel A, Swindell R, Ellis D. Foot pump prophylaxis for deep venous thrombosis-rate of effective usage following knee and hip arthroplasty. *Int Orthop* 2003;27(4):208-210.

Charles HW, Black M, Kovacs S et al. G2 inferior vena cava filter: retrievability and safety. *J Vasc Interv Radiol* 2009;20(8):1046-1051.

Chee YL, Crawford JC, Watson HG, Greaves M. Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures. British Committee for Standards in Haematology. *Br J Haematol* 2008;140(5):496-504.

Chelly JE, Greger J, Gebhard R et al. Continuous femoral blocks improve recovery and outcome of patients undergoing total knee arthroplasty. *J Arthroplasty* 2001;16(4):436-445.

Chen L, Bracey AW, Radovancevic R et al. Clopidogrel and bleeding in patients undergoing elective coronary artery bypass grafting. *J Thorac Cardiovasc Surg* 2004;128(3):425-431.

Cheng JW. Fondaparinux: a new antithrombotic agent. *Clin Ther* 2002;24(11):1757-1769.

Chiang CC, Chen PQ, Shen MC, Tsai W. Total knee arthroplasty for severe haemophilic arthropathy: long-term experience in Taiwan. *Haemophilia* 2008;14(4):828-834.

Chiapuzzo E, Orengo GB, Ottria G, Chiapuzzo A, Palazzini E, Fusillo M. The use of low molecular weight heparins for postsurgical deep vein thrombosis prevention in orthopaedic patients. *J Int Med Res* 1988;16(5):359-366.

Chin SP, Abou-Madi MN, Eurin B, Witvoet J, Montagne J. Blood loss in total hip replacement: extradural v. phenoperidine analgesia. *Br J Anaesth* 1982;54(5):491-495.

Chmell SJ, Schwartz CM, Giacchino JL, Ing TS. Total hip replacement in patients with renal transplants. *Archives of Surgery* 1983;118(4):489-495.

Chotanaphuti T, Ongnamthip P, Silpipat S, Foojareonyos T, Roschan S, Reumthantong A. The prevalence of thrombophilia and venous thromboembolism in total knee arthroplasty. *J Med Assoc Thai* 2007;90(7):1342-1347.

Chotanaphuti T, Ongnamthip P, Songpatanasil T, Veerapan P, Deeprecha K. Risk factors of deep vein thrombosis (DVT) after total knee arthroplasty (TKA) at Phramongkutklao Hospital. *J Med Assoc Thai* 2007;90(3):485-491.

Christensen SW, Wille-Jorgensen P, Bjerg-Nielsen A, Holmich P, Duus B. Bleeding after hip arthroplasty not increased by heparin plus dihydroergotamine. *Acta Orthop Scand* 1987;58(2):104-105.

Christensen SW, Wille-Jorgensen P, Bjerg-Nielsen A, Kjaer L. Prevention of deep venous thrombosis following total hip replacement, using epidural analgesia. *Acta Orthop Belg* 1989;55(1):58-61.

Christiansen S, Rotker J, Roeder N et al. Are patients with Werlhof's disease at increased risk for bleeding complications when undergoing cardiac surgery? *Eur J Cardiothorac Surg* 2000;18(3):353-356.

Chu MW, Wilson SR, Novick RJ, Stitt LW, Quantz MA. Does clopidogrel increase blood loss following coronary artery bypass surgery? *Ann Thorac Surg* 2004;78(5):1536-1541.

Chung J, Owen RJ. Using inferior vena cava filters to prevent pulmonary embolism. *Can Fam Physician* 2008;54(1):49-55.

Chung LH, Chen WM, Chen CF, Chen TH, Liu CL. Deep vein thrombosis after total knee arthroplasty in asian patients without prophylactic anticoagulation. *Orthopedics* 2011;34(1):15.

Ciccone WJ, Fox PS, Neumyer M, Rubens D, Parrish WM, Pellegrini VD, Jr. Ultrasound surveillance for asymptomatic deep venous thrombosis after total joint replacement. *J Bone Joint Surg Am* 1998;80(8):1167-1174.

Cipolle MD, Wojcik R, Seislove E, Wasser TE, Pasquale MD. The role of surveillance duplex scanning in preventing venous thromboembolism in trauma patients. *J Trauma* 2002;52(3):453-462.

Clagett GP, Reisch JS. Prevention of venous thromboembolism in general surgical patients. Results of meta-analysis. *Ann Surg* 1988;208(2):227-240.

Clagett GP, Anderson J, Levine MN, Salzman EW, Wheeler HB. Prevention of venous thromboembolism. *Chest* 1992;102(4 SUPPL.):391S-407S.

Clarke-Pearson DL, Creasman WT, Coleman RE, Synan IS, Hinshaw WM. Perioperative external pneumatic calf compression as thromboembolism prophylaxis in gynecologic oncology: report of a randomized controlled trial. *Gynecol Oncol* 1984;18(2):226-232.

Clarke-Pearson DL, Dodge RK, Synan I, McClelland RC, Maxwell GL. Venous thromboembolism prophylaxis: patients at high risk to fail intermittent pneumatic compression. *Obstet Gynecol* 2003;101(1):157-163.

Clarke MT, Green JS, Harper WM, Gregg PJ. Screening for deep-venous thrombosis after hip and knee replacement without prophylaxis. *J Bone Joint Surg Br* 1997;79(5):787-791.

Clayton JK, Anderson JA, McNicol GP. Preoperative prediction of postoperative deep vein thrombosis. *Br Med J* 1976;2(6041):910-912.

Clayton ML, Thompson TR. Activity, air boots, and aspirin as thromboembolism prophylaxis in knee arthroplasty. A multiple regimen approach. *Orthopedics* 1987;10(11):1525-1527.

Clayton RA, Gaston P, Watts AC, Howie CR. Thromboembolic disease after total knee replacement: experience of 5100 cases. *Knee* 2009;16(1):18-21.

Clifford J. How should we define major bleeding events in thromboprophylaxis?: Reply. *Journal of Bone and Joint Surgery - Series A* 2010;92(15):2618-2619.

Cofrancesco E, Cortellaro M, Corradi A, Ravasi F, Bertocchi F. Coagulation activation markers in the prediction of venous thrombosis after elective hip surgery. *Thromb Haemost* 1997;77(2):267-269.

Cofrancesco E, Cortellaro M, Corradi A, Ravasi F, Bertocchi F. Clinical utility of prothrombin fragment 1+2, thrombin antithrombin III complexes and D-dimer measurements in the diagnosis of deep vein thrombosis following total hip replacement. *Thromb Haemost* 1998;79(3):509-510.

Cohen AT, Wagner MB, Mohamed MS. Risk factors for bleeding in major abdominal surgery using heparin thromboprophylaxis. *Am J Surg* 1997;174(1):1-5.

Cohen AT, Bailey CS, Alikhan R, Cooper DJ. Extended thromboprophylaxis with low molecular weight heparin reduces symptomatic venous thromboembolism following lower limb arthroplasty--a meta-analysis. *Thromb Haemost* 2001;85(5):940-941.

Cohen I, Heim M, Martinowitz U, Chechick A. Orthopaedic outcome of total knee replacement in haemophilia A. *Haemophilia* 2000;6(2):104-109.

Colditz GA, Tuden RL, Oster G. Rates of venous thrombosis after general surgery: combined results of randomised clinical trials. *Lancet* 1986;2(8499):143-146.

Collen JF, Jackson JL, Shorr AF, Moores LK. Prevention of venous thromboembolism in neurosurgery: a metaanalysis. *Chest* 2008;134(2):237-249.

Collins DN, Barnes CL, McCowan TC et al. Vena caval filter use in orthopaedic trauma patients with recognized preoperative venous thromboembolic disease. *J Orthop Trauma* 1992;6(2):135-138.

Colville J, Raunio P. Charnley low-friction arthroplasties of the hip in rheumatoid arthritis. A study of the complications and results of 378 arthroplasties. *J Bone Joint Surg Br* 1978;60-B(4):498-503.

Colwell CW, Jr., Spiro TE. Efficacy and safety of enoxaparin to prevent deep vein thrombosis after hip arthroplasty. *Clin Orthop Relat Res* 1995;(319):215-222.

Colwell CW, Jr., Berkowitz SD, Davidson BL et al. Comparison of ximelagatran, an oral direct thrombin inhibitor, with enoxaparin for the prevention of venous thromboembolism following total hip replacement. A randomized, double-blind study. *J Thromb Haemost* 2003;1(10):2119-2130.

Colwell CW, Jr., Berkowitz SD, Lieberman JR et al. Oral direct thrombin inhibitor ximelagatran compared with warfarin for the prevention of venous thromboembolism after total knee arthroplasty. *J Bone Joint Surg Am* 2005;87(10):2169-2177.

Comerota AJ, Katz ML, Greenwald LL, Leefmans E, Czeredarczuk M, White JV. Venous duplex imaging: should it replace hemodynamic tests for deep venous thrombosis? *J Vasc Surg* 1990;11(1):53-59.

Comp PC, Voegeli T, McCutchen JW, Skoutakis VA, Trowbridge A, Overdyke WL. A comparison of danaparoid and warfarin for prophylaxis against deep vein thrombosis

after total hip replacement: The Danaparoid Hip Arthroplasty Investigators Group. *Orthopedics* 1998;21(10):1123-1128.

Connelly CS, Panush RS. Should nonsteroidal anti-inflammatory drugs be stopped before elective surgery? *Arch Intern Med* 1991;151(10):1963-1966.

Cordell-Smith JA, Williams SC, Harper WM, Gregg PJ. Lower limb arthroplasty complicated by deep venous thrombosis. Prevalence and subjective outcome. *J Bone Joint Surg Br* 2004;86(1):99-101.

Corradi A, Lazzaro F, Cofrancesco E, Cortellaro M, Ravasi F, Bertocchi F. Preoperative plasma levels of prothrombin fragment 1 + 2 correlate with the risk of venous thrombosis after elective hip replacement. *Acta Orthop Belg* 1999;65(1):39-43.

Corriere MA, Sauve KJ, Ayerdi J et al. Vena cava filters and inferior vena cava thrombosis. *J Vasc Surg* 2007;45(4):789-794.

Cosmi B, Alatri A, Cattaneo M et al. Assessment of the risk of bleeding in patients undergoing surgery or invasive procedures: Guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). *Thromb Res* 2009;124(5):e6-e12.

Cotter SA, Cantrell W, Fisher B, Shopnick R. Efficacy of venous thromboembolism prophylaxis in morbidly obese patients undergoing gastric bypass surgery. *Obes Surg* 2005;15(9):1316-1320.

Coventry MB, Nolan DR, Beckenbaugh RD. "Delayed" prophylactic anticoagulation: a study of results and complications in 2,012 total hip arthroplasties. *J Bone Joint Surg Am* 1973;55(7):1487-1492.

Crippa L, D'Angelo SV, Tomassini L, Rizzi B, D'Alessandro G, D'Angelo A. The utility and cost-effectiveness of D-dimer measurements in the diagnosis of deep vein thrombosis. *Haematologica* 1997;82(4):446-451.

Crowther MA, Cook DJ, Griffith LE et al. Deep venous thrombosis: clinically silent in the intensive care unit. *J Crit Care* 2005;20(4):334-340.

Crystal KS, Kase DJ, Scher LA, Shapiro MA, Naidich JB. Utilization patterns with inferior vena cava filters: surgical versus percutaneous placement. *J Vasc Interv Radiol* 1995;6(3):443-448.

Cushner F, Agnelli G, Fitzgerald G, Warwick D. Complications and functional outcomes after total hip arthroplasty and total knee arthroplasty: results from the Global Orthopaedic Registry (GLORY). *Am J Orthop (Belle Mead NJ)* 2010;39(9 Suppl):22-28.

Cusick LA, Beverland DE. The incidence of fatal pulmonary embolism after primary hip and knee replacement in a consecutive series of 4253 patients. *J Bone Joint Surg Br* 2009;91(5):645-648.

Czerwinski E, Len A, Marchewczyk J, Friedlein J, Kasprzyk M. Thromboembolic complications after total hip arthroplasty and prevention of thrombosis: own experience. *Ortop Traumatol Rehabil* 2003;5(1):86-91.

D'Ambrosia RD, Niemann KM, O'Grady L, Scott CW. Total hip replacement for patients with hemophilia and hemorrhagic diathesis. *Surg Gynecol Obstet* 1974;139(3):381-384.

Dacey LJ, Munoz JJ, Baribeau YR et al. Reexploration for hemorrhage following coronary artery bypass grafting: incidence and risk factors. Northern New England Cardiovascular Disease Study Group. *Arch Surg* 1998;133(4):442-447.

Dahl OE, Aspelin T, Arnesen H et al. Increased activation of coagulation and formation of late deep venous thrombosis following discontinuation of thromboprophylaxis after hip replacement surgery. *Thromb Res* 1995;80(4):299-306.

Dahl OE, Walsoe HK, Aspelin T, Roise O, Arnesen H, Lyberg T. Combined administration of dextran 70 and dalteparin does not increase perioperative blood loss compared to dextran 70 alone in major orthopedic surgery. *Haemostasis* 1999;29(5):262-268.

Dahl OE, Gudmundsen TE, Haukeland L. Late occurring clinical deep vein thrombosis in joint-operated patients. *Acta Orthop Scand* 2000;71(1):47-50.

Dahl OE, Gudmundsen TE, Bjornara BT, Solheim DM. Risk of clinical pulmonary embolism after joint surgery in patients receiving low-molecular-weight heparin prophylaxis in hospital: a 10-year prospective register of 3,954 patients. *Acta Orthop Scand* 2003;74(3):299-304.

Dahl OE, Pleil AM. Investment in prolonged thromboprophylaxis with dalteparin improves clinical outcomes after hip replacement. *J Thromb Haemost* 2003;1(5):896-906.

Dahl OE, Eriksson BI, Agnelli G et al. Postoperative Melagatran/Ximelagatran for the Prevention of Venous Thromboembolism following Major Elective Orthopaedic Surgery : Effects of Timing of First Dose and Risk Factors for Thromboembolism and Bleeding Complications on Efficacy and Safety. *Clin Drug Investig* 2005;25(1):65-77.

Dahl OE, Ogren M, Agnelli G et al. Assessment of bleeding after concomitant administration of antiplatelet and anticoagulant agents in lower limb arthroplasty. *Pathophysiol Haemost Thromb* 2006;35(6):428-434.

Dahl OE, Quinlan DJ, Bergqvist D, Eikelboom JW. A critical appraisal of bleeding events reported in venous thromboembolism prevention trials of patients undergoing hip and knee arthroplasty. *J Thromb Haemost* 2010;8(9):1966-1975.

Dale C, Gallus A, Wycherley A, Langlois S, Howie D. Prevention of venous thrombosis with minidose warfarin after joint replacement. *BMJ* 1991;303(6796):224.

Dall GF, Ohly NE, Ballantyne JA, Brenkel IJ. The influence of pre-operative factors on the length of in-patient stay following primary total hip replacement for osteoarthritis: A multivariate analysis of 2302 patients. *Journal of Bone and Joint Surgery - Series B* 2009;91(4):434-440.

Dalldorf PG, Perkins FM, Totterman S, Pellegrini VD, Jr. Deep venous thrombosis following total hip arthroplasty. Effects of prolonged postoperative epidural anesthesia. *J Arthroplasty* 1994;9(6):611-616.

Daniel J, Pradhan A, Pradhan C et al. Multimodal thromboprophylaxis following primary hip arthroplasty: the role of adjuvant intermittent pneumatic calf compression. *J Bone Joint Surg Br* 2008;90(5):562-569.

Daniel WW, Coventry MB, Miller WE. Pulmonary complications after total hip arthroplasty with Charnley prosthesis as revealed by chest roentgenograms. *J Bone Joint Surg Am* 1972;54(2):282-283.

Darwish FM, Haddad WH, Aloudat Z, Aboharfil A. Total knee replacement in King Abdullah University Hospital, early results. *Jordan Medical Journal* 2009;43(3):163-170.

Davenport RD. Predicting postprocedure bleeding in liver disease. *Hepatology* 1992;15(4):735-737.

Davidson BL. Out-of-hospital prophylaxis with low-molecular-weight heparin in hip surgery: the Swedish study. *Chest* 1998;114(2 Suppl Evidence):130S-132S.

Davidson BL, Elliott CG, Lensing AW. Low accuracy of color Doppler ultrasound in the detection of proximal leg vein thrombosis in asymptomatic high-risk patients. The RD Heparin Arthroplasty Group. *Ann Intern Med* 1992;117(9):735-738.

Davis CL, Chandler WL. Thromboelastography for the prediction of bleeding after transplant renal biopsy. *J Am Soc Nephrol* 1995;6(4):1250-1255.

Davis FM, Laurenson VG, Gillespie WJ, Wells JE, Foate J, Newman E. Deep vein thrombosis after total hip replacement. A comparison between spinal and general anaesthesia. *J Bone Joint Surg Br* 1989;71(2):181-185.

Dawson D, Hogg K. Best evidence topic reports. Safety of inferior vena cava filters as primary treatment for proximal deep vein thrombosis. *Emerg Med J* 2004;21(3):335-336.

De Gregorio MA, Gamboa P, Gimeno MJ et al. The Gunther Tulip retrievable filter: prolonged temporary filtration by repositioning within the inferior vena cava. *J Vasc Interv Radiol* 2003;14(10):1259-1265.

de Thomasson E, Strauss C, Girard P, Caux I, Guingaud O, Mazel C. Detection of asymptomatic venous thrombosis following hip replacement surgery: Retrospective evaluation of routine screening by duplex ultrasonography based on 286 cases. *HIP International* 1999;9(4):194-199.

De CR, Lanza M, Manca G, Strata GB, Maffei S, Salvatore L. Bleeding time and bleeding: an analysis of the relationship of the bleeding time test with parameters of surgical bleeding. *Blood* 1994;84(10):3363-3370.

De LG, Navarese E, Marino P. Risk profile and benefits from Gp IIb-IIIa inhibitors among patients with ST-segment elevation myocardial infarction treated with primary angioplasty: A meta-regression analysis of randomized trials. *European Heart Journal* 2009;30(22):2705-2713.

de MG, Pagnier F, Clermont N. Study of efficacy of subcutaneous heparin used by two different methods for prevention of postoperative venous thrombosis after hip prosthesis. *Revue de Chirurgie Orthopedique et Reparatrice de l'Appareil Moteur* 1979;65:74-76.

de VL, Mackenzie S, Gibbs H, Leggett D, Neels M, Harper J. Initial Australian experience with the recovery inferior vena cava filter in patients with increased risk of thromboembolic disease. *J Med Imaging Radiat Oncol* 2008;52(2):124-129.

Dearborn JT, Harris WH. Postoperative mortality after total hip arthroplasty. An analysis of deaths after two thousand seven hundred and thirty-six procedures. *J Bone Joint Surg Am* 1998;80(9):1291-1294.

Deehan DJ, Siddique M, Weir DJ, Pinder IM, Lingard EM. Postphlebitic syndrome after total knee arthroplasty: 405 patients examined 2-10 years after surgery. *Acta Orthop Scand* 2001;72(1):42-45.

Deitelzweig SB, Vanscoy GJ, Niccolai CS, Rihn TL. Venous thromboembolism prevention with LMWHs in medical and orthopedic surgery patients. *Ann Pharmacother* 2003;37(3):402-411.

Della Valle CJ, Jazrawi LM, Idjadi J et al. Anticoagulant treatment of thromboembolism with intravenous heparin therapy in the early postoperative period following total joint arthroplasty. *J Bone Joint Surg Am* 2000;82(2):207-212.

Della Valle CJ, Issack PS, Baitner A, Steiger DJ, Fang C, Di Cesare PE. The relationship of the factor V Leiden mutation or the deletion-deletion polymorphism of the angiotensin converting enzyme to postoperative thromboembolic events following total joint arthroplasty. *BMC Musculoskelet Disord* 2001;2:1.

Deo S, Gibbons CL, Emerton M, Simpson AH. Total hip replacement in renal transplant patients. *J Bone Joint Surg Br* 1995;77(2):299-302.

Despotis GJ, Joist JH, Hogue CW, Jr. et al. The impact of heparin concentration and activated clotting time monitoring on blood conservation. A prospective, randomized evaluation in patients undergoing cardiac operation. *J Thorac Cardiovasc Surg* 1995;110(1):46-54.

Despotis GJ, Levine V, Filos KS et al. Evaluation of a new point-of-care test that measures PAF-mediated acceleration of coagulation in cardiac surgical patients. *Anesthesiology* 1996;85(6):1311-1323.

DeWeese FT, Akbari Z, Carline E. Pain control after knee arthroplasty: Intraarticular versus epidural anesthesia. *Clinical Orthopaedics and Related Research* 2001;(392):226-231.

Dhiwakar M, Khan NA, McClymont LG. Surgical resection of cutaneous head and neck lesions: does aspirin use increase hemorrhagic risk? *Arch Otolaryngol Head Neck Surg* 2006;132(11):1237-1241.

Dhupar S, Iorio R, Healy WL, Dhimitri K. A comparison of discharge and two-week duplex ultrasound screening protocols for deep venous thrombosis detection following primary total joint arthroplasty. *J Bone Joint Surg Am* 2006;88(11):2380-2385.

Diamantopoulos A, Lees M, Wells PS, Forster F, Ananthapavan J, McDonald H. Costeffectiveness of rivaroxaban versus enoxaparin for the prevention of postsurgical venous thromboembolism in Canada. *Thromb Haemost* 2010;104(4):760-770.

DiGiovanni CW, Restrepo A, Gonzalez Della Valle AG et al. The safety and efficacy of intraoperative heparin in total hip arthroplasty. *Clin Orthop Relat Res* 2000;(379):178-185.

Dixon AJ, Dixon MP, Dixon JB. Bleeding complications in skin cancer surgery are associated with warfarin but not aspirin therapy. *Br J Surg* 2007;94(11):1356-1360.

Donat R, Mancey-Jones B. Incidence of thromboembolism after transurethral resection of the prostate (TURP)--a study on TED stocking prophylaxis and literature review. *Scand J Urol Nephrol* 2002;36(2):119-123.

Donatelli F, Vavassori A, Bonfanti S et al. Epidural anesthesia and analgesia decrease the postoperative incidence of insulin resistance in preoperative insulin-resistant subjects only. *Anesth Analg* 2007;104(6):1587-93, table.

Donohoe CL, Sayana MK, Thakral R, Niall DM. Aspirin for lower limb arthroplasty thromboprophylaxis: review of international guidelines. *Ir J Med Sci* 2010.

Dorr LD, Gendelman V, Maheshwari AV, Boutary M, Wan Z, Long WT. Multimodal thromboprophylaxis for total hip and knee arthroplasty based on risk assessment. *J Bone Joint Surg Am* 2007;89(12):2648-2657.

Douketis JD, Eikelboom JW, Quinlan DJ, Willan AR, Crowther MA. Short-duration prophylaxis against venous thromboembolism after total hip or knee replacement: a metaanalysis of prospective studies investigating symptomatic outcomes. *Arch Intern Med* 2002;162(13):1465-1471. Douketis JD, Kinnon K, Crowther MA. Anticoagulant effect at the time of epidural catheter removal in patients receiving twice-daily or once-daily low-molecular-weight heparin and continuous epidural analgesia after orthopedic surgery. *Thrombosis and Haemostasis* 2002;88(1):37-40.

Dovrish Z, Hadary R, Blickstein D, Shilo L, Ellis MH. Retrospective analysis of the use of inferior vena cava filters in routine hospital practice. *Postgrad Med J* 2006;82(964):150-153.

Dowling NF, Austin H, Dilley A, Whitsett C, Evatt BL, Hooper WC. The epidemiology of venous thromboembolism in Caucasians and African-Americans: the GATE Study. *J Thromb Haemost* 2003;1(1):80-87.

Dowsey MM, Choong PF. Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty. *Clin Orthop Relat Res* 2008;466(1):153-158.

Dowsey MM, Choong PF. Obese diabetic patients are at substantial risk for deep infection after primary TKA. *Clin Orthop Relat Res* 2009;467(6):1577-1581.

Dranitsaris G, Kahn SR, Stumpo C et al. Pharmacoeconomic analysis of fondaparinux versus enoxaparin for the prevention of thromboembolic events in orthopedic surgery patients. *Am J Cardiovasc Drugs* 2004;4(5):325-333.

Dranitsaris G, Jelincic V, Choe Y. Meta regression analysis to indirectly compare dalteparin to enoxaparin for the prevention of venous thromboembolic events following total hip replacement. *Thromb J* 2011;9(1):3.

Duarte LT, Beraldo PS, Saraiva RA. Epidural lumbar block or lumbar plexus block combined with general anesthesia: efficacy and hemodynamic effects on total hip arthroplasty. *Rev Bras Anestesiol* 2009;59(6):649-664.

Duarte LT, Paes FC, Fernandes MC, Saraiva RA. Posterior lumbar plexus block in postoperative analgesia for total hip arthroplasty: a comparative study between 0.5% Bupivacaine with Epinephrine and 0.5% Ropivacaine. *Rev Bras Anestesiol* 2009;59(3):273-285.

Dushey CH, Bornstein LJ, Alexiades MM, Westrich GH. Short-Term Coagulation Complications Following Total Knee Arthroplasty A Comparison of Patient-Reported and Surgeon-Verified Complication Rates. *J Arthroplasty* 2011.

Edmonds MJ, Crichton TJ, Runciman WB, Pradhan M. Evidence-based risk factors for postoperative deep vein thrombosis. *ANZ J Surg* 2004;74(12):1082-1097.

Eggli S, Huckell CB, Ganz R. Bilateral total hip arthroplasty: one stage versus two stage procedure. *Clin Orthop Relat Res* 1996;(328):108-118.

Eikelboom JW, Quinlan DJ, Douketis JD. Extended-duration prophylaxis against venous thromboembolism after total hip or knee replacement: a meta-analysis of the randomised trials. *Lancet* 2001;358(9275):9-15.

Eikelboom JW, Mazzarol A, Quinlan DJ et al. Thromboprophylaxis practice patterns in two Western Australian teaching hospitals. *Haematologica* 2004;89(5):586-593.

Eikelboom JW. Effect of fondaparinux 2.5 mg once daily on mortality: A meta-analysis of phase III randomized trials of venous thromboembolism prevention. *European Heart Journal, Supplement* 2008;10(SUPPL. C):C8-C13.

Einstein MH, Pritts EA, Hartenbach EM. Venous thromboembolism prevention in gynecologic cancer surgery: a systematic review. *Gynecol Oncol* 2007;105(3):813-819.

Eisele R, Kinzl L, Koelsch T. Rapid-inflation intermittent pneumatic compression for prevention of deep venous thrombosis. *J Bone Joint Surg Am* 2007;89(5):1050-1056.

Elliott CG, Suchyta M, Rose SC et al. Duplex ultrasonography for the detection of deep vein thrombi after total hip or knee arthroplasty. *Angiology* 1993;44(1):26-33.

Ellis SG, Bhatt D, Kapadia S, Lee D, Yen M, Whitlow PL. Correlates and outcomes of retroperitoneal hemorrhage complicating percutaneous coronary intervention. *Catheter Cardiovasc Interv* 2006;67(4):541-545.

Emerson RH, Jr., Cross R, Head WC. Prophylactic and early therapeutic use of the Greenfield filter in hip and knee joint arthroplasty. *J Arthroplasty* 1991;6(2):129-135.

England SP, Stern SH, Insall JN, Windsor RE. Total knee arthroplasty in diabetes mellitus. *Clin Orthop Relat Res* 1990;(260):130-134.

Enyart JJ, Jones RJ. Low-dose warfarin for prevention of symptomatic thromboembolism after orthopedic surgery. *Ann Pharmacother* 2005;39(6):1002-1007.

Ereth MH, Nuttall GA, Klindworth JT et al. Does the platelet-activated clotting test (HemoSTATUS) predict blood loss and platelet dysfunction associated with cardiopulmonary bypass? *Anesth Analg* 1997;85(2):259-264.

Ereth MH, Nuttall GA, Santrach PJ, Klindworth JT, Oliver WC, Jr., Schaff HV. The relation between the platelet-activated clotting test (HemoSTATUS) and blood loss after cardiopulmonary bypass. *Anesthesiology* 1998;88(4):962-969.

Ereth MH, Nuttall GA, Ericson DG et al. Platelet glass bead retention predicts bleeding after cardiac surgery. *J Cardiothorac Vasc Anesth* 2001;15(1):49-54.

Eriksson BI, Zachrisson BE, Teger-Nilsson AC, Risberg B. Thrombosis prophylaxis with low molecular weight heparin in total hip replacement. *Br J Surg* 1988;75(11):1053-1057.

Eriksson BI, Eriksson E, Risberg B. Impaired fibrinolysis and postoperative thromboembolism in orthopedic patients. *Thromb Res* 1991;62(1-2):55-64.

Eriksson BI, Kalebo P, Ekman S, Lindbratt S, Kerry R, Close P. Direct thrombin inhibition with Rec-hirudin CGP 39393 as prophylaxis of thromboembolic complications after total hip replacement. *Thromb Haemost* 1994;72(2):227-231.

Eriksson BI, Bergqvist D, Kalebo P et al. Ximelagatran and melagatran compared with dalteparin for prevention of venous thromboembolism after total hip or knee replacement: the METHRO II randomised trial. *Lancet* 2002;360(9344):1441-1447.

Eriksson BI, Arfwidsson AC, Frison L et al. A dose-ranging study of the oral direct thrombin inhibitor, ximelagatran, and its subcutaneous form, melagatran, compared with dalteparin in the prophylaxis of thromboembolism after hip or knee replacement: METHRO I. MElagatran for THRombin inhibition in Orthopaedic surgery. *Thromb Haemost* 2002;87(2):231-237.

Eriksson BI, Agnelli G, Cohen AT et al. The direct thrombin inhibitor melagatran followed by oral ximelagatran compared with enoxaparin for the prevention of venous thromboembolism after total hip or knee replacement: the EXPRESS study. *J Thromb Haemost* 2003;1(12):2490-2496.

Eriksson BI, Agnelli G, Cohen AT et al. Direct thrombin inhibitor melagatran followed by oral ximelagatran in comparison with enoxaparin for prevention of venous thromboembolism after total hip or knee replacement. *Thromb Haemost* 2003;89(2):288-296.

Eriksson BI, Dahl OE, Ahnfelt L et al. Dose escalating safety study of a new oral direct thrombin inhibitor, dabigatran etexilate, in patients undergoing total hip replacement: BISTRO I. *J Thromb Haemost* 2004;2(9):1573-1580.

Eriksson BI, Agnelli G, Cohen A et al. Significantly lower need for blood transfusions associated with post-operatively initiated subcutaneous melagatran/oral ximelagatran compared with enoxaparin. *Thromb Haemost* 2004;92(2):428-430.

Eriksson BI, Kakkar AK, Turpie AG et al. Oral rivaroxaban for the prevention of symptomatic venous thromboembolism after elective hip and knee replacement. *J Bone Joint Surg Br* 2009;91(5):636-644.

Escalante A, Beardmore TD. Risk factors for early wound complications after orthopedic surgery for rheumatoid arthritis. *Journal of Rheumatology* 1995;22(10):1844-1851.

Eskandari MK, Sugimoto H, Richardson T, Webster MW, Makaroun MS. Is color-flow duplex a good diagnostic test for detection of isolated calf vein thrombosis in high-risk patients? *Angiology* 2000;51(9):705-710.

Evarts CM, Feil EJ. Prevention of thromboembolic disease after elective surgery of the hip. *J Bone Joint Surg Am* 1971;53(7):1271-1280.

Evarts CM, Alfidi RJ. Thromboembolism after total hip reconstruction. Failure of low doses of heparin in prevention. *JAMA* 1973;225(5):515-516.

Exaire JE, Tcheng JE, Kereiakes DJ, Kleiman NS, Applegate RJ, Moliterno DJ. Closure devices and vascular complications among percutaneous coronary intervention patients receiving enoxaparin, glycoprotein IIb/IIIa inhibitors, and clopidogrel. *Catheter Cardiovasc Interv* 2005;64(3):369-372.

Eyb R, Knahr K. The effect of prophylaxis for thrombosis on heterotopic ossification following total hip joint replacement. *Arch Orthop Trauma Surg* 1983;102(2):114-117.

Farag E, Dilger J, Brooks P, Tetzlaff JE. Epidural analgesia improves early rehabilitation after total knee replacement. *J Clin Anesth* 2005;17(4):281-285.

Faris PM, Spence RK, Larholt KM, Sampson AR, Frei D. The predictive power of baseline hemoglobin for transfusion risk in surgery patients. *Orthopedics* 1999;22(1 Suppl):s135-s140.

Farouque HM, Tremmel JA, Raissi SF et al. Risk factors for the development of retroperitoneal hematoma after percutaneous coronary intervention in the era of glycoprotein IIb/IIIa inhibitors and vascular closure devices. *J Am Coll Cardiol* 2005;45(3):363-368.

Fattorutto M, Pradier O, Schmartz D, Ickx B, Barvais L. Does the platelet function analyser (PFA-100) predict blood loss after cardiopulmonary bypass? *Br J Anaesth* 2003;90(5):692-693.

Feit F, Voeltz MD, Attubato MJ et al. Predictors and Impact of Major Hemorrhage on Mortality Following Percutaneous Coronary Intervention from the REPLACE-2 Trial. *American Journal of Cardiology* 2007;100(9):1364-1369.

Felcher AH, Mularski RA, Mosen DM, Kimes TM, DeLoughery TG, Laxson SE. Incidence and risk factors for venous thromboembolic disease in podiatric surgery. *Chest* 2009;135(4):917-922.

Fender D, Harper WM, Thompson JR, Gregg PJ. Mortality and fatal pulmonary embolism after primary total hip replacement. Results from a regional hip register. *J Bone Joint Surg Br* 1997;79(6):896-899.

Ferraris VA, Ferraris SP, Lough FC, Berry WR. Preoperative aspirin ingestion increases operative blood loss after coronary artery bypass grafting. *Ann Thorac Surg* 1988;45(1):71-74.

Ferraris VA, Ferraris SP, Joseph O, Wehner P, Mentzer RM, Jr. Aspirin and postoperative bleeding after coronary artery bypass grafting. *Ann Surg* 2002;235(6):820-827.

Ferree BA, Wright AM. Deep venous thrombosis following posterior lumbar spinal surgery. *Spine (Phila Pa 1976)* 1993;18(8):1079-1082.

Ferreira LE, Fatima J, Baron TH. Clinically significant delayed postsphincterotomy bleeding: a twelve year single center experience. *Minerva Gastroenterol Dietol* 2007;53(3):215-223.

Figgie MP, Goldberg VM, Figgie HE, III, Heiple KG, Sobel M. Total knee arthroplasty for the treatment of chronic hemophilic arthropathy. *Clin Orthop Relat Res* 1989;(248):98-107.

Figus E, Gnudi S, Cagnano R. Thromboembolism in total hip replacement. *Ital J Orthop Traumatol* 1983;9(1):67-70.

Filsoufi F, Rahmanian PB, Castillo JG, Kahn RA, Fischer G, Adams DH. Clopidogrel treatment before coronary artery bypass graft surgery increases postoperative morbidity and blood product requirements. *J Cardiothorac Vasc Anesth* 2008;22(1):60-66.

Finsen V. Duration of thrombosis prophylaxis in orthopaedic surgery. *Ann Chir Gynaecol* 2001;90(2):105-108.

Fisher WD, Eriksson BI, Bauer KA et al. Rivaroxaban for thromboprophylaxis after orthopaedic surgery: pooled analysis of two studies. *Thromb Haemost* 2007;97(6):931-937.

Fitzgerald SJ, McAndrew CM, Kraay MJ, Goldberg VM. Incidence of postthrombotic syndrome in patients undergoing primary total hip arthroplasty for osteoarthritis. *Clin Orthop Relat Res* 2011;469(2):530-534.

Flicoteaux H, Kher A, Jean N et al. Comparision of low dose heparin and low dose heparin combined with aspirin in prevention of deep vein thrombosis after total hip replacement. *Pathol Biol (Paris)* 1977;25 Suppl:55-58.

Flinn WR, Sandager GP, Silva MB, Jr., Benjamin ME, Cerullo LJ, Taylor M. Prospective surveillance for perioperative venous thrombosis. Experience in 2643 patients. *Arch Surg* 1996;131(5):472-480.

Flordal PA, Neander G. Blood loss in total hip replacement. A retrospective study. *Arch Orthop Trauma Surg* 1991;111(1):34-38.

Fong YK, Ruban P, Yeo SJ et al. Use of low molecular weight heparin for prevention of deep vein thrombosis in total knee arthroplasty--a study of its efficacy in an Asian population. *Ann Acad Med Singapore* 2000;29(4):439-441.

Foss NB, Kehlet H. Hidden blood loss after surgery for hip fracture. *J Bone Joint Surg Br* 2006;88(8):1053-1059.

Fotland SS, Reikvam H, Hervig T, Seghatchian J. Does the preoperative iron status predict transfusion requirement of orthopedic patients? *Transfusion and Apheresis Science* 2009;40(3):213-217.

Francis CW, Marder VJ, Evarts CM, Yaukoolbodi S. Two-step warfarin therapy. Prevention of postoperative venous thrombosis without excessive bleeding. *JAMA* 1983;249(3):374-378.

Francis CW, Ricotta JJ, Evarts CM, Marder VJ. Long-term clinical observations and venous functional abnormalities after asymptomatic venous thrombosis following total hip or knee arthroplasty. *Clin Orthop Relat Res* 1988;(232):271-278.

Francis CW, Pellegrini VD, Jr., Harris CM, Marder VJ. Antithrombin III prophylaxis of venous thromboembolic disease after total hip or total knee replacement. *Am J Med* 1989;87(3B):61S-66S.

Francis CW, Pellegrini VD, Jr., Marder VJ et al. Prevention of venous thrombosis after total hip arthroplasty. Antithrombin III and low-dose heparin compared with dextran 40. *J Bone Joint Surg Am* 1989;71(3):327-335.

Francis CW, Pellegrini VD, Jr., Stulberg BN, Miller ML, Totterman S, Marder VJ. Prevention of venous thrombosis after total knee arthroplasty. Comparison of antithrombin III and low-dose heparin with dextran. *J Bone Joint Surg Am* 1990;72(7):976-982.

Francis CW, Davidson BL, Berkowitz SD et al. Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty. A randomized, double-blind trial. *Ann Intern Med* 2002;137(8):648-655.

Francis CW, Berkowitz SD, Comp PC et al. Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement. *N Engl J Med* 2003;349(18):1703-1712.

Frassanito L, Vergari A, Messina A, Pitoni S, Puglisi C, Chierichini A. Anaesthesia for total knee arthroplasty: Efficacy of single-injection or continuous lumbar plexus associated with sciatic nerve blocks - A randomized controlled study. *European Review for Medical and Pharmacological Sciences* 2009;13(5):375-382.

Fredin H, Nilsson B, Rosberg B, Tengborn L. Pre- and postoperative levels of antithrombin III with special reference to thromboembolism after total hip replacement. *Thromb Haemost* 1983;49(3):158-161.

Fredin H, Gustafson C, Rosberg B. Hypotensive anesthesia, thromboprophylaxis and postoperative thromboembolism in total hip arthroplasty. *Acta Anaesthesiol Scand* 1984;28(5):503-507.

Fredin H, Rosberg B. Anaesthetic techniques and thromboembolism in total hip arthroplasty. *Eur J Anaesthesiol* 1986;3(4):273-281.

Fredin H, Bergqvist D, Cederholm C, Lindblad B, Nyman U. Thromboprophylaxis in hip arthroplasty. Dextran with graded compression or preoperative dextran compared in 150 patients. *Acta Orthop Scand* 1989;60(6):678-681.

Fredin HO, Nillius AS. Fatal pulmonary embolism after total hip replacement. *Acta Orthop Scand* 1982;53(3):407-411.

Fredin HO, Rosberg B, Arborelius M, Jr., Nylander G. On thrombo-embolism after total hip replacement in epidural analgesia: a controlled study of dextran 70 and low-dose heparin combined with dihydroergotamine. *Br J Surg* 1984;71(1):58-60.

Freedman KB, Brookenthal KR, Fitzgerald RH, Jr., Williams S, Lonner JH. A metaanalysis of thromboembolic prophylaxis following elective total hip arthroplasty. *J Bone Joint Surg Am* 2000;82-A(7):929-938.

Freick H, Haas S. Prevention of deep vein thrombosis by low-molecular-weight heparin and dihydroergotamine in patients undergoing total hip replacement. *Thromb Res* 1991;63(1):133-143.

Friedman JA, Piepgras DG, Duke DA et al. Remote cerebellar hemorrhage after supratentorial surgery. *Neurosurgery* 2001;49(6):1327-1340.

Friedman RJ, Dahl OE, Rosencher N et al. Dabigatran versus enoxaparin for prevention of venous thromboembolism after hip or knee arthroplasty: a pooled analysis of three trials. *Thromb Res* 2010;126(3):175-182.

Friis E, Horby J, Sorensen LT et al. Thromboembolic prophylaxis as a risk factor for postoperative complications after breast cancer surgery. *World J Surg* 2004;28(6):540-543.

Froimson MI, Murray TG, Fazekas AF. Venous thromboembolic disease reduction with a portable pneumatic compression device. *J Arthroplasty* 2009;24(2):310-316.

Frosch P, Decking J, Theis C, Drees P, Schoellner C, Eckardt A. Complications after total knee arthroplasty: A comprehensive report. *Acta Orthopaedica Belgica* 2004;70(6):565-569.

Fuchs S, Kornowski R, Teplitsky I et al. Major bleeding complicating contemporary primary percutaneous coronary interventions-incidence, predictors, and prognostic implications. *Cardiovasc Revasc Med* 2009;10(2):88-93.

Fujisawa M, Naito M, Asayama I, Kambe T, Koga K. Effect of calf-thigh intermittent pneumatic compression device after total hip arthroplasty: comparative analysis with plantar compression on the effectiveness of reducing thrombogenesis and leg swelling. *J Orthop Sci* 2003;8(6):807-811.

Fullen WD, Miller EH, Steele WF, McDonough JJ. Prophylactic vena caval interruption in hip fractures. *J Trauma* 1973;13(5):403-410.

Gabriel P, Mazoit X, Ecoffey C. Relationship between clinical history, coagulation tests, and perioperative bleeding during tonsillectomies in pediatrics. *J Clin Anesth* 2000;12(4):288-291.

Galanaud JP, Sevestre-Pietri MA, Bosson JL et al. Comparative study on risk factors and early outcome of symptomatic distal versus proximal deep vein thrombosis: results from the OPTIMEV study. *Thromb Haemost* 2009;102(3):493-500.

Gallay S, Waddell JP, Cardella P, Morton J. A short course of low-molecular-weight heparin to prevent deep venous thrombosis after elective total hip replacement. *Can J Surg* 1997;40(2):119-123.

Gallus A, Raman K, Darby T. Venous thrombosis after elective hip replacement--the influence of preventive intermittent calf compression and of surgical technique. *Br J Surg* 1983;70(1):17-19.

Gallus AS, Hirsh J, Tutle RJ et al. Small subcutaneous doses of heparin in prevention of venous thrombosis. *N Engl J Med* 1973;288(11):545-551.

Gallus AS, Cade JF, Mills KW, Murphy W. Apparent lack of synergism between heparin and dihydroergotamine in prevention of deep vein thrombosis after elective hip replacement: a randomised double-blind trial reported in conjunction with an overview of previous results. *Thromb Haemost* 1992;68(3):238-244.

Gammie JS, Zenati M, Kormos RL et al. Abciximab and excessive bleeding in patients undergoing emergency cardiac operations. *Ann Thorac Surg* 1998;65(2):465-469.

Ganapathy S, Wasserman RA, Watson JT et al. Modified continuous femoral three-inone block for postoperative pain after total knee arthroplasty. *Anesth Analg* 1999;89(5):1197-1202.

Gangireddy C, Rectenwald JR, Upchurch GR et al. Risk factors and clinical impact of postoperative symptomatic venous thromboembolism. *J Vasc Surg* 2007;45(2):335-341.

Garino JP, Lotke PA, Kitziger KJ, Steinberg ME. Deep venous thrombosis after total joint arthroplasty. The role of compression ultrasonography and the importance of the experience of the technician. *J Bone Joint Surg Am* 1996;78(9):1359-1365.

Gelb AB, Roth RI, Levin J et al. Changes in blood coagulation during and following cardiopulmonary bypass: lack of correlation with clinical bleeding. *Am J Clin Pathol* 1996;106(1):87-99.

Gerber DE, Segal JB, Levy MY, Kane J, Jones RJ, Streiff MB. The incidence of and risk factors for venous thromboembolism (VTE) and bleeding among 1514 patients undergoing hematopoietic stem cell transplantation: implications for VTE prevention. *Blood* 2008;112(3):504-510.

Gerkens S, Beguin C, Crott R, Closon MC, Horsmans Y. Assessing the quality of pharmacological treatments from administrative databases: the case of low-molecular-weight heparin after major orthopaedic surgery. *J Eval Clin Pract* 2008;14(4):585-594.

Gerlach R, Raabe A, Zimmermann M, Siegemund A, Seifert V. Factor XIII deficiency and postoperative hemorrhage after neurosurgical procedures. *Surg Neurol* 2000;54(3):260-264.

Gerrah R, Brill A, Tshori S, Lubetsky A, Merin G, Varon D. Using cone and plate(let) analyzer to predict bleeding in cardiac surgery. *Asian Cardiovasc Thorac Ann* 2006;14(4):310-315.

Gewirtz AS, Miller ML, Keys TF. The clinical usefulness of the preoperative bleeding time. *Arch Pathol Lab Med* 1996;120(4):353-356.

Giger R, Landis BN, Dulguerov P. Hemorrhage risk after quinsy tonsillectomy. *Otolaryngol Head Neck Surg* 2005;133(5):729-734.

Giles E, Walton-Salih E, Shah N, Hinds R. Routine coagulation screening in children undergoing gastrointestinal endoscopy does not predict those at risk of bleeding. *Endoscopy* 2006;38(5):508-510.

Gillinov AM, Davis EA, Alberg AJ, Rykiel M, Gardner TJ, Cameron DE. Pulmonary embolism in the cardiac surgical patient. *Ann Thorac Surg* 1992;53(6):988-991.

Ginsberg JS, Caco CC, Brill-Edwards PA et al. Venous thrombosis in patients who have undergone major hip or knee surgery: detection with compression US and impedance plethysmography. *Radiology* 1991;181(3):651-654.

Ginsberg JS, Nurmohamed MT, Gent M et al. Use of Hirulog in the prevention of venous thrombosis after major hip or knee surgery. *Circulation* 1994;90(5):2385-2389.

Ginsberg JS, Turkstra F, Buller HR, MacKinnon B, Magier D, Hirsh J. Postthrombotic syndrome after hip or knee arthroplasty: a cross-sectional study. *Arch Intern Med* 2000;160(5):669-672.

Given MF, McDonald BC, Brookfield P et al. Retrievable Gunther Tulip inferior vena cava filter: experience in 317 patients. *J Med Imaging Radiat Oncol* 2008;52(5):452-457.

Gnudi S, Picci P, Figus E. Thrombo-embolism as a complication of prosthetic replacement operations of the hip: prophylaxis with heparin at low doses. *Ital J Orthop Traumatol* 1980;6(1):147-151.

Goddard NJ, Mann HA, Lee CA. Total knee replacement in patients with end-stage haemophilic arthropathy: 25-year results. *J Bone Joint Surg Br* 2010;92(8):1085-1089.

Goldberg VM, Heiple KG, Ratnoff OD, Kurczynski E, Arvan G. Total knee arthroplasty in classic hemophilia. *J Bone Joint Surg Am* 1981;63(5):695-701.

Goldhaber SZ, Hirsch DR, MacDougall RC, Polak JF, Creager MA, Cohn LH. Prevention of venous thrombosis after coronary artery bypass surgery (a randomized trial comparing two mechanical prophylaxis strategies). *Am J Cardiol* 1995;76(14):993-996.

Goldstein WM, Jimenez ML, Bailie DS, Wall R, Branson J. Safety of a clinical surveillance protocol with 3- and 6-week warfarin prophylaxis after total joint arthroplasty. *Orthopedics* 2001;24(7):651-654.

Gomez-Outes A, Berto P, Prandoni P. Cost-effecttiveness of bemiparin in the prevention and treatment of venous thromboembolism. *Expert Review of Pharmacoeconomics and Outcomes Research* 2006;6(3):249-259.

Gonano C, Leitgeb U, Sitzwohl C, Ihra G, Weinstabl C, Kettner SC. Spinal versus general anesthesia for orthopedic surgery: anesthesia drug and supply costs. *Anesth Analg* 2006;102(2):524-529.

Gonzalez D, V, Serota A, Go G et al. Venous thromboembolism is rare with a multimodal prophylaxis protocol after total hip arthroplasty. *Clin Orthop Relat Res* 2006;444:146-153.

Gonzalez QH, Tishler DS, Plata-Munoz JJ et al. Incidence of clinically evident deep venous thrombosis after laparoscopic Roux-en-Y gastric bypass. *Surg Endosc* 2004;18(7):1082-1084.

Goodacre S, Sutton AJ, Sampson FC. Meta-analysis: The value of clinical assessment in the diagnosis of deep venous thrombosis. *Ann Intern Med* 2005;143(2):129-139.

Gosin JS, Graham AM, Ciocca RG, Hammond JS. Efficacy of prophylactic vena cava filters in high-risk trauma patients. *Annals of Vascular Surgery* 1997;11(1):100-105.

Goss TP, Stinchfield FE, Cosgriff SW. The efficacy of low-dose heparin--warfarin anticoagulation prophylaxis after total hip replacement arthroplasty. *Clin Orthop Relat Res* 1979;(141):134-137.

Grabowska-Gawel A, Gawel K, Hagner W, Polanska M, Bilinski PJ. Combined subarachnoid and epidural anaesthesia for endoprosthetoplasty of the knee joint. *Ortop Traumatol Rehabil* 2003;5(5):673-677.

Grady-Benson JC, Oishi CS, Hanson PB, Colwell CW, Jr., Otis SM, Walker RH. Postoperative surveillance for deep venous thrombosis with duplex ultrasonography after total knee arthroplasty. *J Bone Joint Surg Am* 1994;76(11):1649-1657.

Grady-Benson JC, Oishi CS, Hanson PB, Colwell CW, Jr., Otis SM, Walker RH. Routine postoperative duplex ultrasonography screening and monitoring for the detection of deep vein thrombosis. A survey of 110 total hip arthroplasties. *Clin Orthop Relat Res* 1994;(307):130-141.

Grande WJ, Trerotola SO, Reilly PM et al. Experience with the recovery filter as a retrievable inferior vena cava filter. *J Vasc Interv Radiol* 2005;16(9):1189-1193.

Gray A, Walmsley PJ, Moran M, Brenkel IJ. Outcome of hip arthroplasty in octogenarians compared with younger patients. *HIP International* 2005;15(4):206-211.

Greenfield LJ, Proctor MC, Cho KJ et al. Extended evaluation of the titanium Greenfield vena caval filter. *J Vasc Surg* 1994;20(3):458-464.

Gregory PC, Lennox D, Kuhlemeier KV, Bennett E, Czajkowski D. Prevalence of venous thromboembolism in hip and knee arthroplasty patients admitted for comprehensive inpatient rehabilitation. *Vascular Disease Prevention* 2005;2(4):305-309.

Grella RJ. Continuous passive motion following total knee arthroplasty: a useful adjunct to early mobilisation? (Provisional abstract). *Physical Therapy Reviews* 2008;13:269-279.

Grosflam JM, Wright EA, Cleary PD, Katz JN. Predictors of blood loss during total hip replacement surgery. *Arthritis Care Res* 1995;8(3):167-173.

Gruber UF. Dextran and the prevention of postoperative thromboembolic complications. *Surg Clin North Am* 1975;55(3):679-696.

Grubitzsch H, Wollert HG, Eckel L. Emergency coronary artery bypass grafting: does excessive preoperative anticoagulation increase bleeding complications and transfusion requirements? *Cardiovasc Surg* 2001;9(5):510-516.

Grujic D, Martin D. Perioperative clopidogrel is seven days enough? *Am Surg* 2009;75(10):909-913.

Guay J. The effect of neuraxial blocks on surgical blood loss and blood transfusion requirements: a meta-analysis. *J Clin Anesth* 2006;18(2):124-128.

Gulbins H, Malkoc A, Ennker IC, Ennker J. Preoperative platelet inhibition with ASA does not influence postoperative blood loss following coronary artery bypass grafting. *Thorac Cardiovasc Surg* 2009;57(1):18-21.

Gunningberg L, Persson C, Akerfeldt T, Stridsberg M, Swenne CL. Pre- and postoperative nutritional status and predictors for surgical-wound infections in elective orthopaedic and thoracic patients. *e-SPEN* 2008;3(3):e93-e101.

Guyer RD, Booth RE, Jr., Rothman RH. The detection and prevention of pulmonary embolism in total hip replacement. A study comparing aspirin and low-dose warfarin. *J Bone Joint Surg Am* 1982;64(7):1040-1044.

Haas S, Stemberger A, Fritsche HM et al. Prophylaxis of deep vein thrombosis in high risk patients undergoing total hip replacement with low molecular weight heparin plus dihydroergotamine. *Arzneimittelforschung* 1987;37(7):839-843.

Haas S, Breyer HG, Bacher HP et al. Prevention of major venous thromboembolism following total hip or knee replacement: a randomized comparison of low-molecular-weight heparin with unfractionated heparin (ECHOS Trial). *Int Angiol* 2006;25(4):335-342.

Haas S, Kubitza D, Perzborn E. Rivaroxaban, a new oral anticoagulant for the prevention of venous thromboembolism after elective hip or knee replacement surgery. *EJHP Practice* 2010;16(5):29-36.

Haas SB, Tribus CB, Insall JN, Becker MW, Windsor RE. The significance of calf thrombi after total knee arthroplasty. *J Bone Joint Surg Br* 1992;74(6):799-802.

Haas SB. Effects of epidural anesthesia on incidence of venous thromboembolism following joint replacement. *Orthopedics* 1994;17 Suppl:18-20.

Habermann B, Eberhardt C, Hovy L, Zichner L, Scharrer I, Kurth AA. Total hip replacement in patients with severe bleeding disorders. A 30 years single center experience. *Int Orthop* 2007;31(1):17-21.

Habermann B, Eberhardt C, Kurth AA. Total joint replacement in HIV positive patients. *Journal of Infection* 2008;57(1):41-46.

Haddad FS, Kerry RM, McEwen JA et al. Unanticipated variations between expected and delivered pneumatic compression therapy after elective hip surgery: a possible source of variation in reported patient outcomes. *J Arthroplasty* 2001;16(1):37-46.

Haentjens P, De GK, Annemans L. Prolonged enoxaparin therapy to prevent venous thromboembolism after primary hip or knee replacement. A cost-utility analysis. *Arch Orthop Trauma Surg* 2004;124(8):507-517.

Hall TS, Sines JC, Spotnitz AJ. Hemorrhage related reexploration following open heart surgery: the impact of pre-operative and post-operative coagulation testing. *Cardiovasc Surg* 2002;10(2):146-153.

Halliwell OT, Yadegafar G, Lane C, Dewbury KC. Transrectal ultrasound-guided biopsy of the prostate: aspirin increases the incidence of minor bleeding complications. *Clin Radiol* 2008;63(5):557-561.

Halmi D, Kolesnikov E. Preoperative placement of retreivable inferior vena cava filters in bariatric surgery. *Surg Obes Relat Dis* 2007;3(6):602-605.

Halonen P, Linko K, Wirtavuori K, Hastbacka J, Ikkala E. Evaluation of risk factors in intraoperative bleeding tendency. *Ann Chir Gynaecol* 1987;76(6):298-302.

Hamilton H, Jamieson J. Deep infection in total hip arthroplasty. *Can J Surg* 2008;51(2):111-117.

Hamulyak K, Lensing AW, van der Meer J, Smid WM, van OA, Hoek JA. Subcutaneous low-molecular weight heparin or oral anticoagulants for the prevention of deep-vein thrombosis in elective hip and knee replacement? Fraxiparine Oral Anticoagulant Study Group. *Thromb Haemost* 1995;74(6):1428-1431.

Handoll HH, Farrar MJ, McBirnie J, Tytherleigh-Strong G, Milne AA, Gillespie WJ. Heparin, low molecular weight heparin and physical methods for preventing deep vein thrombosis and pulmonary embolism following surgery for hip fractures. *Cochrane Database Syst Rev* 2002;(4):CD000305.

Hansson PO, Sorbo J, Eriksson H. Recurrent venous thromboembolism after deep vein thrombosis: incidence and risk factors. *Arch Intern Med* 2000;160(6):769-774.

Happe LE, Farrelly EM, Stanford RH, Sarnes MW. Cost and occurrence of thrombocytopenia in patients receiving venous thromboembolism prophylaxis following major orthopaedic surgeries. *J Thromb Thrombolysis* 2008;26(2):125-131.

Harris WH, Salzman EW, DeSanctis RW. The prevention of thromboembolic disease by prophylactic anticoagulation. A controlled study in elective hip surgery. *J Bone Joint Surg Am* 1967;49(1):81-89.

Harris WH, Salzman EW, DeSanctis RW, Coutts RD. Prevention of venous thromboembolism following total hip replacement. Warfarin vs dextran 40. *JAMA* 1972;220(10):1319-1322.

Hartford JM, Jeffreys B, Goodman SB. Preoperative duplex ultrasonography evaluation for deep vein thrombosis in hip and knee arthroplasty patients. *Am J Orthop (Belle Mead NJ)* 1998;27(2):123-127.

Hartman JT, Pugh JL, Smith RD, Robertson WW, Jr., Yost RP, Janssen HF. Cyclic sequential compression of the lower limb in prevention of deep venous thrombosis. *J Bone Joint Surg Am* 1982;64(7):1059-1062.

Hartman JT, Pugh JL, Smith RD, Robertson WW, Jr., Yost RP, Janssen HF. Cyclic sequential compression of the lower limb in prevention of deep venous thrombosis. *J Bone Joint Surg Am* 1982;64(7):1059-1062.

Hashmi FR, Barlas K, Mann CF, Howell FR. Staged bilateral hip or knee arthroplasties. J Orthop Surg (Hong Kong) 2007;15(2):159-162.

Hasley PB, Lave JR, Hanusa BH et al. Variation in the use of red blood cell transfusions. A study of four common medical and surgical conditions. *Med Care* 1995;33(11):1145-1160.

Hatzidakis AM, Mendlick RM, McKillip T, Reddy RL, Garvin KL. Preoperative autologous donation for total joint arthroplasty. An analysis of risk factors for allogenic transfusion. *J Bone Joint Surg Am* 2000;82(1):89-100.

Hay A, Olsen KR, Nicholson DH. Bleeding complications in thrombocytopenic patients undergoing ophthalmic surgery. *Am J Ophthalmol* 1990;109(4):482-483.

Haydar AA, Abchee AB, El-Hajj II et al. Bleeding post coronary artery bypass surgery. Clopidogrel--cure or culprit? *J Med Liban* 2006;54(1):11-16.

Healy B, Beasley R, Weatherall M. Venous thromboembolism following prolonged cast immobilisation for injury to the tendo Achillis. *J Bone Joint Surg Br* 2010;92(5):646-650.

Hebl JR, Kopp SL, Ali MH et al. A comprehensive anesthesia protocol that emphasizes peripheral nerve blockade for total knee and total hip arthroplasty. *Journal of Bone and Joint Surgery - Series A* 2005;87(12 II SUPPL.):63-70.

Heck DA, Robinson RL, Partridge CM, Lubitz RM, Freund DA. Patient outcomes after knee replacement. *Clinical Orthopaedics and Related Research* 1998;(356):93-110.

Heit JA, Berkowitz SD, Bona R et al. Efficacy and safety of low molecular weight heparin (ardeparin sodium) compared to warfarin for the prevention of venous thromboembolism after total knee replacement surgery: a double-blind, dose-ranging study. Ardeparin Arthroplasty Study Group. *Thromb Haemost* 1997;77(1):32-38.

Heit JA, Elliott CG, Trowbridge AA, Morrey BF, Gent M, Hirsh J. Ardeparin sodium for extended out-of-hospital prophylaxis against venous thromboembolism after total hip or knee replacement. A randomized, double-blind, placebo-controlled trial. *Ann Intern Med* 2000;132(11):853-861.

Heit JA, Colwell CW, Francis CW et al. Comparison of the oral direct thrombin inhibitor ximelagatran with enoxaparin as prophylaxis against venous thromboembolism after total knee replacement: a phase 2 dose-finding study. *Arch Intern Med* 2001;161(18):2215-2221.

Heit JA. Low-molecular-weight heparin: the optimal duration of prophylaxis against postoperative venous thromboembolism after total hip or knee replacement. *Thromb Res* 2001;101(1):V163-V173.

Helling TS, Kaswan S, Miller SL, Tretter JF. Practice patterns in the use of retrievable inferior vena cava filters in a trauma population: A single-center experience. *Journal of Trauma - Injury, Infection and Critical Care* 2009;67(6):1293-1296.

Herget EJ, Saliken JC, Donnelly BJ, Gray RR, Wiseman D, Brunet G. Transrectal ultrasound-guided biopsy of the prostate: relation between ASA use and bleeding complications. *Can Assoc Radiol J* 1999;50(3):173-176.

Herman CR, Buth KJ, Kent BA, Hirsch GM. Clopidogrel increases blood transfusion and hemorrhagic complications in patients undergoing cardiac surgery. *Ann Thorac Surg* 2010;89(2):397-402.

Hermsen JL, Ibele AR, Faucher LD, Nale JK, Schurr MJ, Kudsk KA. Retrievable inferior vena cava filters in high-risk trauma and surgical patients: factors influencing successful removal. *World J Surg* 2008;32(7):1444-1449.

Hernandez-Vaquero D, Fernandez-Carreira JM, Perez-Hernandez D, Fernandez-Lombardia J, Garcia-Sandoval MA. Total Knee Arthroplasty in the Elderly. Is There an Age Limit? *Journal of Arthroplasty* 2006;21(3):358-361.

Herwaldt LA, Swartzendruber SK, Zimmerman MB, Scholz DA, Franklin JA, Caldarone CA. Hemorrhage after coronary artery bypass graft procedures. *Infect Control Hosp Epidemiol* 2003;24(1):44-50.

Hilton AI, Back DL, Espag MP, Briggs TWR, Cannon SR. The octogenarian total knee arthroplasty. *Orthopedics* 2004;27(1):37-39.

Hitos K, Fletcher JP. Venous thromboembolism following primary total knee arthroplasty. *Int Angiol* 2006;25(4):343-351.

Hitos K, Fletcher JP. Venous thromboembolism following primari total hip arthroplastydrome. *Int Angiol* 2009;28(3):215-221.

Ho P, Ting AC, Cheng SW. Blood loss and transfusion in elective abdominal aortic aneurysm surgery. *ANZ J Surg* 2004;74(8):631-634.

Hodge WA. Prevention of deep vein thrombosis after total knee arthroplasty. Coumadin versus pneumatic calf compression. *Clin Orthop Relat Res* 1991;(271):101-105.

Hoek JA, Henny CP, Knipscheer HC, ten CH, Nurmohamed MT, ten Cate JW. The effect of different anaesthetic techniques on the incidence of thrombosis following total hip replacement. *Thromb Haemost* 1991;65(2):122-125.

Hoek JA, Nurmohamed MT, Hamelynck KJ et al. Prevention of deep vein thrombosis following total hip replacement by low molecular weight heparinoid. *Thromb Haemost* 1992;67(1):28-32.

Holmes M, Carroll C, Papaioannou D. Dabigatran etexilate for the prevention of venous thromboembolism in patients undergoing elective hip and knee surgery: a single technology appraisal. *Health Technol Assess* 2009;13 Suppl 2:55-62.

Hongo RH, Ley J, Dick SE, Yee RR. The effect of clopidogrel in combination with aspirin when given before coronary artery bypass grafting. *J Am Coll Cardiol* 2002;40(2):231-237.

Hooker JA, Lachiewicz PF, Kelley SS. Efficacy of prophylaxis against thromboembolism with intermittent pneumatic compression after primary and revision total hip arthroplasty. *J Bone Joint Surg Am* 1999;81(5):690-696.

Hooper GJ, Hooper NM, Rothwell AG, Hobbs T. Bilateral Total Joint Arthroplasty. The Early Results from the New Zealand National Joint Registry. *Journal of Arthroplasty* 2009;24(8):1174-1177.

Hoppe H, Nutting CW, Smouse HR et al. Gunther Tulip filter retrievability multicenter study including CT follow-up: final report. *J Vasc Interv Radiol* 2006;17(6):1017-1023.

Horbach T, Wolf H, Michaelis HC et al. A fixed-dose combination of low molecular weight heparin with dihydroergotamine versus adjusted-dose unfractionated heparin in the prevention of deep-vein thrombosis after total hip replacement. *Thromb Haemost* 1996;75(2):246-250.

Horlocker TT, Wedel DJ, Benzon H et al. Regional anesthesia in the anticoagulated patient: defining the risks (the second ASRA Consensus Conference on Neuraxial Anesthesia and Anticoagulation). *Reg Anesth Pain Med* 2003;28(3):172-197.

Howard A, Zaccagnini D, Ellis M, Williams A, Davies AH, Greenhalgh RM. Randomized clinical trial of low molecular weight heparin with thigh-length or kneelength antiembolism stockings for patients undergoing surgery. *British Journal of Surgery* 2004;91(7):842-847.

Howard AW, Aaron SD. Low molecular weight heparin decreases proximal and distal deep venous thrombosis following total knee arthroplasty. A meta-analysis of randomized trials. *Thromb Haemost* 1998;79(5):902-906.

Howard PA. Dalteparin: a low-molecular-weight heparin. *Ann Pharmacother* 1997;31(2):192-203.

Howells RC, Wax MK, Ramadan HH. Value of preoperative prothrombin time/partial thromboplastin time as a predictor of postoperative hemorrhage in pediatric patients undergoing tonsillectomy. *Otolaryngol Head Neck Surg* 1997;117(6):628-632.

Howie C, Hughes H, Watts AC. Venous thromboembolism associated with hip and knee replacement over a ten-year period: a population-based study. *J Bone Joint Surg Br* 2005;87(12):1675-1680.

Hu R. Prophylaxis of deep-vein thrombosis in total hip surgery. *Can J Surg* 1989;32(3):207-209.

Hu S, Zhang ZY, Hua YQ, Li J, Cai ZD. A comparison of regional and general anaesthesia for total replacement of the hip or knee: a meta-analysis. *J Bone Joint Surg Br* 2009;91(7):935-942.

Huang J, Cao Y, Liao C, Wu L, Gao F. Apixaban versus enoxaparin in patients with total knee arthroplasty. A meta-analysis of randomised trials. *Thromb Haemost* 2010;105(1).

Huddleston JI, Maloney WJ, Wang Y, Verzier N, Hunt DR, Herndon JH. Adverse events after total knee arthroplasty: a national Medicare study. *J Arthroplasty* 2009;24(6 Suppl):95-100.

Hui AC, Heras-Palou C, Dunn I et al. Graded compression stockings for prevention of deep-vein thrombosis after hip and knee replacement. *J Bone Joint Surg Br* 1996;78(4):550-554.

Hui CK, Lai KC, Yuen MF, Wong WM, Lam SK, Lai CL. Does withholding aspirin for one week reduce the risk of post-sphincterotomy bleeding? *Aliment Pharmacol Ther* 2002;16(5):929-936.

Huisman MV, Quinlan DJ, Dahl OE, Schulman S. Enoxaparin versus dabigatran or rivaroxaban for thromboprophylaxis after hip or knee arthroplasty: Results of separate pooled analyses of phase III multicenter randomized trials. *Circ Cardiovasc Qual Outcomes* 2010;3(6):652-660.

Hull R, Delmore TJ, Hirsh J et al. Effectiveness of intermittent pulsatile elastic stockings for the prevention of calf and thigh vein thrombosis in patients undergoing elective knee surgery. *Thrombosis Research* 1979;16(1-2):37-45.

Hull RD, Brant RF, Pineo GF, Stein PD, Raskob GE, Valentine KA. Preoperative vs postoperative initiation of low-molecular-weight heparin prophylaxis against venous thromboembolism in patients undergoing elective hip replacement. *Arch Intern Med* 1999;159(2):137-141.

Hull RD, Pineo GF, Stein PD et al. Extended out-of-hospital low-molecular-weight heparin prophylaxis against deep venous thrombosis in patients after elective hip arthroplasty: a systematic review. *Ann Intern Med* 2001;135(10):858-869.

Hull RD, Pineo GF, Stein PD et al. Timing of initial administration of low-molecularweight heparin prophylaxis against deep vein thrombosis in patients following elective hip arthroplasty: a systematic review. *Arch Intern Med* 2001;161(16):1952-1960.

Hull RD, Pineo GF, MacIsaac S. Low-molecular-weight heparin prophylaxis: preoperative versus postoperative initiation in patients undergoing elective hip surgery. *Thromb Res* 2001;101(1):V155-V162.

Hull RD, Yusen RD, Bergqvist D. State-of-the-art review: Assessing the safety profiles of new anticoagulants for major orthopedic surgery thromboprophylaxis. *Clinical and Applied Thrombosis/Hemostasis* 2009;15(4):377-388.

Hulse N, Sharma H, Mahendra A, Rana B. Role of vena cava filters in high-risk trauma and elective orthopaedic procedures. *Current Orthopaedics* 2007;21(1):72-78.

Hume M, Bierbaum B, Kuriakose TX, Surprenant J. Prevention of postoperative thrombosis by aspirin. *Am J Surg* 1977;133(4):420-422.

Huo MH, Salvati EA, Sharrock NE et al. Intraoperative heparin thromboembolic prophylaxis in primary total hip arthroplasty. A prospective, randomized, controlled, clinical trial. *Clin Orthop Relat Res* 1992;(274):35-46.

Hutchinson JR, Parish EN, Cross MJ. A comparison of bilateral uncemented total knee arthroplasty: simultaneous or staged? *J Bone Joint Surg Br* 2006;88(1):40-43.

Hynson JM, Katz JA, Bueff HU. Epidural hematoma associated with enoxaparin. *Anesthesia and Analgesia* 1996;82(5):1072-1075.

Ilfeld BM, Ball ST, Gearen PF et al. Ambulatory continuous posterior lumbar plexus nerve blocks after hip arthroplasty: A dual-center, randomized, triple-masked, placebo-controlled trial. *Anesthesiology* 2008;109(3):491-501.

Ilfeld BM, Ball ST, Gearen PF et al. Health-related quality of life after hip arthroplasty with and without an extended-duration continuous posterior lumbar plexus nerve block: A prospective, 1-year follow-up of a randomized, triple-masked, placebo-controlled study. *Anesthesia and Analgesia* 2009;109(2):586-591.

Ilstrup DM, Nolan DR, Beckenbaugh RD, Coventry MB. Factors influencing the results in 2,012 total hip arthroplasties. *Clin Orthop Relat Res* 1973;(95):250-262.

Ilyas I, Moreau P. Simultaneous bilateral total hip arthroplasty in sickle cell disease. *J Arthroplasty* 2002;17(4):441-445.

Imberti D, Bianchi M, Farina A, Siragusa S, Silingardi M, Ageno W. Clinical experience with retrievable vena cava filters: results of a prospective observational multicenter study. *J Thromb Haemost* 2005;3(7):1370-1375.

Imperiale TF, Speroff T. A meta-analysis of methods to prevent venous thromboembolism following total hip replacement. *JAMA* 1994;271(22):1780-1785.

Iorio R, Dhupar S, Healy WL, Wong E. Routine duplex ultrasound screening after TKA is not necessary. *Clin Orthop Relat Res* 2006;452:171-174.

Irani MS, Izzat NN, Jones JW. Platelet function, coagulation tests, and cardiopulmonary bypass: lack of correlation between pre-operative and intra-operative whole blood lumiaggregometry and peri-operative blood loss in patients receiving autologous platelet-rich plasma. *Blood Coagul Fibrinolysis* 1995;6(5):428-432.

Isgro F, Rehn E, Kiessling AH, Kretz KU, Kilian W, Saggau W. Platelet function test HemoSTATUS 2: tool or toy for an optimized management of hemostasis? *Perfusion* 2002;17(1):27-31.

Ishak MA, Morley KD. Deep venous thrombosis after total hip arthroplasty: a prospective controlled study to determine the prophylactic effect of graded pressure stockings. *Br J Surg* 1981;68(6):429-432.

Ishihara K, Hiromatsu S, Shintani Y, Kanaya K, Mikasa K, Aoyagi S. Clinical outcome of perioperative nonpermanent vena cava filter placement in patients with deep venous thrombosis or blood stasis of the vein. *Surg Today* 2009;39(9):764-769.

Isono SS, Woolson ST, Schurman DJ. Total joint arthroplasty for steroid-induced osteonecrosis in cardiac transplant patients. *Clin Orthop Relat Res* 1987;(217):201-208.

Ivanovic N, Beinema M, Brouwers JRBJ, Naunton M, Postma MJ. Thromboprophylaxis in total hip-replacement surgery in Europe: Acenocoumarol, fondaparinux, dabigatran and rivaroxban. *Expert Review of Pharmacoeconomics and Outcomes Research* 2007;7(1):49-58.

Ivory JP, Simpson AH, Toogood GJ, McLardy-Smith PD, Goodfellow JW. Bilateral knee replacements: simultaneous or staged? *J R Coll Surg Edinb* 1993;38(2):105-107.

Iwata T, Inoue K, Nishiyama N et al. Factors predicting early postoperative liver cirrhosis-related complications after lung cancer surgery in patients with liver cirrhosis. *Interact Cardiovasc Thorac Surg* 2007;6(6):720-730.

Jaffer AK, Barsoum WK, Krebs V, Hurbanek JG, Morra N, Brotman DJ. Duration of anesthesia and venous thromboembolism after hip and knee arthroplasty. *Mayo Clin Proc* 2005;80(6):732-738.

Jain V, Dhal AK, Dhaon BK, Pradhan G. Deep vein thrombosis after total hip arthroplasty in Indian patients with and without enoxaparin. *J Orthop Surg (Hong Kong)* 2004;12(2):173-177.

Jameson SS, Bottle A, Malviya A, Muller SD, Reed MR. The impact of national guidelines for the prophylaxis of venous thromboembolism on the complications of arthroplasty of the lower limb. *J Bone Joint Surg Br* 2010;92(1):123-129.

Jankiewicz JJ, Sculco TP, Ranawat CS, Behr C, Tarrentino S. One-stage versus 2-stage bilateral total knee arthroplasty. *Clin Orthop Relat Res* 1994;(309):94-101.

Jarrett BP, Dougherty MJ, Calligaro KD. Inferior vena cava filters in malignant disease. *J Vasc Surg* 2002;36(4):704-707.

Jaureguito JW, Greenwald AE, Wilcox JF, Paulos LE, Rosenberg TD. The incidence of deep venous thrombosis after arthroscopic knee surgery. *Am J Sports Med* 1999;27(6):707-710.

Jennings JJ, Harris WH, Sarmiento A. A clinical evaluation of aspirin prophylaxis of thromboembolic disease after total hip arthroplasty. *J Bone Joint Surg Am* 1976;58(7):926-928.

Jeon SW, Jung MK, Cho CM et al. Predictors of immediate bleeding during endoscopic submucosal dissection in gastric lesions. *Surg Endosc* 2009;23(9):1974-1979.

Jiganti JJ, Goldstein WM, Williams CS. A comparison of the perioperative morbidity in total joint arthroplasty in the obese and nonobese patient. *Clin Orthop Relat Res* 1993;(289):175-179.

Jones MJT, Pigott SE, Vaughan RS et al. Cognitive and functional competence after anaesthesia in patients aged over 60: Controlled trial of general and regional anaesthesia for elective hip or knee replacement. *British Medical Journal* 1990;300(6741):1683-1687.

Josefsson G, Dahlqvist A, Bodfors B. Prevention of thromboembolism in total hip replacement. Aspirin versus dihydroergotamine-heparin. *Acta Orthop Scand* 1987;58(6):626-629.

Joynt GM, Kew J, Gomersall CD, Leung VY, Liu EK. Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients. *Chest* 2000;117(1):178-183.

Kabakibi A, Vamvakas EC, Cannistraro PA, Szczepiorkowski ZM, Laposata M. Collagen-induced whole blood platelet aggregation in patients undergoing surgical procedures associated with minimal to moderate blood loss. *Am J Clin Pathol* 1998;109(4):392-398.

Kable A, Gibberd R, Spigelman A. Predictors of adverse events in surgical admissions in Australia. *Int J Qual Health Care* 2008;20(6):406-411.

Kaempffe FA, Lifeso RM, Meinking C. Intermittent pneumatic compression versus coumadin. Prevention of deep vein thrombosis in lower-extremity total joint arthroplasty. *Clin Orthop Relat Res* 1991;(269):89-97.

Kageyama Y, Miyamoto S, Ozeki T, Hiyoshi M, Kushida K, Inoue T. Outcomes for patients undergoing one or more total hip and knee arthroplasties. *Clinical Rheumatology* 1998;17(2):130-134.

Kahan ES, Petersen G, Gaughan JP, Criner GJ. High incidence of venous thromboembolic events in lung transplant recipients. *J Heart Lung Transplant* 2007;26(4):339-344.

Kakkar VV, Stamatakis JD, Bentley PG, Lawrence D, de Haas HA, Ward VP. Prophylaxis for postoperative deep-vein thrombosis. Synergistic effect of heparin and dihydroergotamine. *JAMA* 1979;241(1):39-42.

Kakkar VV, Fok PJ, Murray WJ et al. Heparin and dihydroergotamine prophylaxis against thrombo-embolism after hip arthroplasty. *J Bone Joint Surg Br* 1985;67(4):538-542.

Kakkar VV, Howes J, Sharma V, Kadziola Z. A comparative double-blind, randomised trial of a new second generation LMWH (bemiparin) and UFH in the prevention of post-operative venous thromboembolism. The Bemiparin Assessment group. *Thromb Haemost* 2000;83(4):523-529.

Kakkos SK, Caprini JA, Geroulakos G, Nicolaides AN, Stansby GP, Reddy DJ. Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism in high-risk patients. *Cochrane Database of Systematic Reviews* 2008;(4 Article Number).

Kalebo P, Anthmyr BA, Eriksson BI, Zachrisson BE. Phlebographic findings in venous thrombosis following total hip replacement. *Acta Radiol* 1990;31(3):259-263.

Kalebo P, Ekman S, Lindbratt S et al. Percentage of inadequate phlebograms and observer agreement in thromboprophylactic multicenter trials using standardized methodology and central assessment. *Thrombosis and Haemostasis* 1996;76(6):893-896.

Kalebo P, Eriksson BI, Zachrisson BE. Central assessment of bilateral phlebograms in a major multicentre thromboprophylactic trial. Reasons for inadequate results. *Acta Radiol* 1999;40(1):29-32.

Kalodiki E, Domjan J, Nicolaides AN et al. V/Q defects and deep venous thrombosis following total hip replacement. *Clin Radiol* 1995;50(6):400-403.

Kalodiki E, Nicolaides AN, Al-Kutoubi A, Cunningham DA, Crofton M. Duplex scanning in the postoperative surveillance of patients undergoing total hip arthroplasty. *J Arthroplasty* 1997;12(3):310-316.

Kalodiki E, Nicolaides AN, Al-Kutoubi A, Cunningham DA, Mandalia S. How "gold" is the standard? Interobservers' variation on venograms. *Int Angiol* 1998;17(2):83-88.

Kalodiki EP, Hoppensteadt DA, Nicolaides AN et al. Deep venous thrombosis prophylaxis with low molecular weight heparin and elastic compression in patients having total hip replacement. A randomised controlled trial. *Int Angiol* 1996;15(2):162-168.

Kalyani BS, Roberts CS. Low molecular weight heparin: Current evidence for its application in orthopaedic surgery. *Current Vascular Pharmacology* 2011;9(1):19-23.

Kamran M, Ahmed A, Dar MI, Khan AB. Effect of aspirin on postoperative bleeding in coronary artery bypass grafting. *Ann Thorac Cardiovasc Surg* 2008;14(4):224-229.

Kapoor A, Labonte AJ, Winter MR et al. Risk of venous thromboembolism after total hip and knee replacement in older adults with comorbidity and co-occurring comorbidities in the Nationwide Inpatient Sample (2003-2006). *BMC Geriatr* 2010;10:63.

Kapoor A, Chuang W, Radhakrishnan N et al. Cost effectiveness of venous thromboembolism pharmacological prophylaxis in total hip and knee replacement: a systematic review. *Pharmacoeconomics* 2010;28(7):521-538.

Karabulut H, Toraman F, Evrenkaya S, Goksel O, Tarcan S, Alhan C. Clopidogrel does not increase bleeding and allogenic blood transfusion in coronary artery surgery. *Eur J Cardiothorac Surg* 2004;25(3):419-423.

Kardash K, Hickey D, Tessler MJ, Payne S, Zukor D, Velly AM. Obturator versus femoral nerve block for analgesia after total knee arthroplasty. *Anesth Analg* 2007;105(3):853-858.

Kardys CM, Stoner MC, Manwaring ML, Bogey WM, Parker FM, Powell S. The use of intravascular ultrasound imaging to improve use of inferior vena cava filters in a high-risk bariatric population. *J Vasc Surg* 2007;46(6):1248-1252.

Kardys CM, Stoner MC, Manwaring ML et al. Safety and efficacy of intravascular ultrasound-guided inferior vena cava filter in super obese bariatric patients. *Surg Obes Relat Dis* 2008;4(1):50-54.

Karkouti K, McCluskey SA, Syed S, Pazaratz C, Poonawala H, Crowther MA. The influence of perioperative coagulation status on postoperative blood loss in complex cardiac surgery: a prospective observational study. *Anesth Analg* 2010;110(6):1533-1540.

Karmy-Jones R, Jurkovich GJ, Velmahos GC et al. Practice patterns and outcomes of retrievable vena cava filters in trauma patients: an AAST multicenter study. *J Trauma* 2007;62(1):17-24.

Karthik S, Grayson AD, McCarron EE, Pullan DM, Desmond MJ. Reexploration for bleeding after coronary artery bypass surgery: risk factors, outcomes, and the effect of time delay. *Ann Thorac Surg* 2004;78(2):527-534.

Kearon C, Julian JA, Newman TE, Ginsberg JS. Noninvasive diagnosis of deep venous thrombosis. McMaster Diagnostic Imaging Practice Guidelines Initiative. *Ann Intern Med* 1998;128(8):663-677.

Keating EM, Meding JB, Faris PM, Ritter MA. Predictors of transfusion risk in elective knee surgery. *Clin Orthop Relat Res* 1998;(357):50-59.

Keays AC, Mason M, Keays SL, Newcombe PA. The effect of anticoagulation on the restoration of range of motion after total knee arthroplasty: enoxaparin versus aspirin. *J Arthroplasty* 2003;18(2):180-185.

Keeling WB, Haines K, Stone PA, Armstrong PA, Murr MM, Shames ML. Current indications for preoperative inferior vena cava filter insertion in patients undergoing surgery for morbid obesity. *Obes Surg* 2005;15(7):1009-1012.

Keith I. Anaesthesia and blood loss in total hip replacement. *Anaesthesia* 1977;32(5):444-450.

Keller IS, Meier C, Pfiffner R, Keller E, Pfammatter T. Clinical comparison of two optional vena cava filters. *J Vasc Interv Radiol* 2007;18(4):505-511.

Kelley SS, Lachiewicz PF, Gilbert MS, Bolander ME, Jankiewicz JJ. Hip arthroplasty in hemophilic arthropathy. *J Bone Joint Surg Am* 1995;77(6):828-834.

Kennedy MT, Roche S, Fleming SM, Lenehan B, Curtin W. The association between aspirin and blood loss in hip fracture patients. *Acta Orthop Belg* 2006;72(1):29-33.

Kerr J, Linkins LA. High incidence of in-hospital pulmonary embolism following joint arthroplasty with dalteparin prophylaxis. *Thromb Haemost* 2010;103(1):123-128.

Khan A, Emberson J, Dowd GS. Standardized mortality ratios and fatal pulmonary embolism rates following total knee replacement: a cohort of 936 consecutive cases. *J Knee Surg* 2002;15(4):219-222.

Khan A, Kiryluk S, Fordyce MJ. Fatal pulmonary embolism, death rates and standardised mortality ratios after primary total hip replacement in a joint replacement centre. *Hip Int* 2007;17(2):59-63.

Khan F, Ng L, Gonzalez S, Hale T, Turner-Stokes L. Multidisciplinary rehabilitation programmes following joint replacement at the hip and knee in chronic arthropathy. *Cochrane Database of Systematic Reviews* 2008;(2 Article Number).

Khan LA, Cowie JG, Ballantyne JA, Brenkel IJ. The complication rate and medium-term functional outcome after total hip replacement in smokers. *Hip Int* 2009;19(1):47-51.

Khatod M, Inacio M, Paxton EW et al. Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004. *Acta Orthop* 2008;79(6):812-819.

Khaw FM, Moran CG, Pinder IM, Smith SR. The incidence of fatal pulmonary embolism after knee replacement with no prophylactic anticoagulation. *J Bone Joint Surg Br* 1993;75(6):940-941.

Khuangsirikul S, Sampatchalit S, Foojareonyos T, Chotanaphuti T. Lower extremities' postthrombotic syndrome after total knee arthroplasty. *J Med Assoc Thai* 2009;92 Suppl 6:S39-S44.

Kim HJ, Walcott-Sapp S, Leggett K et al. The use of spiral computed tomography scans for the detection of pulmonary embolism. *J Arthroplasty* 2008;23(6 Suppl 1):31-35.

Kim YH, Suh JS. Low incidence of deep-vein thrombosis after cementless total hip replacement. *J Bone Joint Surg Am* 1988;70(6):878-882.

Kim YH. The incidence of deep vein thrombosis after cementless and cemented knee replacement. *J Bone Joint Surg Br* 1990;72(5):779-783.

Kim YH, Kim VE. Factors leading to low incidence of deep vein thrombosis after cementless and cemented total knee arthroplasty. *Clin Orthop Relat Res* 1991;(273):119-124.

Kim YH, Choi IY, Park MR, Park TS, Cho JL. Deep vein thrombosis after uncemented total hip replacement. *Bull Hosp Jt Dis* 1997;56(3):133-139.

Kim YH, Kim JS. Incidence and natural history of deep-vein thrombosis after total knee arthroplasty. A prospective, randomised study. *J Bone Joint Surg Br* 2002;84(4):566-570.

Kim YH, Oh SH, Kim JS. Incidence and natural history of deep-vein thrombosis after total hip arthroplasty. A prospective and randomised clinical study. *J Bone Joint Surg Br* 2003;85(5):661-665.

Kim YH, Yoo JH, Kim JS. Factors leading to decreased rates of deep vein thrombosis and pulmonary embolism after total knee arthroplasty. *J Arthroplasty* 2007;22(7):974-980.

Kim YH, Kim JS. The 2007 John Charnley Award. Factors leading to low prevalence of DVT and pulmonary embolism after THA: analysis of genetic and prothrombotic factors. *Clin Orthop Relat Res* 2007;465:33-39.

Kimura K, Ohtani S, Okamura H, Ishii N, Kishimoto C, Konishi K. Anticoagulation therapy with heparin and warfarin in total knee arthroplasty for osteoarthritis knee. *Clin Appl Thromb Hemost* 2009;15(1):109-112.

Kinkel S, Kaefer W, Reissig W, Puhl W, Kessler S. Revision total hip arthroplasty: the influence of gender and age on the perioperative complication rate. *Acta Chir Orthop Traumatol Cech* 2003;70(5):269-273.

Kinnaird T, Anderson R, Hill J, Thomas M. Bleeding during percutaneous intervention: Tailoring the approach to minimise risk. *Heart* 2009;95(1):15-19.

Kirtane AJ, Piazza G, Murphy SA et al. Correlates of bleeding events among moderateto high-risk patients undergoing percutaneous coronary intervention and treated with eptifibatide: observations from the PROTECT-TIMI-30 trial. *J Am Coll Cardiol* 2006;47(12):2374-2379.

Kita T, Maki N, Song YS, Arai F, Nakai T. Caudal epidural anesthesia administered intraoperatively provides for effective postoperative analgesia after total hip arthroplasty. *J Clin Anesth* 2007;19(3):204-208.

Kiyoshige Y, Kure S, Goto K, Ishii M, Kanno J, Hiratsuka M. Inherited risk factors for deep venous thrombosis following total hip arthroplasty in Japanese patients: matched control study. *J Orthop Sci* 2007;12(2):118-122.

Kluge A, Mueller C, Strunk J, Lange U, Bachmann G. Experience in 207 combined MRI examinations for acute pulmonary embolism and deep vein thrombosis. *American Journal of Roentgenology* 2006;186(6):1686-1696.

Knelles D, Barthel T, Karrer A, Kraus U, Eulert J, Kolbl O. Prevention of heterotopic ossification after total hip replacement. A prospective, randomised study using acetylsalicylic acid, indomethacin and fractional or single-dose irradiation. *J Bone Joint Surg Br* 1997;79(4):596-602.

Kniemeyer HW, Sandmann W, Bach D, Torsello G, Jungblut RM, Grabensee B. Complications following caval interruption. *Eur J Vasc Surg* 1994;8(5):617-621.

Ko SH, Reynolds BR, Nicholas DH et al. Institutional protocol improves retrievable inferior vena cava filter recovery rate. *Surgery* 2009;146(4):809-814.

Koch A, Bouges S, Ziegler S, Dinkel H, Daures JP, Victor N. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis after major surgical intervention: update of previous meta-analyses. *Br J Surg* 1997;84(6):750-759.

Kolb G, Bodamer I, Galster H et al. Reduction of venous thromboembolism following prolonged prophylaxis with the low molecular weight heparin Certoparin after endoprothetic joint replacement or osteosynthesis of the lower limb in elderly patients. *Thromb Haemost* 2003;90(6):1100-1105.

Korte W, Truttmann B, Heim C, Stangl U, Schmid L, Kreienbuhl G. Preoperative values of molecular coagulation markers identify patients at low risk for intraoperative haemostatic disorders and excessive blood loss. *Clin Chem Lab Med* 1998;36(4):235-240.

Kozak EA, Brath LK. Do "screening" coagulation tests predict bleeding in patients undergoing fiberoptic bronchoscopy with biopsy? *Chest* 1994;106(3):703-705.

Kraay MJ, Goldberg VM, Herbener TE. Vascular ultrasonography for deep venous thrombosis after total knee arthroplasty. *Clin Orthop Relat Res* 1993;(286):18-26.

Kreder HJ, Berry GK, McMurtry IA, Halman SI. Arthroplasty in the octogenarian: Quantifying the risks. *Journal of Arthroplasty* 2005;20(3):289-893.

Krenzel BA, Cook C, Martin GN, Vail TP, Attarian DE, Bolognesi MP. Posterior Capsular Injections of Ropivacaine During Total Knee Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Study. *Journal of Arthroplasty* 2009;24(6 SUPPL.):138-143.

Krishna P, Lee D. Post-tonsillectomy bleeding: a meta-analysis. *Laryngoscope* 2001;111(8):1358-1361.

Krishnan B, Shenoy NA, Alexander M. Exodontia and antiplatelet therapy. *J Oral Maxillofac Surg* 2008;66(10):2063-2066.

Kristensen SS, Pedersen P, Pedersen NW, Schmidt SA, Kjaersgaard-Andersen P. Combined treatment with indomethacin and low-dose heparin after total hip replacement. A double-blind placebo-controlled clinical trial. *J Bone Joint Surg Br* 1990;72(3):447-449.

Krotenberg R, Adler U, Pomeranz B, Miller JD, Russell MW. Dalteparin vs. enoxaparin as prophylaxis for deep-vein thrombosis after total hip or knee arthroplasty: a retrospective analysis. *Am J Phys Med Rehabil* 2001;80(12):889-895.

Kudoh A, Takase H, Takazawa T. A comparison of anesthetic quality in propofol-spinal anesthesia and propofol-fentanyl anesthesia for total knee arthroplasty in elderly patients. *J Clin Anesth* 2004;16(6):405-410.

Kukreja R, Desai M, Patel S, Bapat S, Desai M. Factors affecting blood loss during percutaneous nephrolithotomy: prospective study. *J Endourol* 2004;18(8):715-722.

Kuo WT, Tong RT, Hwang GL et al. High-risk retrieval of adherent and chronically implanted IVC filters: techniques for removal and management of thrombotic complications. *J Vasc Interv Radiol* 2009;20(12):1548-1556.

Kurmis AP. Review article: thromboprophylaxis after total hip replacement. *J Orthop Surg (Hong Kong)* 2010;18(1):92-97.

Kurtoglu M, Guloglu R, Ertekin C, Taviloglu K, Alimoglu O. Intermittent pneumatic compression in the prevention of venous thromboembolism in high-risk trauma and surgical ICU patients. *Ulus Travma Acil Cerrahi Derg* 2005;11(1):38-42.

Kwong LM, Muntz JE. Thromboprophylaxis dosing: the relationship between timing of first administration, efficacy, and safety. *Am J Orthop (Belle Mead NJ)* 2002;31(11 Suppl):16-20.

Lachiewicz PF, Inglis AE, Insall JN, Sculco TP, Hilgartner MW, Bussel JB. Total knee arthroplasty in hemophilia. *J Bone Joint Surg Am* 1985;67(9):1361-1366.

Lachiewicz PF, Klein JA, Holleman JB, Jr., Kelley S. Pneumatic compression or aspirin prophylaxis against thromboembolism in total hip arthroplasty. *J South Orthop Assoc* 1996;5(4):272-280.

Lachiewicz PF, Soileau ES. Multimodal prophylaxis for THA with mechanical compression. *Clin Orthop Relat Res* 2006;453:225-230.

Lachiewicz PF, Soileau ES. Mechanical calf compression and aspirin prophylaxis for total knee arthroplasty. *Clin Orthop Relat Res* 2007;464:61-64.

Laguardia AM, Caroli GC. Prevention of deep vein thrombosis in orthopaedic surgery. Comparison of two different treatment protocols with low molecular weight heparin ('Fluxum'). *Curr Med Res Opin* 1992;12(9):584-593.

Landefeld CS, Beyth RJ. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. *Am J Med* 1993;95(3):315-328.

Lanes S, Fraeman K, Meyers A, Ives JW, Huang HY. Incidence rates of thromboembolic, bleeding, and hepatic outcomes in patients undergoing hip or knee replacement surgery. *J Thromb Haemost* 2010.

Larocque BJ, Gilbert K, Brien WF. Prospective validation of a point score system for predicting blood transfusion following hip or knee replacement. *Transfusion* 1998;38(10):932-937.

Larson BJ, Zumberg MS, Kitchens CS. A feasibility study of continuing dose-reduced warfarin for invasive procedures in patients with high thromboembolic risk. *Chest* 2005;127(3):922-927.

Larson CM, MacMillan DP, Lachiewicz PF. Thromboembolism after total knee arthroplasty: intermittent pneumatic compression and aspirin prophylaxis. *J South Orthop Assoc* 2001;10(3):155-163.

LaRusso S, Hills JR, Wise SW. Sonographic incidence of deep venous thrombosis contralateral to hip or knee replacement surgery. *J Clin Ultrasound* 1998;26(9):461-463.

Lassen MR, Borris LC, Christiansen HM et al. Heparin/dihydroergotamine for venous thrombosis prophylaxis: comparison of low-dose heparin and low molecular weight heparin in hip surgery. *Br J Surg* 1988;75(7):686-689.

Lassen MR, Dahl O, Mismetti P, Zielske D, Turpie AG. SR123781A: a new once-daily synthetic oligosaccharide anticoagulant for thromboprophylaxis after total hip replacement surgery: the DRIVE (Dose Ranging Study in Elective Total Hip Replacement Surgery) study. *J Am Coll Cardiol* 2008;51(15):1498-1504.

Lassen MR, Dahl OE, Mismetti P, Destree D, Turpie AG. AVE5026, a new hemisynthetic ultra-low-molecular-weight heparin for the prevention of venous thromboembolism in patients after total knee replacement surgery--TREK: a dose-ranging study. *J Thromb Haemost* 2009;7(4):566-572.

Lassen MR. Is the preoperative administration of enoxaparin 40 mg necessary to optimally prevent the occurrence of venous thromboembolism after hip surgery? A subanalysis of two pooled randomized trials. *Journal of Thrombosis and Haemostasis* 2009;7(5):889-891.

Lau HP, Yip KM, Jiang CC. Regional nerve block for total knee arthroplasty. *J Formos Med Assoc* 1998;97(6):428-430.

Law SK, Song BJ, Yu F, Kurbanyan K, Yang TA, Caprioli J. Hemorrhagic complications from glaucoma surgery in patients on anticoagulation therapy or antiplatelet therapy. *Am J Ophthalmol* 2008;145(4):736-746.

Lawrence C, Sakuntabhai A, Tiling-Grosse S. Effect of aspirin and nonsteroidal antiinflammatory drug therapy on bleeding complications in dermatologic surgical patients. *J Am Acad Dermatol* 1994;31(6):988-992.

Lawton RL, Morrey BF. The use of heparin in patients in whom a pulmonary embolism is suspected after total hip arthroplasty. *J Bone Joint Surg Am* 1999;81(8):1063-1072.

Lawton RL, Morrey BF, Narr BJ. Validity of index of suspicion for pulmonary embolism after hip arthroplasty. *Clin Orthop Relat Res* 2003;(415):180-192.

Lazo-Langner A, Rodger MA, Wells PS. Lessons from ximelagatran: issues for future studies evaluating new oral direct thrombin inhibitors for venous thromboembolism prophylaxis in orthopedic surgery. *Clin Appl Thromb Hemost* 2009;15(3):316-326.

Leach TA, Pastena JA, Swan KG, Tikellis JI, Blackwood JM, Odom JW. Surgical prophylaxis for pulmonary embolism. *American Surgeon* 1994;60(4):292-295.

Leali A, Fetto J, Moroz A. Prevention of thromboembolic disease after non-cemented hip arthroplasty. A multimodal approach. *Acta Orthop Belg* 2002;68(2):128-134.

Lebovics E, Lee SS, Dworkin BM et al. Upper gastrointestinal bleeding following open heart surgery. Predominant finding of aggressive duodenal ulcer disease. *Dig Dis Sci* 1991;36(6):757-760.

Leclerc JR, Geerts WH, Desjardins L et al. Prevention of deep vein thrombosis after major knee surgery--a randomized, double-blind trial comparing a low molecular weight heparin fragment (enoxaparin) to placebo. *Thromb Haemost* 1992;67(4):417-423.

Leclerc JR, Gent M, Hirsh J, Geerts WH, Ginsberg JS. The incidence of symptomatic venous thromboembolism after enoxaparin prophylaxis in lower extremity arthroplasty: a cohort study of 1,984 patients. Canadian Collaborative Group. *Chest* 1998;114(2 Suppl Evidence):115S-118S.

Leclerc JR, Gent M, Hirsh J, Geerts WH, Ginsberg JS. The incidence of symptomatic venous thromboembolism during and after prophylaxis with enoxaparin: a multi-institutional cohort study of patients who underwent hip or knee arthroplasty. Canadian Collaborative Group. *Arch Intern Med* 1998;158(8):873-878.

Lee AY, Gent M, Julian JA et al. Bilateral vs. ipsilateral venography as the primary efficacy outcome measure in thromboprophylaxis clinical trials: a systematic review. *J Thromb Haemost* 2004;2(10):1752-1759.

Legroux-Gerot I, Strouk G, Parquet A, Goodemand J, Gougeon F, Duquesnoy B. Total knee arthroplasty in hemophilic arthropathy. *Joint Bone Spine* 2003;70(1):22-32.

Lehman CM, Blaylock RC, Alexander DP, Rodgers GM. Discontinuation of the bleeding time test without detectable adverse clinical impact. *Clin Chem* 2001;47(7):1204-1211.

Lehman DE, Capello WN, Feinberg JR. Total hip arthroplasty without cement in obese patients. A minimum two-year clinical and radiographic follow-up study. *J Bone Joint Surg Am* 1994;76(6):854-862.

Leizorovicz A, Haugh MC, Chapuis FR, Samama MM, Boissel JP. Low molecular weight heparin in prevention of perioperative thrombosis. *BMJ* 1992;305(6859):913-920.

Leizorovicz A, Turpie AG, Cohen AT, Wong L, Yoo MC, Dans A. Epidemiology of venous thromboembolism in Asian patients undergoing major orthopedic surgery without thromboprophylaxis. The SMART study. *J Thromb Haemost* 2005;3(1):28-34.

Lensing AW, Doris CI, McGrath FP et al. A comparison of compression ultrasound with color Doppler ultrasound for the diagnosis of symptomless postoperative deep vein thrombosis. *Arch Intern Med* 1997;157(7):765-768.

Lensing AW, Prandoni P, Buller HR, Casara D, Cogo A, ten Cate JW. Lower extremity venography with iohexol: results and complications. *Radiology* 1990;177(2):503-505.

Leon L, Rodriguez H, Tawk RG, Ondra SL, Labropoulos N, Morasch MD. The prophylactic use of inferior vena cava filters in patients undergoing high-risk spinal surgery. *Ann Vasc Surg* 2005;19(3):442-447.

Leong JY, Baker RA, Shah PJ, Cherian VK, Knight JL. Clopidogrel and bleeding after coronary artery bypass graft surgery. *Ann Thorac Surg* 2005;80(3):928-933.

Lethagen S, Kyrle PA, Castaman G et al. von Willebrand factor/factor VIII concentrate (Haemate(registered trademark) P) dosing based on pharmacokinetics: A prospective multicenter trial in elective surgery. *Journal of Thrombosis and Haemostasis* 2007;5(7):1420-1430.

Levine MN, Planes A, Hirsh J, Goodyear M, Vochelle N, Gent M. The relationship between anti-factor Xa level and clinical outcome in patients receiving enoxaparine low molecular weight heparin to prevent deep vein thrombosis after hip replacement. *Thromb Haemost* 1989;62(3):940-944.

Levine MN, Gent M, Hirsh J et al. Ardeparin (low-molecular-weight heparin) vs graduated compression stockings for the prevention of venous thromboembolism. A randomized trial in patients undergoing knee surgery. *Arch Intern Med* 1996;156(8):851-856.

Leyvraz P, Bachmann F, Vuilleumier B, Berthet S, Bohnet J, Haller E. Adjusted subcutaneous heparin versus heparin plus dihydroergotamine in prevention of deep vein thrombosis after total hip arthroplasty. *J Arthroplasty* 1988;3(1):81-86.

Leyvraz P, Bachmann F, Bohnet J et al. Thromboembolic prophylaxis in total hip replacement: a comparison between the low molecular weight heparinoid Lomoparan and heparin-dihydroergotamine. *Br J Surg* 1992;79(9):911-914.

Leyvraz PF, Bachmann F, Hoek J et al. Prevention of deep vein thrombosis after hip replacement: randomised comparison between unfractionated heparin and low molecular weight heparin. *BMJ* 1991;303(6802):543-548.

Li W, Lian YY, Yue WJ et al. Experimental study of COX-2 selective and traditional non-steroidal anti-inflammatory drugs in total hip replacement. *J Int Med Res* 2009;37(2):472-478.

Licameli GR, Jones DT, Santosuosso J, Lapp C, Brugnara C, Kenna MA. Use of a preoperative bleeding questionnaire in pediatric patients who undergo adenotonsillectomy. *Otolaryngol Head Neck Surg* 2008;139(4):546-550.

Lieberman JR, Geerts WH. Prevention of venous thromboembolism after total hip and knee arthroplasty. *J Bone Joint Surg Am* 1994;76(8):1239-1250.

Lieberman JR, Wollaeger J, Dorey F et al. The efficacy of prophylaxis with low-dose warfarin for prevention of pulmonary embolism following total hip arthroplasty. *J Bone Joint Surg Am* 1997;79(3):319-325.

Lieberman JR, Sung R, Dorey F, Thomas BJ, Kilgus DJ, Finerman GA. Low-dose warfarin prophylaxis to prevent symptomatic pulmonary embolism after total knee arthroplasty. *J Arthroplasty* 1997;12(2):180-184.

Lin J, Proctor MC, Varma M, Greenfield LJ, Upchurch GR, Jr., Henke PK. Factors associated with recurrent venous thromboembolism in patients with malignant disease. *J Vasc Surg* 2003;37(5):976-983.

Lincoff AM, LeNarz LA, Despotis GJ et al. Abciximab and bleeding during coronary surgery: results from the EPILOG and EPISTENT trials. Improve Long-term Outcome with abciximab GP IIb/IIIa blockade. Evaluation of Platelet IIb/IIIa Inhibition in STENTing. *Ann Thorac Surg* 2000;70(2):516-526.

Lind SE. The bleeding time does not predict surgical bleeding. *Blood* 1991;77(12):2547-2552.

Lindahl TL, Lundahl TH, Nilsson L, Andersson CA. APC-resistance is a risk factor for postoperative thromboembolism in elective replacement of the hip or knee--a prospective study. *Thromb Haemost* 1999;81(1):18-21.

Lisander B, Jacobsson SA, Ivarsson I, Vegfors M, Engdahl O. Giving both enoxaparin and dextran increases the need for transfusion in revision hip arthroplasty. *Eur J Surg* 1996;162(11):861-866.

Lo CH, Leung M, Leong J. Inferior vena cava filters and lower limb flap reconstructions. *ANZ J Surg* 2008;78(1-2):64-67.

Lobo BL. Emerging options for thromboprophylaxis after orthopedic surgery: a review of clinical data. *Pharmacotherapy* 2004;24(7 Pt 2):66S-72S.

Lofqvist T, Sanzen L, Petersson C, Nilsson IM. Total hip replacement in patients with hemophilia. 13 hips in 11 patients followed for 1-16 years. *Acta Orthop Scand* 1996;67(4):321-324.

Lombardi AV, Jr., Berend KR, Tucker TL. The incidence and prevention of symptomatic thromboembolic disease following unicompartmental knee arthroplasty. *Orthopedics* 2007;30(5 Suppl):46-48.

Lonner JH, Frank J, McGuire K, Lotke PA. Postthrombotic syndrome after asymptomatic deep vein thrombosis following total knee and hip arthroplasty. *Am J Orthop (Belle Mead NJ)* 2006;35(10):469-472.

Lord RS, Benn I. Early and late results after Bird's Nest filter placement in the inferior vena cava: clinical and duplex ultrasound follow up. *Aust N Z J Surg* 1994;64(2):106-114.

Lotke PA, Ecker ML, Alavi A, Berkowitz H. Indications for the treatment of deep venous thrombosis following total knee replacement. *J Bone Joint Surg Am* 1984;66(2):202-208.

Lotke PA, Ecker ML, Alavi A, Berkowitz H. Indications for the treatment of deep venous thrombosis following total knee replacement. *J Bone Joint Surg Am* 1984;66(2):202-208.

Lotke PA, Steinberg ME, Ecker ML. Significance of deep venous thrombosis in the lower extremity after total joint arthroplasty. *Clin Orthop Relat Res* 1994;(299):25-30.

Lotke PA, Lonner JH. The benefit of aspirin chemoprophylaxis for thromboembolism after total knee arthroplasty. *Clin Orthop Relat Res* 2006;452:175-180.

Lutsey PL, Virnig BA, Durham SB et al. Correlates and Consequences of Venous Thromboembolism: The Iowa Women's Health Study. *Am J Public Health* 2009.

Lyman S, Sherman S, Carter TI, Bach PB, Mandl LA, Marx RG. Prevalence and risk factors for symptomatic thromboembolic events after shoulder arthroplasty. *Clin Orthop Relat Res* 2006;448:152-156.

Lynch AF, Bourne RB, Rorabeck CH, Rankin RN, Donald A. Deep-vein thrombosis and continuous passive motion after total knee arthroplasty. *J Bone Joint Surg Am* 1988;70(1):11-14.

Lynch JA, Baker PL, Polly RE et al. Mechanical measures in the prophylaxis of postoperative thromboembolism in total knee arthroplasty. *Clin Orthop Relat Res* 1990;(260):24-29.

Lyon SM, Riojas GE, Uberoi R et al. Short- and long-term retrievability of the Celect vena cava filter: results from a multi-institutional registry. *J Vasc Interv Radiol* 2009;20(11):1441-1448.

Ma TK, Yan BP, Lam YY. Dabigatran etexilate versus warfarin as the oral anticoagulant of choice? A review of clinical data. *Pharmacol Ther* 2011;129(2):185-194.

Macalou D, Trueck S, Meuret P et al. Postoperative analgesia after total knee replacement: the effect of an obturator nerve block added to the femoral 3-in-1 nerve block. *Anesth Analg* 2004;99(1):251-254.

Macdonald D, Bhalla P, Cass W et al. Computerized management of oral anticoagulant therapy: experience in major joint arthroplasty. *Can J Surg* 2002;45(1):47-52.

Macfarlane AJ, Prasad GA, Chan VW, Brull R. Does regional anaesthesia improve outcome after total hip arthroplasty? A systematic review. *Br J Anaesth* 2009;103(3):335-345.

Macfarlane AJ, Prasad GA, Chan VW, Brull R. Does regional anesthesia improve outcome after total knee arthroplasty? *Clin Orthop Relat Res* 2009;467(9):2379-2402.

Macpherson CR, Jacobs P, Dent DM. Abnormal peri-operative haemorrhage in asymptomatic patients is not predicted by laboratory testing. *S Afr Med J* 1993;83(2):106-108.

Madhusudhan TR, Rangan A, Gregg PJ. Gastric protection and gastrointestinal bleeding with aspirin thromboprophylaxis in hip and knee joint replacements. *Ann R Coll Surg Engl* 2008;90(4):332-335.

Maezawa K, Nozawa M, Aritomi K, Kubota M, Shitoto K, Kurosawa H. Changes of Ddimer after total hip arthroplasty in patients with and without intraoperative heparin. *Arch Orthop Trauma Surg* 2008;128(1):37-40.

Magann EF, Evans S, Hutchinson M, Collins R, Lanneau G, Morrison JC. Postpartum hemorrhage after cesarean delivery: an analysis of risk factors. *South Med J* 2005;98(7):681-685.

Magnant JG, Walsh DB, Juravsky LI, Cronenwett JL. Current use of inferior vena cava filters. *J Vasc Surg* 1992;16(5):701-706.

Magnusson M, Eriksson BI, Kalebo P, Sivertsson R. Is colour Doppler ultrasound a sensitive screening method in diagnosing deep vein thrombosis after hip surgery? *Thromb Haemost* 1996;75(2):242-245.

Mahadevan D, Challand C, Keenan J. Revision total hip replacement: predictors of blood loss, transfusion requirements, and length of hospitalisation. *J Orthop Traumatol* 2010;11(3):159-165.

Major KM, Wilson M, Nishi GK et al. The incidence of thromboembolism in the surgical intensive care unit. *Am Surg* 2003;69(10):857-861.

Maltais S, Perrault LP, Do QB. Effect of clopidogrel on bleeding and transfusions after off-pump coronary artery bypass graft surgery: impact of discontinuation prior to surgery. *Eur J Cardiothorac Surg* 2008;34(1):127-131.

Mandak JS, Blankenship JC, Gardner LH et al. Modifiable risk factors for vascular access site complications in the. *Journal of the American College of Cardiology* 1998;31(7):1518-1524.

Manoukian SV. Predictors and impact of bleeding complications in percutaneous coronary intervention, acute coronary syndromes, and ST-segment elevation myocardial infarction. *Am J Cardiol* 2009;104(5 Suppl):9C-15C.

Mant MJ, Russell DB, Johnston DW, Donahue PA. Intraoperative heparin in addition to postoperative low-molecular-weight heparin for thromboprophylaxis in total knee replacement. *J Bone Joint Surg Br* 2000;82(1):48-49.

Mant MJ, Eurich DT, Russell DB, Majumdar SR. Post-thrombotic syndrome after total hip arthroplasty is uncommon. *Acta Orthop* 2008;79(6):794-799.

Mantilla CB, Horlocker TT, Schroeder DR, Berry DJ, Brown DL. Frequency of myocardial infarction, pulmonary embolism, deep venous thrombosis, and death following primary hip or knee arthroplasty. *Anesthesiology* 2002;96(5):1140-1146.

Mantilla CB, Horlocker TT, Schroeder DR, Berry DJ, Brown DL. Risk factors for clinically relevant pulmonary embolism and deep venous thrombosis in patients undergoing primary hip or knee arthroplasty. *Anesthesiology* 2003;99(3):552-560.

Marchetti M, Liberato NL, Ruperto N, Barosi G. Long-term cost-effectiveness of low molecular weight heparin versus unfractionated heparin for the prophylaxis of venous thromboembolism in elective hip replacement. *Haematologica* 1999;84(8):730-737.

Martin MJ, Salim A. Vena cava filters in surgery and trauma. *Surg Clin North Am* 2007;87(5):1229-1xii.

Martin P, Horkay F, Rajah SM, Walker DR. Monitoring of coagulation status using thrombelastography during paediatric open heart surgery. *Int J Clin Monit Comput* 1991;8(3):183-187.

Martino MA, Borges E, Williamson E et al. Pulmonary embolism after major abdominal surgery in gynecologic oncology. *Obstet Gynecol* 2006;107(3):666-671.

Mattos MA, Londrey GL, Leutz DW et al. Color-flow duplex scanning for the surveillance and diagnosis of acute deep venous thrombosis. *J Vasc Surg* 1992;15(2):366-375.

Matzsch T, Bergqvist D, Fredin H, Hedner U. Safety and efficacy of a low molecular weight heparin (Logiparin) versus dextran as prophylaxis against thrombosis after total hip replacement. *Acta Chir Scand Suppl* 1988;543:80-84.

Matzsch T, Bergqvist D, Fredin H, Hedner U. Low molecular weight heparin compared with dextran as prophylaxis against thrombosis after total hip replacement. *Acta Chir Scand* 1990;156(6-7):445-450.

Matzsch T, Bergqvist D, Fredin H, Hedner U, Lindhagen A, Nistor L. Comparison of the thromboprophylactic effect of a low molecular weight heparin versus dextran in total hip replacement. *Thromb Haemorrh Disorders* 1991;3(1):25-29.

Mauermann WJ, Shilling AM, Zuo Z. A comparison of neuraxial block versus general anesthesia for elective total hip replacement: a meta-analysis. *Anesth Analg* 2006;103(4):1018-1025.

Maxwell GL, Synan I, Dodge R, Carroll B, Clarke-Pearson DL. Pneumatic compression versus low molecular weight heparin in gynecologic oncology surgery: a randomized trial. *Obstet Gynecol* 2001;98(6):989-995.

Maynard GA, Morris TA, Jenkins IH et al. Optimizing prevention of hospital-acquired venous thromboembolism (VTE): prospective validation of a VTE risk assessment model. *J Hosp Med* 2010;5(1):10-18.

McAndrew CM, Fitzgerald SJ, Kraay MJ, Goldberg VM. Incidence of postthrombotic syndrome in patients undergoing primary total knee arthroplasty for osteoarthritis. *Clin Orthop Relat Res* 2010;468(1):178-181.

McCardel BR, Lachiewicz PF, Jones K. Aspirin prophylaxis and surveillance of pulmonary embolism and deep vein thrombosis in total hip arthroplasty. *J Arthroplasty* 1990;5(2):181-185.

McCaslin J, Smout J, Kesteven P, Stansby G. Oral antiplatelet agents and bleeding risk in relation to major cardiovascular surgery. *Curr Drug Saf* 2006;1(3):281-287.

McCollough NC, III, Enis JE, Lovitt J, Lian EC, Niemann KN, Loughlin EC, Jr. Synovectomy or total replacement of the knee in hemophilia. *J Bone Joint Surg Am* 1979;61(1):69-75.

McDonald SB, Renna M, Spitznagel EL et al. Preoperative use of enoxaparin increases the risk of postoperative bleeding and re-exploration in cardiac surgery patients. *J Cardiothorac Vasc Anesth* 2005;19(1):4-10.

McEvoy MD, Bailey M, Taylor D, Del SH, Jr. Noncompliance in the inpatient administration of enoxaparin in conjunction with epidural or spinal anesthesia. *J Arthroplasty* 2000;15(5):604-607.

Mcgrath D, Dennyson WG, Rolland M. Death rate from pulmonary embolism following joint replacement surgery. *J R Coll Surg Edinb* 1996;41(4):265-266.

McGrory BJ, Trousdale RT. Total hip arthroplasty in patients who have chronic lymphocytic leukemia. *J Arthroplasty* 1995;10(6):758-763.

McLaughlin JR, Lee KR. The outcome of total hip replacement in obese and non-obese patients at 10- to 18-years. *Journal of Bone and Joint Surgery - Series B* 2006;88(10):1286-1292.

McMurtry AL, Owings JT, Anderson JT, Battistella FD, Gosselin R. Increased use of prophylactic vena cava filters in trauma patients failed to decrease overall incidence of pulmonary embolism. *Journal of the American College of Surgeons* 1999;189(3):314-320.

McNally MA, McAlinden MG, O'Connell BM, Mollan RA. Postphlebitic syndrome after hip arthroplasty. 43 patients followed at least 5 years. *Acta Orthop Scand* 1994;65(6):595-598.

McNally MA. The impact of national guidelines for the prophylaxis of venous thromboembolism on the complications of arthroplasty of the lower limb. *Journal of Bone and Joint Surgery - Series B* 2010;92(5):747.

McQueen DA, Kelly HK, Wright TF. A comparison of epidural and non-epidural anesthesia and analgesia in total hip or knee arthroplasty patients. *Orthopedics* 1992;15(2):169-173.

Mehilli J, Ndrepepa G, Kastrati A et al. Sex and effect of abciximab in patients with acute coronary syndromes treated with percutaneous coronary interventions: results from Intracoronary Stenting and Antithrombotic Regimen: Rapid Early Action for Coronary Treatment 2 trial. *Am Heart J* 2007;154(1):158-7.

Mehta JS, Nicolaou N, Kiryluk S, Fordyce MJF. Venous leg ulcers after hip replacement. *Journal of Bone and Joint Surgery - Series B* 2003;85(7):960-962.

Mehta SR, Yusuf S, Peters RJG et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: The PCI-CURE study. *Lancet* 2001;358(9281):527-533.

Meier C, Keller IS, Pfiffner R, Labler L, Trentz O, Pfammatter T. Early experience with the retrievable OptEase vena cava filter in high-risk trauma patients. *Eur J Vasc Endovasc Surg* 2006;32(5):589-595.

Melillo SN, Scanlon JV, Exter BP, Steinberg M, Jarvis CI. Rivaroxaban for thromboprophylaxis in patients undergoing major orthopedic surgery. *Ann Pharmacother* 2010;44(6):1061-1071.

Memtsoudis SG, Ma Y, Gonzalez D, V et al. Perioperative outcomes after unilateral and bilateral total knee arthroplasty. *Anesthesiology* 2009;111(6):1206-1216.

Memtsoudis SG, Della Valle AG, Besculides MC, Esposito M, Koulouvaris P, Salvati EA. Risk factors for perioperative mortality after lower extremity arthroplasty: a population-based study of 6,901,324 patient discharges. *J Arthroplasty* 2010;25(1):19-26.

Menzin J, Richner R, Huse D, Colditz GA, Oster G. Prevention of deep-vein thrombosis following total hip replacement surgery with enoxaparin versus unfractionated heparin: a pharmacoeconomic evaluation. *Ann Pharmacother* 1994;28(2):271-275.

Menzin J, Colditz GA, Regan MM, Richner RE, Oster G. Cost-effectiveness of enoxaparin vs low-dose warfarin in the prevention of deep-vein thrombosis after total hip replacement surgery. *Arch Intern Med* 1995;155(7):757-764.

Messieh M. Preoperative risk factors associated with symptomatic pulmonary embolism after total knee arthroplasty. *Orthopedics* 1999;22(12):1147-1149.

Messieh M, Huang Z, Johnson LJ, Jobin S. Warfarin responses in total joint and hip fracture patients. *J Arthroplasty* 1999;14(6):724-729.

Milbrink J, Bergqvist D. The incidence of symptomatic venous thromboembolic events in orthopaedic surgery when using routine thromboprophylaxis. *Vasa* 2008;37(4):353-357.

Miles J, Rodriguez-Merchan EC, Goddard NJ. The impact of haemophilia on the success of total hip arthroplasty. *Haemophilia* 2008;14(1):81-84.

Miller MT, Rovito PF. An approach to venous thromboembolism prophylaxis in laparoscopic Roux-en-Y gastric bypass surgery. *Obes Surg* 2004;14(6):731-737.

Millward SF, Oliva VL, Bell SD et al. Gunther Tulip Retrievable Vena Cava Filter: results from the Registry of the Canadian Interventional Radiology Association. *J Vasc Interv Radiol* 2001;12(9):1053-1058.

Minnema B, Vearncombe M, Augustin A, Gollish J, Simor AE. Risk factors for surgicalsite infection following primary total knee arthroplasty. *Infect Control Hosp Epidemiol* 2004;25(6):477-480.

Mismetti P, Laporte S, Zufferey P, Epinat M, Decousus H, Cucherat M. Prevention of venous thromboembolism in orthopedic surgery with vitamin K antagonists: A metaanalysis. *Journal of Thrombosis and Haemostasis* 2004;2(7):1058-1070.

Mismetti P, Rivron-Guillot K, Quenet S et al. A prospective long-term study of 220 patients with a retrievable vena cava filter for secondary prevention of venous thromboembolism. *Chest* 2007;131(1):223-229.

Mitchell D, Friedman RJ, Baker JD, III, Cooke JE, Darcy MD, Miller MC, III. Prevention of thromboembolic disease following total knee arthroplasty. Epidural versus general anesthesia. *Clin Orthop Relat Res* 1991;(269):109-112.

Mizel MS, Temple HT, Michelson JD et al. Thromboembolism after foot and ankle surgery: A multicenter study. *Clinical Orthopaedics and Related Research* 1998;(348):180-185.

Modig J, Hjelmstedt A, Sahlstedt B, Maripuu E. Comparative influences of epidural and general anaesthesia on deep venous thrombosis and pulmonary embolism after total hip replacement. *Acta Chir Scand* 1981;147(2):125-130.

Modig J, Borg T, Bagge L, Saldeen T. Role of extradural and of general anaesthesia in fibrinolysis and coagulation after total hip replacement. *British Journal of Anaesthesia* 1983;55(7):625-629.

Modig J. Beneficial effects on intraoperative and postoperative blood loss in total hip replacement when performed under lumbar epidural anesthesia. An explanatory study. *Acta Chir Scand Suppl* 1989;550:95-100.

Modig M, Rosen A, Heimdahl A. Template bleeding time for preoperative screening in patients having orthognathic surgery. *Br J Oral Maxillofac Surg* 2008;46(8):645-648.

Moganasundram S, Hunt BJ, Sykes K et al. The relationship among thromboelastography, hemostatic variables, and bleeding after cardiopulmonary bypass surgery in children. *Anesth Analg* 2010;110(4):995-1002.

Mohr DN, Silverstein MD, Ilstrup DM, Heit JA, Morrey BF. Venous thromboembolism associated with hip and knee arthroplasty: current prophylactic practices and outcomes. *Mayo Clin Proc* 1992;67(9):861-870.

Mohr DN, Silverstein MD, Murtaugh PA, Harrison JM. Prophylactic agents for venous thrombosis in elective hip surgery. Meta-analysis of studies using venographic assessment. *Arch Intern Med* 1993;153(19):2221-2228.

Moller AM, Pedersen T, Villebro N, Munksgaard A. Effect of smoking on early complications after elective orthopaedic surgery. *Journal of Bone and Joint Surgery - Series B* 2003;85(2):178-181.

Monreal M, Martorell A, Callejas JM et al. Venographic assessment of deep vein thrombosis and risk of developing post-thrombotic syndrome: a prospective study. *J Intern Med* 1993;233(3):233-238.

Monreal M, Lafoz E, Roca J et al. Platelet count, antiplatelet therapy and pulmonary embolism--a prospective study in patients with hip surgery. *Thromb Haemost* 1995;73(3):380-385.

Monreal M, Lafoz E, Llamazares J, Roncales J, Roca J, Granero X. Preoperative platelet count and postoperative blood loss in patients undergoing hip surgery: an inverse correlation. *Haemostasis* 1996;26(3):164-169.

Monreal M, Peidro L, Resines C et al. Limited diagnostic workup for deep vein thrombosis after major joint surgery: findings from a prospective, multicentre, cohort study. *Thromb Haemost* 2008;99(6):1112-1115.

Mont MA, Jones LC, Rajadhyaksha AD et al. Risk factors for pulmonary emboli after total hip or knee arthroplasty. *Clin Orthop Relat Res* 2004;(422):154-163.

Montebugnoli M, Bugamelli S, Bonfatti M, Facchini F, Pignotti E, Cenacchi A. Thromboembolic complications and pharmacological prophylaxis in orthopaedic surgery. *Anaesthesia* 1998;53 Suppl 2:55-56. Moon HK, Han CD, Yang IH, Cha BS. Factors affecting outcome after total knee arthroplasty in patients with diabetes mellitus. *Yonsei Medical Journal* 2008;49(1):129-137.

Moon YW, Kim YS, Kwon SY, Kim SY, Lim SJ, Park YS. Perioperative risk of hip arthroplasty in patients with cirrhotic liver disease. *J Korean Med Sci* 2007;22(2):223-226.

Mor E, Jennings L, Gonwa TA et al. The impact of operative bleeding on outcome in transplantation of the liver. *Surg Gynecol Obstet* 1993;176(3):219-227.

Moran MC, Huo MH, Garvin KL, Pellicci PM, Salvati EA. Total hip arthroplasty in sickle cell hemoglobinopathy. *Clinical Orthopaedics and Related Research* 1993;(294):140-148.

Morawski W, Sanak M, Cisowski M et al. Prediction of the excessive perioperative bleeding in patients undergoing coronary artery bypass grafting: Role of aspirin and platelet glycoprotein IIIa polymorphism. *Journal of Thoracic and Cardiovascular Surgery* 2005;130(3):791-796.

Moretti B, Patella V, Pesce V, Simone C, Ciccone M, De NM. Combined pharmacological and mechanical prophylaxis for DVT following hip and knee arthroplasty. *Journal of Orthopaedics and Traumatology* 2002;3(3):149-155.

Morimoto Y, Niwa H, Minematsu K. Hemostatic management of tooth extractions in patients on oral antithrombotic therapy. *J Oral Maxillofac Surg* 2008;66(1):51-57.

Morrey BF, Adams RA, Ilstrup DM, Bryan RS. Complications and mortality associated with bilateral or unilateral total knee arthroplasty. *J Bone Joint Surg Am* 1987;69(4):484-488.

Morris GK, Henry AP, Preston BJ. Prevention of deep-vein thrombosis by low-dose heparin in patients undergoing total hip replacement. *Lancet* 1974;2(7884):797-800.

Morris WT, Hardy AE. The effect of dihydroergotamine and heparin on the incidence of thromboembolic complications following total hip replacement: a randomized controlled clinical trial. *Br J Surg* 1981;68(5):301-303.

Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. Reexploration for bleeding is a risk factor for adverse outcomes after cardiac operations. *J Thorac Cardiovasc Surg* 1996;111(5):1037-1046.

Mourao AF, Amaral M, Caetano-Lopes J, Isenberg D. An analysis of joint replacement in patients with systemic lupus erythematosus. *Lupus* 2009;18(14):1298-1302.

Mouravas H, Verettas D, Kazakos K, Xarhas K, Panagiotou N, Ellinas P. Homocysteine and its relationship to deep venous thrombosis in patients undergoing total knee or hip arthroplasty. *Hippokratia* 2010;14(3):185-188.

Møiniche S, Hjortsø NC, Hansen BL et al. The effect of balanced analgesia on early convalescence after major orthopaedic surgery. *Acta Anaesthesiologica Scandinavica* 1994;38:328-335.

Muntz JE, O'Connor PJ, Yin H, Vogenberg FR. Factors associated with thromboprophylaxis for orthopedic patients and their impact on outcome. *Am J Orthop (Belle Mead NJ)* 2007;36(4):193-197.

Muntz JE, Michota FA. Prevention and management of venous thromboembolism in the surgical patient: options by surgery type and individual patient risk factors. *Am J Surg* 2010;199(1 Suppl):S11-S20.

Murray DW, Britton AR, Bulstrode CJ. Thromboprophylaxis and death after total hip replacement. *J Bone Joint Surg Br* 1996;78(6):863-870.

Naef RW, III, Chauhan SP, Chevalier SP, Roberts WE, Meydrech EF, Morrison JC. Prediction of hemorrhage at cesarean delivery. *Obstet Gynecol* 1994;83(6):923-926.

Napenas JJ, Hong CH, Brennan MT, Furney SL, Fox PC, Lockhart PB. The frequency of bleeding complications after invasive dental treatment in patients receiving single and dual antiplatelet therapy. *J Am Dent Assoc* 2009;140(6):690-695.

Nardell K, Annich GM, Hirsch JC et al. Risk factors for bleeding in pediatric postcardiotomy patients requiring ECLS. *Perfusion* 2009;24(3):191-197.

Nassif JM, Ritter MA, Meding JB, Keating EM, Faris PM. The effect of intraoperative intravenous fixed-dose heparin during total joint arthroplasty on the incidence of fatal pulmonary emboli. *J Arthroplasty* 2000;15(1):16-21.

Navarro-Quilis A, Castellet E, Rocha E, Paz-Jimenez J, Planes A. Efficacy and safety of bemiparin compared with enoxaparin in the prevention of venous thromboembolism after total knee arthroplasty: a randomized, double-blind clinical trial. *J Thromb Haemost* 2003;1(3):425-432.

Neal BC, Rodgers A, Gray H et al. No effect of low-dose aspirin for the prevention of heterotopic bone formation after total hip replacement: a randomized trial of 2,649 patients. *Acta Orthop Scand* 2000;71(2):129-134.

Negus JJ, Gardner JJ, Tann O, Lewis S, Cohen AT. Thromboprophylaxis in major abdominal surgery for cancer. *Eur J Surg Oncol* 2006;32(9):911-916.

Nelson CL, Stewart JG. Primary and revision total hip replacement in patients who are Jehovah's Witnesses. *Clin Orthop Relat Res* 1999;(369):251-261.

Nelson DB, Freeman ML. Major hemorrhage from endoscopic sphincterotomy: risk factor analysis. *J Clin Gastroenterol* 1994;19(4):283-287.

Nelson IW, Sivamurugan S, Latham PD, Matthews J, Bulstrode CJ. Total hip arthroplasty for hemophilic arthropathy. *Clin Orthop Relat Res* 1992;(276):210-213.

Nerurkar J, Wade WE, Martin BC. Cost/death averted with venous thromboembolism prophylaxis in patients undergoing total knee replacement or knee arthroplasty. *Pharmacotherapy* 2002;22(8):990-1000.

Nevo S, Enger C, Hartley E et al. Acute bleeding and thrombocytopenia after bone marrow transplantation. *Bone Marrow Transplantation* 2001;27(1):65-72.

Ng KF, Lawmin JC, Tsang SF, Tang WM, Chiu KY. Value of a single preoperative PFA-100 measurement in assessing the risk of bleeding in patients taking cyclooxygenase inhibitors and undergoing total knee replacement. *Br J Anaesth* 2009;102(6):779-784.

Nguyen NT, Owings JT, Gosselin R et al. Systemic coagulation and fibrinolysis after laparoscopic and open gastric bypass. *Arch Surg* 2001;136(8):909-916.

Nielsen PT, Jorgensen LN, Albrecht-Beste E, Leffers AM, Rasmussen LS. Lower thrombosis risk with epidural blockade in knee arthroplasty. *Acta Orthop Scand* 1990;61(1):29-31.

Nielson WR, Gelb AW, Casey JE, Penny FJ, Merchant RN, Manninen PH. Long-term cognitive and social sequelae of general versus regional anesthesia during arthroplasty in the elderly. *Anesthesiology* 1990;73(6):1103-1109.

Niki Y, Matsumoto H, Hakozaki A, Mochizuki T, Momohara S. Rheumatoid arthritis: a risk factor for deep venous thrombosis after total knee arthroplasty? Comparative study with osteoarthritis. *J Orthop Sci* 2010;15(1):57-63.

Nillius AS, Nylander G. Deep vein thrombosis after total hip replacement: a clinical and phlebographic study. *Br J Surg* 1979;66(5):324-326.

Nilsson PE, Bergqvist D, Benoni G et al. The post-discharge prophylactic management of the orthopedic patient with low-molecular-weight heparin: enoxaparin. *Orthopedics* 1997;20 Suppl:22-25.

Nokes TJ, Keenan J. Thromboprophylaxis in patients with lower limb immobilisation - review of current status. *Br J Haematol* 2009;146(4):361-368.

Norgren L, Austrell CH, Brummer R, Swartbol P. Low incidence of deep vein thrombosis after total hip replacement: An interim analysis of patients on low molecular weight heparin vs sequential gradient compression prophylaxis. *International Angiology* 1996;15(3 SUPPL. 1):11-14.

Norgren L, Toksvig-Larsen S, Magyar G, Lindstrand A, Albrechtsson U. Prevention of deep vein thrombosis in knee arthroplasty. Preliminary results from a randomized controlled study of low molecular weight heparin vs foot pump compression. *Int Angiol* 1998;17(2):93-96.

Novicoff WM, Brown TE, Cui Q, Mihalko WM, Slone HS, Saleh KJ. Mandated venous thromboembolism prophylaxis: possible adverse outcomes. *J Arthroplasty* 2008;23(6 Suppl 1):15-19.

Novis SJ, Havelka GE, Ostrowski D et al. Prevention of thromboembolic events in surgical patients through the creation and implementation of a computerized risk assessment program. *J Vasc Surg* 2010;51(3):648-654.

Nunley RM, Lachiewicz PF. Mortality after total hip and knee arthroplasty in a medium-volume university practice. *J Arthroplasty* 2003;18(3):278-285.

Nurmohamed MT, Rosendaal FR, Buller HR et al. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. *Lancet* 1992;340(8812):152-156.

Nutescu EA, Shapiro NL, Feinstein H, Rivers CW. Tinzaparin: Considerations for Use in Clinical Practice. *Annals of Pharmacotherapy* 2003;37(12):1831-1840.

Nuttall GA, Santrach PJ, Oliver WC, Jr. et al. The predictors of red cell transfusions in total hip arthroplasties. *Transfusion* 1996;36(2):144-149.

Nuttall GA, Oliver WC, Ereth MH, Santrach PJ. Coagulation tests predict bleeding after cardiopulmonary bypass. *J Cardiothorac Vasc Anesth* 1997;11(7):815-823.

O'Brien BJ, Anderson DR, Goeree R. Cost-effectiveness of enoxaparin versus warfarin prophylaxis against deep-vein thrombosis after total hip replacement. *CMAJ* 1994;150(7):1083-1090.

O'Donnell M, Linkins LA, Kearon C, Julian J, Hirsh J. Reduction of out-of-hospital symptomatic venous thromboembolism by extended thromboprophylaxis with low-molecular-weight heparin following elective hip arthroplasty: a systematic review. *Arch Intern Med* 2003;163(11):1362-1366.

O'Reilly RF, Burgess IA, Zicat B. The prevalence of venous thromboembolism after hip and knee replacement surgery. *Med J Aust* 2005;182(4):154-159.

O'Riordan JM, Margey RJ, Blake G, O'Connell PR. Antiplatelet agents in the perioperative period. *Archives of Surgery* 2009;144(1):69-76.

Obalum DC, Giwa SO, Adekoya-Cole TO, Ogo CN, Enweluzo GO. Deep vein thrombosis: risk factors and prevention in surgical patients. *West Afr J Med* 2009;28(2):77-82.

Offner PJ, Hawkes A, Madayag R, Seale F, Maines C. The role of temporary inferior vena cava filters in critically ill surgical patients. *Arch Surg* 2003;138(6):591-594.

Ofosu FA, Leclerc J, Delorme F et al. The low molecular weight heparin Enoxaparin inhibits the consumption of factor VII and prothrombin activation in vivo associated with elective knee replacement surgery. *Br J Haematol* 1992;82(2):391-399.

Ohlund C, Fransson SG, Starck SA. Calf compression for prevention of thromboembolism following hip surgery. *Acta Orthop Scand* 1983;54(6):896-899.

Ohta M, Nishizaki T, Matsumoto T et al. Analysis of risk factors for massive intraoperative bleeding during laparoscopic splenectomy. *J Hepatobiliary Pancreat Surg* 2005;12(6):433-437.

Oishi CS, Grady-Benson JC, Otis SM, Colwell CW, Jr., Walker RH. The clinical course of distal deep venous thrombosis after total hip and total knee arthroplasty, as determined with duplex ultrasonography. *J Bone Joint Surg Am* 1994;76(11):1658-1663.

Oliva VL, Szatmari F, Giroux MF, Flemming BK, Cohen SA, Soulez G. The Jonas study: evaluation of the retrievability of the Cordis OptEase inferior vena cava filter. *J Vasc Interv Radiol* 2005;16(11):1439-1445.

Oliva VL, Perreault P, Giroux MF, Bouchard L, Therasse E, Soulez G. Recovery G2 inferior vena cava filter: technical success and safety of retrieval. *J Vasc Interv Radiol* 2008;19(6):884-889.

Onat L, Ganiyusufoglu AK, Mutlu A et al. OptEase and TrapEase vena cava filters: a single-center experience in 258 patients. *Cardiovasc Intervent Radiol* 2009;32(5):992-997.

Oren A, Breumelhof R, Timmer R, Biesma DH, Hoekstra JB. Abnormal clotting parameters before therapeutic ERCP: do they predict major bleeding? *Eur J Gastroenterol Hepatol* 1999;11(10):1093-1097.

Osborne NH, Wakefield TW, Henke PK. Venous thromboembolism in cancer patients undergoing major surgery. *Ann Surg Oncol* 2008;15(12):3567-3578.

Otero-Fernandez R, Gomez-Outes A, Martinez-Gonzalez J, Rocha E, Fontcuberta J. Evaluation of the effectiveness and safety of bemiparin in a large population of orthopedic patients in a normal clinical practice. *Clin Appl Thromb Hemost* 2008;14(1):75-83.

Ottinger JG. Retrospective evaluation of delayed administration of fondaparinux in providing comparable safety and efficacy outcomes in patients undergoing electivearthroplasty procedures. *Hospital Pharmacy* 2006;41(4):348-353.

Ouattara A, Bouzguenda H, Le MY et al. Impact of aspirin with or without clopidogrel on postoperative bleeding and blood transfusion in coronary surgical patients treated prophylactically with a low-dose of aprotinin. *Eur Heart J* 2007;28(8):1025-1032.

Overby DW, Kohn GP, Cahan MA et al. Risk-group targeted inferior vena cava filter placement in gastric bypass patients. *Obes Surg* 2009;19(4):451-455.

Ozao-Choy J, Tammaro Y, Fradis M, Weber K, Divino CM. Clopidogrel and bleeding after general surgery procedures. *Am Surg* 2008;74(8):721-725.

Ozier YM, Le CB, Chatellier G et al. Intraoperative blood loss in pediatric liver transplantation: analysis of preoperative risk factors. *Anesth Analg* 1995;81(6):1142-1147.

Paavolainen P, Hamalainen M, Mustonen H, Slatis P. Registration of arthroplasties in Finland. A nationwide prospective project. *Acta Orthop Scand Suppl* 1991;241:27-30.

Paffrath T, Wafaisade A, Lefering R et al. Venous thromboembolism after severe trauma: incidence, risk factors and outcome. *Injury* 2010;41(1):97-101.

Paiement GD, Schutzer SF, Wessinger SJ, Harris WH. Influence of prophylaxis on proximal venous thrombus formation after total hip arthroplasty. *J Arthroplasty* 1992;7(4):471-475.

Paiement GD, Wessinger SJ, Hughes R, Harris WH. Routine use of adjusted low-dose warfarin to prevent venous thromboembolism after total hip replacement. *J Bone Joint Surg Am* 1993;75(6):893-898.

Palmer AJ, Koppenhagen K, Kirchhof B, Weber U, Bergemann R. Efficacy and safety of low molecular weight heparin, unfractionated heparin and warfarin for thromboembolism prophylaxis in orthopaedic surgery: a meta-analysis of randomised clinical trials. *Haemostasis* 1997;27(2):75-84.

Pancione L, Pieri S, Agresti P, Lagana D, Carrafiello G, Mecozzi B. Use of the ALN permanent/removable vena cava filter. A multi-centre experience. *Minerva Chir* 2006;61(6):501-507.

Papakostidis C, Harwood PJ, Karadimas EJ, Tan HB, Giannoudis PV. The timing of drug administration for thromboprophylaxis following orthopaedic surgery: Evidence and controversies related to treatment initiation and duration. *Current Vascular Pharmacology* 2011;9(1):11-18.

Parry M, Wylde V, Blom AW. Ninety-day mortality after elective total hip replacement: 1549 patients using aspirin as a thromboprophylactic agent. *J Bone Joint Surg Br* 2008;90(3):306-307.

Partridge CG, Campbell JH, Alvarado F. The effect of platelet-altering medications on bleeding from minor oral surgery procedures. *J Oral Maxillofac Surg* 2008;66(1):93-97.

Parvizi J, Sullivan TA, Pagnano MW, Trousdale RT, Bolander ME. Total joint arthroplasty in human immunodeficiency virus-positive patients: An alarming rate of early failure. *Journal of Arthroplasty* 2003;18(3):259-264.

Parvizi J, Ghanem E, Joshi A, Sharkey PF, Hozack WJ, Rothman RH. Does "excessive" anticoagulation predispose to periprosthetic infection? *J Arthroplasty* 2007;22(6 Suppl 2):24-28.

Parvizi J, Smith EB, Pulido L et al. The rise in the incidence of pulmonary embolus after joint arthroplasty: is modern imaging to blame? *Clin Orthop Relat Res* 2007;463:107-113.

Parvizi J, Mui A, Purtill JJ, Sharkey PF, Hozack WJ, Rothman RH. Total joint arthroplasty: When do fatal or near-fatal complications occur? *J Bone Joint Surg Am* 2007;89(1):27-32.

Parvizi J, Jacovides CL, Bican O et al. Is deep vein thrombosis a good proxy for pulmonary embolus? *J Arthroplasty* 2010;25(6 Suppl):138-144.

Patel AD, Albrizio M. Relationship of body mass index to early complications in knee replacement surgery. *Archives of Orthopaedic and Trauma Surgery* 2008;128(1):5-9.

Patel VP, Walsh M, Sehgal B, Preston C, DeWal H, Di Cesare PE. Factors associated with prolonged wound drainage after primary total hip and knee arthroplasty. *J Bone Joint Surg Am* 2007;89(1):33-38.

Patiar S, Kirwan CC, McDowell G, Bundred NJ, McCollum CN, Byrne GJ. Prevention of venous thromboembolism in surgical patients with breast cancer. *Br J Surg* 2007;94(4):412-420.

Patterson BM, Marchand R, Ranawat C. Complications of heparin therapy after total joint arthroplasty. *J Bone Joint Surg Am* 1989;71(8):1130-1134.

Pedegana LR, Burgess EM, Moore AJ, Carpenter ML. Prevention of thromboembolic disease by external pneumatic compression in patients undergoing total hip arthroplasty. *Clin Orthop Relat Res* 1977;(128):190-193.

Peetz D, Hafner G, Hansen M et al. Dose-adjusted thrombosis prophylaxis in trauma surgery according to levels of D-Dimer. *Thromb Res* 2000;98(6):473-483.

Pellegrini J, Clement D, Lush-Ehmann C, Keller GS, Evarts CM. Natural history of thromboembolic disease after total hip arthroplasty. *Clinical Orthopaedics and Related Research* 1996;(333):27-40.

Pellegrini VD, Jr., Langhans MJ, Totterman S, Marder VJ, Francis CW. Embolic complications of calf thrombosis following total hip arthroplasty. *J Arthroplasty* 1993;8(5):449-457.

Pendleton RC, Wheeler M, Wanner N, Strong MB, Vinik R, Peters CL. A safe, effective, and easy to use warfarin initiation dosing nomogram for post-joint arthroplasty patients. *J Arthroplasty* 2010;25(1):121-127.

Perhoniemi V, Vuorinen J, Myllynen P, Kivioja A, Lindevall K. The effect of enoxaparin in prevention of deep venous thrombosis in hip and knee surgery--a comparison with the dihydroergotamine-heparin combination. *Ann Chir Gynaecol* 1996;85(4):359-363.

Perka C, Arnold U, Buttgereit F. Influencing factors on perioperative morbidity in knee arthroplasty. *Clin Orthop Relat Res* 2000;(378):183-191.

Perka C, Labs K, Muschik M, Buttgereit F. The influence of obesity on perioperative morbidity and mortality in revision total hip arthroplasty. *Arch Orthop Trauma Surg* 2000;120(5-6):267-271.

Perkins J, Beech A, Hands L. Vascular surgical society of great britain and ireland: randomized controlled trial of heparin plus graduated compression stocking for the prophylaxis of deep venous thrombosis in general surgical patients. *Br J Surg* 1999;86(5):701.

Peters CL, Shirley B, Erickson J. The Effect of a New Multimodal Perioperative Anesthetic Regimen on Postoperative Pain, Side Effects, Rehabilitation, and Length of Hospital Stay After Total Joint Arthroplasty. *Journal of Arthroplasty* 2006;21(6 SUPPL.):132-138.

Phillips CB, Barrett JA, Losina E et al. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. *J Bone Joint Surg Am* 2003;85-A(1):20-26.

Piano G, Ketteler ER, Prachand V et al. Safety, feasibility, and outcome of retrievable vena cava filters in high-risk surgical patients. *J Vasc Surg* 2007;45(4):784-788.

Picker SM, Kaleta T, Hekmat K, Kampe S, Gathof BS. Antiplatelet therapy preceding coronary artery surgery: implications for bleeding, transfusion requirements and outcome. *Eur J Anaesthesiol* 2007;24(4):332-339.

Pidala MJ, Donovan DL, Kepley RF. A prospective study on intermittent pneumatic compression in the prevention of deep vein thrombosis in patients undergoing total hip or total knee replacement. *Surg Gynecol Obstet* 1992;175(1):47-51.

Pieri S, Agresti P, Morucci M, de' ML. Optional vena cava filters: preliminary experience with a new vena cava filter. *Radiol Med* 2003;105(1-2):56-62.

Pineo GF, Hull RD. Prophylaxis of venous thromboembolism following orthopedic surgery: Mechanical and pharmacological approaches and the need for extended prophylaxis. *Thrombosis and Haemostasis* 1999;82(2):918-924.

Pinkau T, Ndrepepa G, Kastrati A et al. Glycoprotein IIb/IIIa receptor inhibition with abciximab during percutaneous coronary interventions increases the risk of bleeding in patients with impaired renal function. *Cardiology* 2008;111(4):247-253.

Pinto DJ. Controlled trial of an anticoagulant (warfarin sodium) in the prevention of venous thrombosis following hip surgery. *Br J Surg* 1970;57(5):349-352.

Piovella F, Crippa L, Barone M et al. Normalization rates of compression ultrasonography in patients with a first episode of deep vein thrombosis of the lower limbs: association with recurrence and new thrombosis. *Haematologica* 2002;87(5):515-522.

Piovella F, Wang CJ, Lu H et al. Deep-vein thrombosis rates after major orthopedic surgery in Asia. An epidemiological study based on postoperative screening with centrally adjudicated bilateral venography. *J Thromb Haemost* 2005;3(12):2664-2670.

Pitto RP, Hamer H, Heiss-Dunlop W, Kuehle J. Mechanical prophylaxis of deep-vein thrombosis after total hip replacement a randomised clinical trial. *J Bone Joint Surg Br* 2004;86(5):639-642.

Pitto RP, Young S. Foot pumps without graduated compression stockings for prevention of deep-vein thrombosis in total joint replacement: efficacy, safety and patient compliance. A comparative, prospective clinical trial. *Int Orthop* 2008;32(3):331-336.

Planes A, Vochelle N, Ferru J et al. Enoxaparine low molecular weight heparin: its use in the prevention of deep venous thrombosis following total hip replacement. *Haemostasis* 1986;16(2):152-158.

Planes A, Vochelle N, Fagola M. Total hip replacement and deep vein thrombosis. A venographic and necropsy study. *J Bone Joint Surg Br* 1990;72(1):9-13.

Planes A, Vochelle N, Fagola M et al. Once-daily dosing of enoxaparin (a low molecular weight heparin) in prevention of deep vein thrombosis after total hip replacement. *Acta Chir Scand Suppl* 1990;556:108-115.

Planes A, Vochelle N, Fagola M et al. Efficacy and safety of a perioperative enoxaparin regimen in total hip replacement under various anesthesias. *Am J Surg* 1991;161(4):525-531.

Planes A. Comparison of antithrombotic efficacy and haemorrhagic side-effects of Clivarin versus enoxaparin in patients undergoing total hip replacement surgery. *Blood Coagul Fibrinolysis* 1993;4 Suppl 1:S33-S35.

Planes A, Vochelle N, Darmon JY et al. Efficacy and safety of postdischarge administration of enoxaparin in the prevention of deep venous thrombosis after total hip replacement. A prospective randomised double-blind placebo-controlled trial. *Drugs* 1996;52 Suppl 7:47-54.

Planes A, Vochelle N. The post-hospital discharge venous thrombosis risk of the orthopedic patient. *Orthopedics* 1997;20 Suppl:18-21.

Planes A, Vochelle N, Fagola M, Bellaud M. Comparison of two low-molecular-weight heparins for the prevention of postoperative venous thromboembolism after elective hip surgery. Reviparin Study Group. *Blood Coagul Fibrinolysis* 1998;9(6):499-505.

Planes A, Vochelle N, Darmon JY. Out-of-hospital prophylaxis with low-molecularweight heparin in hip surgery: the French study--venographic outcome at 35 days. *Chest* 1998;114(2 Suppl Evidence):125S-129S.

Planes A. An equivalence study of two low-molecular-weight heparins in the prevention and treatment of deep-vein thrombosis after total hip replacement. *Semin Thromb Hemost* 2000;26 Suppl 1:57-60.

Plumb JM, Clemens A, Monz BU. Cost effectiveness of venous thromboembolism pharmacological prophylaxis in total hip and knee replacement: A systematic review. *Pharmacoeconomics* 2010;28(9):781-782.

Pola E, Papaleo P, Santoliquido A, Gasparini G, Aulisa L, De SE. Clinical factors associated with an increased risk of perioperative blood transfusion in nonanemic patients undergoing total hip arthroplasty. *J Bone Joint Surg Am* 2004;86-A(1):57-61.

Pookarnjanamorakot C, Sirisriro R, Eurvilaichit C, Jaovisidha S, Koysombatolan I. The incidence of deep vein thrombosis and pulmonary embolism after total knee arthroplasty: the screening study by radionuclide venography. *J Med Assoc Thai* 2004;87(8):869-876.

Pothula S, Sanchala VT, Nagappala B, Inchiosa MA, Jr. The effect of preoperative antiplatelet/anticoagulant prophylaxis on postoperative blood loss in cardiac surgery. *Anesth Analg* 2004;98(1):4-10, table.

Powell DL, Whitener CJ, Dye CE, Ballard JO, Shaffer ML, Eyster ME. Knee and hip arthroplasty infection rates in persons with haemophilia: a 27 year single center experience during the HIV epidemic. *Haemophilia* 2005;11(3):233-239.

Powell RS, Pulido P, Tuason MS, Colwell J, Ezzet KA. Bilateral vs Unilateral Total Knee Arthroplasty: A Patient-Based Comparison of Pain Levels and Recovery of Ambulatory Skills. *Journal of Arthroplasty* 2006;21(5):642-649.

Prasad N, Padmanabhan V, Mullaji A. Blood loss in total knee arthroplasty: an analysis of risk factors. *Int Orthop* 2007;31(1):39-44.

Prejbeanu R, Vermesan H, Dragulescu SI et al. Thromboembolic risk after knee endoprosthesis. *Eur Rev Med Pharmacol Sci* 2007;11(5):297-300.

Prins MH, Hirsh J. A comparison of general anesthesia and regional anesthesia as a risk factor for deep vein thrombosis following hip surgery: a critical review. *Thromb Haemost* 1990;64(4):497-500.

Pristipino C, Pelliccia F, Granatelli A et al. Comparison of access-related bleeding complications in women versus men undergoing percutaneous coronary catheterization using the radial versus femoral artery. *Am J Cardiol* 2007;99(9):1216-1221.

Prokubovsky VI, Burov VP, Kapranov SA, Balan AN. The use of the Zontik cava filter for temporary implantation to the inferior vena cava. *Angiol Sosud Khir* 2005;11(3):27-35.

Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. *Clin Orthop Relat Res* 2008;466(7):1710-1715.

Pulido L, Parvizi J, Macgibeny M et al. In hospital complications after total joint arthroplasty. *J Arthroplasty* 2008;23(6 Suppl 1):139-145.

Putz P, Buyse H, Delvaux D et al. Triflusal versus acetylsalicylic acid: a double-blind study for the prophylaxis of deep vein thrombosis after hip surgery. *Acta Chir Belg* 1991;91(6):269-276.

Quinlan DJ, Eikelboom JW, Dahl OE, Eriksson BI, Sidhu PS, Hirsh J. Association between asymptomatic deep vein thrombosis detected by venography and symptomatic venous thromboembolism in patients undergoing elective hip or knee surgery. *J Thromb Haemost* 2007;5(7):1438-1443.

Rader CP, Kramer C, Konig A, Gohlke F, Eulert J. Comparison of low molecular weight and PTT adjusted heparin for thromboprophylaxis in patients with total hip and total knee arthroplasty. *Zeitschrift fur Orthopadie und Ihre Grenzgebiete* 1997;135:52-57.

Ragucci MV, Leali A, Moroz A, Fetto J. Comprehensive deep venous thrombosis prevention strategy after total-knee arthroplasty. *Am J Phys Med Rehabil* 2003;82(3):164-168.

Rahme E, Dasgupta K, Burman M et al. Postdischarge thromboprophylaxis and mortality risk after hip-or knee-replacement surgery. *CMAJ* 2008;178(12):1545-1554.

Ramirez JI, Vassiliu P, Gonzalez-Ruiz C et al. Sequential compression devices as prophylaxis for venous thromboembolism in high-risk colorectal surgery patients: reconsidering American Society of Colorectal Surgeons parameters. *Am Surg* 2003;69(11):941-945.

Ramos J, Perrotta C, Badariotti G, Berenstein G. Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy. *Cochrane Database Syst Rev* 2008;(4):CD005259.

Ramos R, Salem BI, De Pawlikowski MP, Coordes C, Eisenberg S, Leidenfrost R. The efficacy of pneumatic compression stockings in the prevention of pulmonary embolism after cardiac surgery. *Chest* 1996;109(1):82-85.

Rashiq S, Finegan BA. The effect of spinal anesthesia on blood transfusion rate in total joint arthroplasty. *Can J Surg* 2006;49(6):391-396.

Raslan AM, Fields JD, Bhardwaj A. Prophylaxis for venous thrombo-embolism in neurocritical care: a critical appraisal. *Neurocrit Care* 2010;12(2):297-309.

Ray MJ, Hawson GA, Just SJ, McLachlan G, O'Brien M. Relationship of platelet aggregation to bleeding after cardiopulmonary bypass. *Ann Thorac Surg* 1994;57(4):981-986.

Reitman RD, Emerson RH, Higgins LL, Tarbox TR. A multimodality regimen for deep venous thrombosis prophylaxis in total knee arthroplasty. *J Arthroplasty* 2003;18(2):161-168.

Restrepo C, Parvizi J, Dietrich T, Einhorn TA. Safety of simultaneous bilateral total knee arthroplasty. A meta-analysis. *J Bone Joint Surg Am* 2007;89(6):1220-1226.

Rhodes DA, Severson EP, Hodrick JT, Dunn HK, Hofmann AA. Discontinuation of warfarin is unnecessary in total knee arthroplasty. *Clin Orthop Relat Res* 2010;468(1):120-126.

Ricco J-B, Dubreuil F, Reynaud P et al. The LGM Vena-Tech caval filter: Results of a multicenter study. *Annals of Vascular Surgery* 1995;9(SUPPL.):S89-S100.

Ricotta S, Iorio A, Parise P, Nenci GG, Agnelli G. Post discharge clinically overt venous thromboembolism in orthopaedic surgery patients with negative venography--an overview analysis. *Thromb Haemost* 1996;76(6):887-892.

Riley LH, Jr., Hungerford DS. Geometric total knee replacement for treatment of the rheumatoid knee. *J Bone Joint Surg Am* 1978;60(4):523-527.

Ringwald J, Berger A, Adler W, Kraus C, Pitto RP. Genetic polymorphisms in venous thrombosis and pulmonary embolism after total hip arthroplasty: a pilot study. *Clin Orthop Relat Res* 2009;467(6):1507-1515.

Ritter MA, HamiltonCW. A comparative analysis of warfarin and low-dose heparin as thromboembolism prophylaxis in total hip replacement patinets. *Ann Surg* 1975;181(6):896-901.

Ritter MA, Harty LD, Davis KE, Meding JB, Berend M. Simultaneous bilateral, staged bilateral, and unilateral total knee arthroplasty. A survival analysis. *J Bone Joint Surg Am* 2003;85-A(8):1532-1537.

Robertson KA, Bertot AJ, Wolfe MW, Barrack RL. Patient compliance and satisfaction with mechanical devices for preventing deep venous thrombosis after joint replacement. *J South Orthop Assoc* 2000;9(3):182-186.

Robinson CM, Christie J, Malcolm-Smith N. Nonsteroidal antiinflammatory drugs, perioperative blood loss, and transfusion requirements in elective hip arthroplasty. *J Arthroplasty* 1993;8(6):607-610.

Robinson KS, Anderson DR, Gross M et al. Accuracy of screening compression ultrasonography and clinical examination for the diagnosis of deep vein thrombosis after total hip or knee arthroplasty. *Can J Surg* 1998;41(5):368-373.

Robinson PJ, Billah B, Leder K, Reid CM. Factors associated with deep sternal wound infection and haemorrhage following cardiac surgery in Victoria. *Interact Cardiovasc Thorac Surg* 2007;6(2):167-171.

Rocha AT, de Vasconcellos AG, da Luz Neto ER, Araujo DM, Alves ES, Lopes AA. Risk of venous thromboembolism and efficacy of thromboprophylaxis in hospitalized obese medical patients and in obese patients undergoing bariatric surgery. *Obes Surg* 2006;16(12):1645-1655.

Rocha E, Alfaro MJ, Paramo JA, Canadell JM. Preoperative identification of patients at high risk of deep venous thrombosis despite prophylaxis in total hip replacement. *Thromb Haemost* 1988;59(1):93-95.

Rodriguez-Merchan EC, Wiedel JD, Wallny T et al. Elective orthopaedic surgery for inhibitor patients. *Haemophilia* 2003;9(5):625-631.

Rodriguez-Merchan EC. Total knee replacement in haemophilic arthropathy. *J Bone Joint Surg Br* 2007;89(2):186-188.

Rodriguez JL, Lopez JM, Proctor MC et al. Early placement of prophylactic vena caval filters in injured patients at high risk for pulmonary embolism. *J Trauma* 1996;40(5):797-802.

Rogers BA, Cowie A, Alcock C, Rosson JW. Identification and treatment of anaemia in patients awaiting hip replacement. *Ann R Coll Surg Engl* 2008;90(6):504-507.

Rogers FB, Shackford SR, Ricci MA, Wilson JT, Parsons S. Routine prophylactic vena cava filter insertion in severely injured trauma patients decreases the incidence of pulmonary embolism. *J Am Coll Surg* 1995;180(6):641-647.

Rogers FB, Shackford SR, Ricci MA, Huber BM, Atkins T. Prophylactic vena cava filter insertion in selected high-risk orthopaedic trauma patients. *J Orthop Trauma* 1997;11(4):267-272.

Rogers FB, Strindberg G, Shackford SR et al. Five-year follow-up of prophylactic vena cava filters in high-risk trauma patients. *Arch Surg* 1998;133(4):406-411.

Rogers PH, Walsh PN, Marder VJ et al. Controlled trial of low-dose heparin and sulfinpyrazone to prevent venous thromboembolism after operation on the hip. *J Bone Joint Surg Am* 1978;60(6):758-762.

Rosberg B, Fredin H, Gustafson C. Anesthetic techniques and surgical blood loss in total hip arthroplasty. *Acta Anaesthesiol Scand* 1982;26(3):189-193.

Rosencher N, Bonnet MP, Sessler DI. Selected new antithrombotic agents and neuraxial anaesthesia for major orthopaedic surgery: management strategies. *Anaesthesia* 2007;62(11):1154-1160.

Rosencher N, Zufferey P, Samama C-M. Definition of major bleeding in surgery: An anesthesiologist's point of view: A rebuttal. *Journal of Thrombosis and Haemostasis* 2010;8(6):1442-1443.

Rosenow EC, III. Venous and pulmonary thromboembolism: an algorithmic approach to diagnosis and management. *Mayo Clin Proc* 1995;70(1):45-49.

Rosenthal D, McKinsey JF, Levy AM, Lamis PA, Clark MD. Use of the Greenfield filter in patients with major trauma. *Cardiovasc Surg* 1994;2(1):52-55.

Rosenthal D, Swischuk JL, Cohen SA, Wellons ED. OptEase retrievable inferior vena cava filter: initial multicenter experience. *Vascular* 2005;13(5):286-289.

Rosenthal D, Wellons ED, Kin ML, Bikk A, Henderson VJ. Retrievable inferior vena cava filters: Initial clinical results. *Annals of Vascular Surgery* 2006;20(1):157-165.

Rosenthal D, Kochupura PV, Wellons ED, Burkett AB, Methodius-Rayford WC. Gunther Tulip and Celect IVC filters in multiple-trauma patients. *J Endovasc Ther* 2009;16(4):494-499.

Rosner MK, Kuklo TR, Tawk R, Moquin R, Ondra SL. Prophylactic placement of an inferior vena cava filter in high-risk patients undergoing spinal reconstruction. *Neurosurg Focus* 2004;17(4):E6.

Ruban P, Yeo SJ, Seow KH, Tan SK, Ng SC. Deep vein thrombosis after total knee replacement. *Ann Acad Med Singapore* 2000;29(4):428-433.

Ruiz-Nodar JM, Marin F, Hurtado JA et al. Anticoagulant and antiplatelet therapy use in 426 patients with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis. *J Am Coll Cardiol* 2008;51(8):818-825.

Ryan DH, Crowther MA, Ginsberg JS, Francis CW. Relation of factor V Leiden genotype to risk for acute deep venous thrombosis after joint replacement surgery. *Ann Intern Med* 1998;128(4):270-276.

Ryan MG, Westrich GH, Potter HG et al. Effect of mechanical compression on the prevalence of proximal deep venous thrombosis as assessed by magnetic resonance venography. *J Bone Joint Surg Am* 2002;84-A(11):1998-2004.

Sachdeva A, Dalton M, Amaragiri SV, Lees T. Elastic compression stockings for prevention of deep vein thrombosis (Cochrane review) [with consumer summary]. *Cochrane*Issue 7\.

Sachs RA, Smith JH, Kuney M, Paxton L. Does anticoagulation do more harm than good?: A comparison of patients treated without prophylaxis and patients treated with low-dose warfarin after total knee arthroplasty. *J Arthroplasty* 2003;18(4):389-395.

Sadr AO, Bellocco R, Eriksson K, Adami J. The impact of tobacco use and body mass index on the length of stay in hospital and the risk of post-operative complications among patients undergoing total hip replacement. *Journal of Bone and Joint Surgery - Series B* 2006;88(10):1316-1320.

Sagar S, Nairn D, Stamatakis JD et al. Efficacy of low-dose heparin in prevention of extensive deep-vein thrombosis in patients undergoing total-hip replacement. *Lancet* 1976;1(7970):1151-1154.

Sakai DN, Amstutz HC. Prevention of thromboembolic phenomena. *Clin Orthop Relat Res* 1976;(121):108-112.

Sakon M, Maehara Y, Yoshikawa H, Akaza H. Incidence of venous thromboembolism following major abdominal surgery: a multi-center, prospective epidemiological study in Japan. *J Thromb Haemost* 2006;4(3):581-586.

Salam S, Yusuf H, Milosevic A. Bleeding after dental extractions in patients taking warfarin. *Br J Oral Maxillofac Surg* 2007;45(6):463-466.

Salazar CA, Malaga G, Malasquez G. Direct thrombin inhibitors versus vitamin K antagonists or low molecular weight heparins for prevention of venous thromboembolism following total hip or knee replacement. *Cochrane Database Syst Rev* 2010;4:CD005981.

Saleh K, Olson M, Resig S et al. Predictors of wound infection in hip and knee joint replacement: results from a 20 year surveillance program. *J Orthop Res* 2002;20(3):506-515.

Salido JA, Marin LA, Gomez LA, Zorrilla P, Martinez C. Preoperative hemoglobin levels and the need for transfusion after prosthetic hip and knee surgery: analysis of predictive factors. *J Bone Joint Surg Am* 2002;84-A(2):216-220.

Salvati EA, Ranawat CS, Wilson PD, Jr. Total hip replacement in rheumatoid arthritis. *Surg Gynecol Obstet* 1972;134(6):967-973.

Salvati EA, Lachiewicz P. Thromboembolism following total hip-replacement arthroplasty. The efficicy of dextran-aspirin and dextran-warfarin in prophylaxis. *J Bone Joint Surg Am* 1976;58(7):921-925.

Salvati EA, Hughes P, Lachiewicz P. Bilateral total hip-replacement arthroplasty in one stage. *J Bone Joint Surg Am* 1978;60(5):640-644.

Salvati EA, Della Valle AG, Westrich GH et al. The John Charnley Award: heritable thrombophilia and development of thromboembolic disease after total hip arthroplasty. *Clin Orthop Relat Res* 2005;441:40-55.

Salvati EA, Sharrock NE, Westrich G, Potter HG, Valle AG, Sculco TP. The 2007 ABJS Nicolas Andry Award: three decades of clinical, basic, and applied research on thromboembolic disease after THA: rationale and clinical results of a multimodal prophylaxis protocol. *Clin Orthop Relat Res* 2007;459:246-254.

Samama CM, Vray M, Barre J et al. Extended venous thromboembolism prophylaxis after total hip replacement: a comparison of low-molecular-weight heparin with oral anticoagulant. *Arch Intern Med* 2002;162(19):2191-2196.

Samama CM, Albaladejo P, Benhamou D et al. Venous thromboembolism prevention in surgery and obstetrics: clinical practice guidelines. *Eur J Anaesthesiol* 2006;23(2):95-116.

Samama MM, Dahl OE, Quinlan DJ, Mismetti P, Rosencher N. Quantification of risk factors for venous thromboembolism: a preliminary study for the development of a risk assessment tool. *Haematologica* 2003;88(12):1410-1421.

Samama MM, Dahl OE, Mismetti P et al. An electronic tool for venous thromboembolism prevention in medical and surgical patients. *Haematologica* 2006;91(1):64-70.

Saour J, Al HA, El SM, Bakhsh E, Mammo L. Inferior vena caval filters: 5 years of experience in a tertiary care center. *Ann Saudi Med* 2009;29(6):446-449.

Sapala JA, Wood MH, Schuhknecht MP, Sapala MA. Fatal pulmonary embolism after bariatric operations for morbid obesity: a 24-year retrospective analysis. *Obes Surg* 2003;13(6):819-825.

Sarani B, Chun A, Venbrux A. Role of optional (retrievable) IVC filters in surgical patients at risk for venous thromboembolic disease. *Journal of the American College of Surgeons* 2005;201(6):957-964.

Sarasin FP, Bounameaux H. Antithrombotic strategy after total hip replacement. A costeffectiveness analysis comparing prolonged oral anticoagulants with screening for deep vein thrombosis. *Arch Intern Med* 1996;156(15):1661-1668.

Sarmiento A, Goswami AD. Thromboembolic prophylaxis with use of aspirin, exercise, and graded elastic stockings or intermittent compression devices in patients managed with total hip arthroplasty. *J Bone Joint Surg Am* 1999;81(3):339-346.

Sarmiento A, Goswami A. Thromboembolic disease prophylaxis in total hip arthroplasty. *Clin Orthop Relat Res* 2005;(436):138-143.

Sautter RD, Koch EL, Myers WO et al. Aspirin-sulfinpyrazone in prophylaxis of deep venous thrombosis in total hip replacement. *JAMA* 1983;250(19):2649-2654.

Schellong SM, Beyer J, Kakkar AK et al. Ultrasound screening for asymptomatic deep vein thrombosis after major orthopaedic surgery: the VENUS study. *J Thromb Haemost* 2007;5(7):1431-1437.

Schick M, Stucki G, Rodriguez M et al. Haemophilic; arthropathy: Assessment of quality of life after total knee arthroplasty. *Clinical Rheumatology* 1999;18(6):468-472.

Schiff RL, Kahn SR, Shrier I et al. Identifying orthopedic patients at high risk for venous thromboembolism despite thromboprophylaxis. *Chest* 2005;128(5):3364-3371.

Schindler OS, Dalziel R. Post-thrombotic syndrome after total hip or knee arthroplasty: incidence in patients with asymptomatic deep venous thrombosis. *J Orthop Surg (Hong Kong)* 2005;13(2):113-119.

Schleich JM, Morla O, Laurent M, Langella B, Chaperon J, Almange C. Long-term follow-up of percutaneous vena cava filters: a prospective study in 100 consecutive patients. *Eur J Vasc Endovasc Surg* 2001;21(5):450-457.

Schondorf TH, Weber U. Prevention of deep vein thrombosis in orthopedic surgery with the combination of low dose heparin plus either dihydroergotamine or dextran. *Scand J Haematol Suppl* 1980;36:126-140.

Schuster R, Hagedorn JC, Curet MJ, Morton JM. Retrievable inferior vena cava filters may be safely applied in gastric bypass surgery. *Surg Endosc* 2007;21(12):2277-2279.

Schwarcz TH, Matthews MR, Hartford JM et al. Surveillance venous duplex is not clinically useful after total joint arthroplasty when effective deep venous thrombosis prophylaxis is used. *Ann Vasc Surg* 2004;18(2):193-198.

Schwartsmann CR, Costa CR, Drumond SN et al. Randomized controlled trial, comparative to evaluate the efficacy and security of enoxaparin comparated by heparin in prophylaxis of thromboembolism in patients with arthroplasty replacement hip. *Revista Brasileira de Ortopedia* 1996;31:797-808.

Sculco TP, Ranawat C. The use of spinal anesthesia for total hip-replacement arthroplasty. *J Bone Joint Surg Am* 1975;57(2):173-177.

Sculco TP, Colwell J, Pellegrini J, Westrich GH, Bottner F. Prophylaxis against venous thromboembolic disease in patients having a total hip or knee arthroplasty. *Journal of Bone and Joint Surgery - Series A* 2002;84(3):466-477.

Seagroatt V, Tan HS, Goldacre M, Bulstrode C, Nugent I, Gill L. Elective total hip replacement: incidence, emergency readmission rate, and postoperative mortality. *BMJ* 1991;303(6815):1431-1435.

Seah VW, Singh G, Yang KY, Yeo SJ, Lo NN, Seow KH. Thirty-day mortality and morbidity after total knee arthroplasty. *Ann Acad Med Singapore* 2007;36(12):1010-1012.

Seddighzadeh A, Zurawska U, Shetty R, Goldhaber SZ. Venous thromboembolism in patients undergoing surgery: low rates of prophylaxis and high rates of filter insertion. *Thromb Haemost* 2007;98(6):1220-1225.

Segal JB, Dzik WH. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: An evidence-based review. *Transfusion* 2005;45(9):1413-1425.

Seruya M, Venturi ML, Iorio ML, Davison SP. Efficacy and safety of venous thromboembolism prophylaxis in highest risk plastic surgery patients. *Plast Reconstr Surg* 2008;122(6):1701-1708.

Seshadri T, Tran H, Lau KK, Tan B, Gan TE. Ins and outs of inferior vena cava filters in patients with venous thromboembolism: the experience at Monash Medical Centre and review of the published reports. *Intern Med J* 2008;38(1):38-43.

Severinsen MT, Kristensen SR, Johnsen SP, Dethlefsen C, Tjonneland A, Overvad K. Anthropometry, body fat, and venous thromboembolism: a Danish follow-up study. *Circulation* 2009;120(19):1850-1857.

Shaieb MD, Watson BN, Atkinson RE. Bleeding complications with enoxaparin for deep venous thrombosis prophylaxis. *J Arthroplasty* 1999;14(4):432-438.

Shalom A, Klein D, Friedman T, Westreich M. Lack of complications in minor skin lesion excisions in patients taking aspirin or warfarin products. *Am Surg* 2008;74(4):354-357.

Sharma P, McDonald GB, Banaji M. The risk of bleeding after percutaneous liver biopsy: relation to platelet count. *J Clin Gastroenterol* 1982;4(5):451-453.

Sharma V, Morgan PM, Cheng EY. Factors influencing early rehabilitation after tha: A systematic review. *Clinical Orthopaedics and Related Research* 2009;467(6):1400-1411.

Sharrock NE, Haas SB, Hargett MJ, Urquhart B, Insall JN, Scuderi G. Effects of epidural anesthesia on the incidence of deep-vein thrombosis after total knee arthroplasty. *J Bone Joint Surg Am* 1991;73(4):502-506.

Sharrock NE, Hargett MJ, Urquhart B et al. Factors affecting deep vein thrombosis rate following total knee arthroplasty under epidural anesthesia. *J Arthroplasty* 1993;8(2):133-139.

Sharrock NE, Ranawat CS, Urquhart B, Peterson M. Factors influencing deep vein thrombosis following total hip arthroplasty under epidural anesthesia. *Anesth Analg* 1993;76(4):765-771.

Sharrock NE, Cazan MG, Hargett MJL, Williams-Russo P, Wilson J. Changes in mortality after total hip and knee arthroplasty over a ten- year period. *Anesthesia and Analgesia* 1995;80(2):242-248.

Sharrock NE, Go G, Sculco TP, Salvati EA, Westrich GH, Harpel PC. Dose response of intravenous heparin on markers of thrombosis during primary total hip replacement. *Anesthesiology* 1999;90(4):981-987.

Sharrock NE, Gonzalez D, V, Go G, Lyman S, Salvati EA. Potent anticoagulants are associated with a higher all-cause mortality rate after hip and knee arthroplasty. *Clin Orthop Relat Res* 2008;466(3):714-721.

Shepherd A, Mills C. Fatal pulmonary embolism following hip and knee replacement. A study of 2153 cases using routine mechanical prophylaxis and selective chemoprophylaxis. *Hip Int* 2006;16(1):53-56.

Sheppeard H, Henson J, Ward DJ, O'Connor BT. A clinico-pathological study of fatal pulmonary embolism in a specialist orthopaedic hospital. *Arch Orthop Trauma Surg* 1981;99(1):65-71.

Sheth NP, Lieberman JR, Della Valle CJ. DVT Prophylaxis in Total Joint Reconstruction. *Orthopedic Clinics of North America* 2010;41(2):273-280.

Shiffman ML, Farrel MT, Yee YS. Risk of bleeding after endoscopic biopsy or polypectomy in patients taking aspirin or other NSAIDS. *Gastrointest Endosc* 1994;40(4):458-462.

Shih CH, Ho WB. One-stage versus two-stage bilateral autophor ceramic total hip arthroplasty. *Clin Orthop Relat Res* 1985;(193):141-145.

Shimizu I, Jellinek NJ, Dufresne RG, Li T, Devarajan K, Perlis C. Multiple antithrombotic agents increase the risk of postoperative hemorrhage in dermatologic surgery. *J Am Acad Dermatol* 2008;58(5):810-816.

Shiota N, Sato T, Nishida K et al. Changes in LPIA D-dimer levels after total hip or knee arthroplasty relevant to deep-vein thrombosis diagnosed by bilateral ascending venography. *J Orthop Sci* 2002;7(4):444-450.

Shorr AF, Kwong LM, Sarnes M, Happe L, Farrelly E, Mody-Patel N. Venous thromboembolism after orthopedic surgery: implications of the choice for prophylaxis. *Thromb Res* 2007;121(1):17-24.

Shrader MW, Morrey BF. Insall Award paper. Primary TKA in patients with lymphedema. *Clin Orthop Relat Res* 2003;(416):22-26.

Siddique RM, Siddique MI, Connors AF, Jr., Rimm AA. Thirty-day case-fatality rates for pulmonary embolism in the elderly. *Arch Intern Med* 1996;156(20):2343-2347.

Siddiqui ZI, Cepeda MS, Denman W, Schumann R, Carr DB. Continuous lumbar plexus block provides improved analgesia with fewer side effects compared with systemic opioids after hip arthroplasty: a randomized controlled trial. *Reg Anesth Pain Med* 2007;32(5):393-398.

Sikorski JM, Hampson WG, Staddon GE. The natural history and aetiology of deep vein thrombosis after total hip replacement. *J Bone Joint Surg Br* 1981;63-B(2):171-177.

Silbersack Y, Taute BM, Hein W, Podhaisky H. Prevention of deep-vein thrombosis after total hip and knee replacement. Low-molecular-weight heparin in combination with intermittent pneumatic compression. *J Bone Joint Surg Br* 2004;86(6):809-812.

Silvergleid AJ, Bernstein R, Burton DS, Tanner JB, Silverman JF, Schrier SL. ASAdipyridamole prophylaxis in elective total hip replacement. *Orthopedics* 1978;1(1):19-25.

Singelyn FJ, Deyaert M, Joris D, Pendeville E, Gouverneur JM. Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous three-in-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty. *Anesth Analg* 1998;87(1):88-92.

Singelyn FJ, Ferrant T, Malisse MF, Joris D. Effects of intravenous patient-controlled analgesia with morphine, continuous epidural analgesia, and continuous femoral nerve sheath block on rehabilitation after unilateral total-hip arthroplasty. *Reg Anesth Pain Med* 2005;30(5):452-457.

Sirichindakul B, Chanwat R, Nonthasoot B, Suphapol J, Nivatvongs S. Risk factors associated with major intraoperative blood loss in hepatic resection for hepatobiliary tumor. *J Med Assoc Thai* 2005;88 Suppl 4:S54-S58.

Skedgel C, Goeree R, Pleasance S, Thompson K, O'brien B, Anderson D. The costeffectiveness of extended-duration antithrombotic prophylaxis after total hip arthroplasty. *J Bone Joint Surg Am* 2007;89(4):819-828.

Skoutakis VA. Danaparoid in the prevention of thromboembolic complications. *Ann Pharmacother* 1997;31(7-8):876-887.

Sliva CD, Callaghan JJ, Goetz DD, Taylor SG. Staggered bilateral total knee arthroplasty performed four to seven days apart during a single hospitalization. *J Bone Joint Surg Am* 2005;87(3):508-513.

Smith DM, Oliver CH, Ryder CT, Stinchfield FE. Complications of Austin Moore arthroplasty. Their incidence and relationship to potential predisposing factors. *J Bone Joint Surg Am* 1975;57(1):31-33.

Smith PS, Orchard PJ, Lekas MD. Predicting bleeding in common ear, nose, and throat procedures: a prospective study. *R I Med J* 1990;73(3):103-106.

Smith SF, Simpson JM, Sekhon LH. Prophylaxis for deep venous thrombosis in neurosurgical oncology: review of 2779 admissions over a 9-year period. *Neurosurg Focus* 2004;17(4):E4.

Smoot RL, Koch CA, Heller SF et al. Inferior vena cava filters in trauma patients: Efficacy, morbidity, and retrievability. *Journal of Trauma - Injury, Infection and Critical Care* 2010;68(4):899-903.

Soballe K, Christensen F, Luxhoj T. Hip replacement in obese patients. *Acta Orthop Scand* 1987;58(3):223-225.

Solimeno LP, Mancuso ME, Pasta G, Santagostino E, Perfetto S, Mannucci PM. Factors influencing the long-term outcome of primary total knee replacement in haemophiliacs: a review of 116 procedures at a single institution. *Br J Haematol* 2009;145(2):227-234.

Solis G, Saxby T. Incidence of DVT following surgery of the foot and ankle. *Foot Ankle Int* 2002;23(5):411-414.

Solis MM, Ranval TJ, Nix ML et al. Is anticoagulation indicated for asymptomatic postoperative calf vein thrombosis? *J Vasc Surg* 1992;16(3):414-418.

Solomon DH, Chibnik LB, Losina E et al. Development of a preliminary index that predicts adverse events after total knee replacement. *Arthritis Rheum* 2006;54(5):1536-1542.

Soohoo NF, Zingmond DS, Lieberman JR, Ko CY. Primary total knee arthroplasty in California 1991 to 2001: does hospital volume affect outcomes? *J Arthroplasty* 2006;21(2):199-205.

Soohoo NF, Lieberman JR, Ko CY, Zingmond DS. Factors predicting complication rates following total knee replacement. *J Bone Joint Surg Am* 2006;88(3):480-485.

Soreff J, Johnsson H, Diener L, Goransson L. Acetylsalicylic acid in a trial to diminish thromboembolic complications after elective hip surgery. *Acta Orthop Scand* 1975;46(2):246-255.

Sorensen JV, Borris LC, Lassen MR, Christiansen HM, Schott P, Olsen AD. Levels of thrombin--antithrombin-III complex and factor VIII activity in relation to post-operative deep vein thrombosis and influence of prophylaxis with a low-molecular-weight heparin. *Blood Coagul Fibrinolysis* 1990;1(4-5):389-392.

Sorensen JV, Borris LC, Lassen MR et al. Association between plasma levels of tissue plasminogen activator and postoperative deep vein thrombosis--influence of prophylaxis with a low molecular weight heparin. The Venous Thrombosis Group. *Thromb Res* 1990;59(1):131-138.

Sorensen TS, Jorgensen J. Mechanical prophylaxis against deep vein thrombosis in Charnley hip arthroplasty. *Acta Orthop Scand* 1981;52(1):69-72.

Soudry M, Binazzi R, Insall JN, Nordstrom TJ, Pellicci PM, Goulet JA. Successive bilateral total knee replacement. *J Bone Joint Surg Am* 1985;67(4):573-576.

Spaniolas K, Velmahos GC, Kwolek C, Gervasini A, De MM, Alam HB. Bedside placement of removable vena cava filters guided by intravascular ultrasound in the critically injured. *World J Surg* 2008;32(7):1438-1443.

Spencer FA, Moscucci M, Granger CB et al. Does comorbidity account for the excess mortality in patients with major bleeding in acute myocardial infarction? *Circulation* 2007;116(24):2793-2801.

Srinivasan AK, Grayson AD, Pullan DM, Fabri BM, Dihmis WC. Effect of preoperative aspirin use in off-pump coronary artery bypass operations. *Ann Thorac Surg* 2003;76(1):41-45.

Stamatakis JD, Kakkar VV, Lawrence D, Bentley PG, Nairn D, Ward V. Failure of aspirin to prevent postoperative deep vein thrombosis in patients undergoing total hip replacement. *Br Med J* 1978;1(6119):1031.

Stannard JP, Harris RM, Bucknell AL, Cossi A, Ward J, Arrington ED. Prophylaxis of deep venous thrombosis after total hip arthroplasty by using intermittent compression of the plantar venous plexus. *Am J Orthop (Belle Mead NJ)* 1996;25(2):127-134.

Stefanidis D, Paton BL, Jacobs DG et al. Extended interval for retrieval of vena cava filters is safe and may maximize protection against pulmonary embolism. *Am J Surg* 2006;192(6):789-794.

Steib A, Freys G, Lehmann C, Meyer C, Mahoudeau G. Intraoperative blood losses and transfusion requirements during adult liver transplantation remain difficult to predict. *Can J Anaesth* 2001;48(11):1075-1079.

Stern SH, Insall JN. Total knee arthroplasty in obese patients. *J Bone Joint Surg Am* 1990;72(9):1400-1404.

Stern SH, Wixson RL, O'Connor D. Evaluation of the safety and efficacy of enoxaparin and warfarin for prevention of deep vein thrombosis after total knee arthroplasty. *J Arthroplasty* 2000;15(2):153-158.

Stevens M, Harrison G, McGrail M. A modified fascia iliaca compartment block has significant morphine-sparing effect after total hip arthroplasty. *Anaesth Intensive Care* 2007;35(6):949-952.

Stiles KP, Hill C, LeBrun CJ, Reinmuth B, Yuan CM, Abbott KC. The impact of bleeding times on major complication rates after percutaneous real-time ultrasound-guided renal biopsies. *J Nephrol* 2001;14(4):275-279.

Strauss EJ, Egol KA, Alaia M, Hansen D, Bashar M, Steiger D. The use of retrievable inferior vena cava filters in orthopaedic patients. *J Bone Joint Surg Br* 2008;90(5):662-667.

Strebel N, Prins M, Agnelli G, Buller HR. Preoperative or postoperative start of prophylaxis for venous thromboembolism with low-molecular-weight heparin in elective hip surgery? *Arch Intern Med* 2002;162(13):1451-1456.

Stringer MD, Steadman CA, Hedges AR, Thomas EM, Morley TR, Kakkar VV. Deep vein thrombosis after elective knee surgery. An incidence study in 312 patients. *J Bone Joint Surg Br* 1989;71(3):492-497.

Struijk-Mulder MC, Ettema HB, Verheyen CC, Buller HR. Comparing consensus guidelines on thromboprophylaxis in orthopedic surgery. *J Thromb Haemost* 2010;8(4):678-683.

Stulberg BN, Dorr LD, Ranawat CS, Schneider R. Aspirin prophylaxis for pulmonary embolism following total hip arthroplasty. An incidence study. *Clin Orthop Relat Res* 1982;(168):119-123.

Stulberg BN, Insall JN, Williams GW, Ghelman B. Deep-vein thrombosis following total knee replacement. An analysis of six hundred and thirty-eight arthroplasties. *J Bone Joint Surg Am* 1984;66(2):194-201.

Stulberg BN, Francis CW, Pellegrini VD et al. Antithrombin III/low-dose heparin in the prevention of deep-vein thrombosis after total knee arthroplasty. A preliminary report. *Clin Orthop Relat Res* 1989;(248):152-157.

Suchman AL, Mushlin AI. How well does the activated partial thromboplastin time predict postoperative hemorrhage? *JAMA* 1986;256(6):750-753.

Sugano N, Miki H, Nakamura N, Aihara M, Yamamoto K, Ohzono K. Clinical efficacy of mechanical thromboprophylaxis without anticoagulant drugs for elective hip surgery in an Asian population. *J Arthroplasty* 2009;24(8):1254-1257.

Sun JCJ, Whitlock R, Cheng J et al. The effect of pre-operative aspirin on bleeding, transfusion, myocardial infarction, and mortality in coronary artery bypass surgery: A systematic review of randomized and observational studies. *European Heart Journal* 2008;29(8):1057-1071.

Suomalainen O, Kettunen K, Rissanen V, Karjalainen P, Lansimies E, Tanska S. Postoperative thromboembolism and risk factors in elective hip surgery. *Ann Chir Gynaecol* 1983;72(4):207-213.

Suomalainen O, Makela AE, Harju A, Jaroma H. Prevention of fatal pulmonary embolism with warfarin after total hip replacement. *Int Orthop* 1996;20(2):75-79.

Svensson PJ, Benoni G, Fredin H et al. Female gender and resistance to activated protein C (FV:Q506) as potential risk factors for thrombosis after elective hip arthroplasty. *Thromb Haemost* 1997;78(3):993-996.

Sweetland S, Green J, Liu B et al. Duration and magnitude of the postoperative risk of venous thromboembolism in middle aged women: prospective cohort study. *BMJ* 2009;339:b4583.

Swierstra BA, Stibbe J, Schouten HJ. Prevention of thrombosis after hip arthroplasty. A prospective study of preoperative oral anticoagulants. *Acta Orthop Scand* 1988;59(2):139-143.

Syed FF, Beeching NJ. Lower-limb deep-vein thrombosis in a general hospital: risk factors, outcomes and the contribution of intravenous drug use. *QJM* 2005;98(2):139-145.

Szucs G, Ajzner E, Muszbek L, Simon T, Szepesi K, Fulesdi B. Assessment of thrombotic risk factors predisposing to thromboembolic complications in prosthetic orthopedic surgery. *J Orthop Sci* 2009;14(5):484-490.

Taberner DA, Poller L, Thomson JM, Lemon G, Weighill FJ. Randomized study of adjusted versus fixed low dose heparin prophylaxis of deep vein thrombosis in hip surgery. *Br J Surg* 1989;76(9):933-935.

Tagariello G, Iorio A, Mannucci PM. Comparing joint arthroplasties in severe hemophilia A with severe hemophilia B. *Blood* 2009;114(23):4907-4908.

Tami TA, Parker GS, Taylor RE. Post-tonsillectomy bleeding: an evaluation of risk factors. *Laryngoscope* 1987;97(11):1307-1311.

Tamir L, Hendel D, Neyman C, Eshkenazi AU, Ben-Zvi Y, Zomer R. Sequential foot compression reduces lower limb swelling and pain after total knee arthroplasty. *J Arthroplasty* 1999;14(3):333-338.

Tasker A, Harbord R, Bannister GC. Meta-analysis of low molecular weight heparin versus placebo in patients undergoing total hip replacement and post-operative morbidity and mortality since their introduction. *Hip Int* 2010;20(1):64-74.

Teasell RW, Hsieh JT, Aubut JA, Eng JJ, Krassioukov A, Tu L. Venous thromboembolism after spinal cord injury. *Arch Phys Med Rehabil* 2009;90(2):232-245.

Teigland JC, Tjonnfjord GE, Evensen SA, Charania B. Knee arthroplasty in hemophilia. 5-12 year follow-up of 15 patients. *Acta Orthop Scand* 1993;64(2):153-156.

Teoh KH, Christakis GT, Weisel RD et al. Dipyridamole preserved platelets and reduced blood loss after cardiopulmonary bypass. *J Thorac Cardiovasc Surg* 1988;96(2):332-341.

Terhaar OA, Lyon SM, Given MF, Foster AE, Mc GF, Lee MJ. Extended interval for retrieval of Gunther Tulip filters. *J Vasc Interv Radiol* 2004;15(11):1257-1262.

Terjung B, Lemnitzer I, Dumoulin FL et al. Bleeding complications after percutaneous liver biopsy. An analysis of risk factors. *Digestion* 2003;67(3):138-145.

Thien TM, Ahnfelt L, Eriksson M, Stromberg C, Karrholm J. Immediate weight bearing after uncemented total hip arthroplasty with an anteverted stem: A prospective randomized comparison using radiostereometry. *Acta Orthopaedica* 2007;78(6):730-738.

Thomas WO, III, Ferrara JJ, Rodning CB. A retrospective analysis of inferior vena caval filtration for prevention of pulmonary embolization. *Am Surg* 1988;54(12):726-730.

Thompson CA, Kyle R, Gertz M, Heit J, Pruthi R, Pardanani A. Systemic AL amyloidosis with acquired factor X deficiency: A study of perioperative bleeding risk and treatment outcomes in 60 patients. *Am J Hematol* 2010;85(3):171-173.

Thorburn J, Louden JR, Vallance R. Spinal and general anaesthesia in total hip replacement: frequency of deep vein thrombosis. *Br J Anaesth* 1980;52(11):1117-1121.

Thurston AV, Briant SL. Aspirin and post-prostatectomy haemorrhage. *Br J Urol* 1993;71(5):574-576.

Ti LK, Cheong KF, Chen FG. Prediction of excessive bleeding after coronary artery bypass graft surgery: the influence of timing and heparinase on thromboelastography. *J Cardiothorac Vasc Anesth* 2002;16(5):545-550.

Ting AC, Cheng SW, Cheung GC, Wu LL, Hung KN, Fan YW. Perioperative deep vein thrombosis in Chinese patients undergoing craniotomy. *Surg Neurol* 2002;58(3-4):274-278.

Tompkins C, Cheng A, Dalal D et al. Dual antiplatelet therapy and heparin "bridging" significantly increase the risk of bleeding complications after pacemaker or implantable cardioverter-defibrillator device implantation. *J Am Coll Cardiol* 2010;55(21):2376-2382.

Tran AH, Lee G. Fondaparinux for prevention of venous thromboembolism in major orthopedic surgery. *Ann Pharmacother* 2003;37(11):1632-1643.

Traverso CI, Arcelus JI, Caprini JA, Kudrna JC. The effect of intravenous fixed-dose heparin during total hip arthroplasty on the incidence of deep-vein thrombosis. A randomized, double-blind trial in patients operated on with epidural anesthesia and controlled hypotension. *Journal of Bone and Joint Surgery* 1991;73/A:1575-1576.

Tremaine MD, Choroszy CJ, Menking SA et al. Duplex ultrasound evaluation for acute deep venous thrombosis in 962 total joint arthroplasty patients. *Journal of Vascular Technology* 1995;19(1):25-29.

Trigilio-Black CM, Ringley CD, McBride CL et al. Inferior vena cava filter placement for pulmonary embolism risk reduction in super morbidly obese undergoing bariatric surgery. *Surg Obes Relat Dis* 2007;3(4):461-464.

Trkulja V, Kolundzic R. Rivaroxaban vs dabigatran for thromboprophylaxis after joint-replacement surgery: exploratory indirect comparison based on meta-analysis of pivotal clinical trials. *Croat Med J* 2010;51(2):113-123.

Tsiridis E, Pavlou G, Charity J, Tsiridis E, Gie G, West R. The safety and efficacy of bilateral simultaneous total hip replacement: an analysis of 2063 cases. *J Bone Joint Surg Br* 2008;90(8):1005-1012.

Tsuji Y, Ohata K, Ito T et al. Risk factors for bleeding after endoscopic submucosal dissection for gastric lesions. *World Journal of Gastroenterology* 2010;16(23):2913-2917.

Tudor F, Hee C, Singh A, Akinola K, Cohen AT. Overview of current trends and the future of thromboprophylaxis in orthopaedic surgery. *Vascular Disease Prevention* 2007;4(2):171-175.

Turpie AG. Enoxaparin prophylaxis in elective hip surgery. *Acta Chir Scand Suppl* 1990;556:103-107.

Turpie AG. Efficacy of a postoperative regimen of enoxaparin in deep vein thrombosis prophylaxis. *Am J Surg* 1991;161(4):532-536.

Turpie AG, Eriksson BI, Lassen MR, Bauer KA. A meta-analysis of fondaparinux versus enoxaparin in the prevention of venous thromboembolism after major orthopaedic surgery. *J South Orthop Assoc* 2002;11(4):182-188.

Turpie AG, Bauer KA, Eriksson BI, Lassen MR. Fondaparinux vs enoxaparin for the prevention of venous thromboembolism in major orthopedic surgery: a meta-analysis of 4 randomized double-blind studies. *Arch Intern Med* 2002;162(16):1833-1840.

Turpie AG. Venous thromboembolism prophylaxis: role of factor xa inhibition by fondaparinux. *Surg Technol Int* 2004;13:261-267.

Turpie AG, Lensing AW, Fuji T, Boyle DA. Pharmacokinetic and clinical data supporting the use of fondaparinux 1.5 mg once daily in the prevention of venous thromboembolism in renally impaired patients. *Blood Coagul Fibrinolysis* 2009;20(2):114-121.

Turpie AG, Bauer KA, Davidson BL et al. A randomized evaluation of betrixaban, an oral factor Xa inhibitor, for prevention of thromboembolic events after total knee replacement (EXPERT). *Thromb Haemost* 2009;101(1):68-76.

Turpie AG, Lassen MR, Eriksson BI et al. Rivaroxaban for the prevention of venous thromboembolism after hip or knee arthroplasty. Pooled analysis of four studies. *Thromb Haemost* 2010;105(3).

Tveit DP, Hypolite I, Bucci J et al. Risk factors for hospitalizations resulting from pulmonary embolism after renal transplantation in the United States. *J Nephrol* 2001;14(5):361-368.

Uehara M, Funabashi N, Miyagi J et al. Comparison of three techniques for evaluation of de novo asymptomatic pulmonary arterial thrombosis following deep vein thrombosis in total knee arthroplasty. *Int J Cardiol* 2009.

Uhrbrand B, Jensen TT, Bendixen DK, Hartmann-Andersen JF. Perioperative analgesia by 3-in-one block in total hip arthroplasty. Prospective randomized blind study. *Acta Orthop Belg* 1992;58(4):417-419.

Unsworth-White MJ, Herriot A, Valencia O et al. Resternotomy for bleeding after cardiac operation: a marker for increased morbidity and mortality. *Ann Thorac Surg* 1995;59(3):664-667.

Urwyler N, Staub LP, Beran D et al. Is perioperative point-of-care prothrombin time testing accurate compared to the standard laboratory test? *Thromb Haemost* 2009;102(4):779-786.

Vaccarino GN, Thierer J, Albertal M et al. Impact of preoperative clopidogrel in off pump coronary artery bypass surgery: a propensity score analysis. *J Thorac Cardiovasc Surg* 2009;137(2):309-313.

Vaitkus PT, Dickens C, McGrath MK. Low bleeding risk from cardiac catheterization in patients with advanced liver disease. *Catheter Cardiovasc Interv* 2005;65(4):510-512.

Valerin MA, Napenas JJ, Brennan MT, Fox PC, Lockhart PB. Modified Child-Pugh score as a marker for postoperative bleeding from invasive dental procedures. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2007;104(1):56-60.

Van Arsdell GS, McCrindle BW, Einarson KD et al. Abciximab and bleeding during coronary surgery: Results from the EPILOG and. *Annals of Thoracic Surgery* 2000;70(2):516-526.

van Heereveld HA, Laan RF, van den Hoogen FH, Malefijt MC, Novakova IR, van de Putte LB. Prevention of symptomatic thrombosis with short term (low molecular weight) heparin in patients with rheumatoid arthritis after hip or knee replacement. *Ann Rheum Dis* 2001;60(10):974-976.

van GF, Wittebol P, Sixma JJ. Comparison of postoperative coumarin, dextran 40 and subcutaneous heparin in the prevention of postoperative deep vein thrombosis. *Acta Med Scand* 1977;202(5):367-372.

Van HP, Vanhaecht K, Deneckere S et al. Key interventions and outcomes in joint arthroplasty clinical pathways: a systematic review. *J Eval Clin Pract* 2010;16(1):39-49.

Van TD, Kalodiki E, Wahi R, Litinas E, Haque W, Rao G. Interpretation of benefit-risk of enoxaparin as comparator in the RECORD program: rivaroxaban oral tablets (10 milligrams) for use in prophylaxis in deep vein thrombosis and pulmonary embolism in patients undergoing hip or knee replacement surgery. *Clin Appl Thromb Hemost* 2009;15(4):389-394.

Vanek VW. Meta-analysis of effectiveness of intermittent pneumatic compression devices with a comparison of thigh-high to knee-high sleeves. *Am Surg* 1998;64(11):1050-1058.

Vavken P, Lunzer A, Grohs JG. A prospective cohort study on the effectiveness of 3500 IU versus 5000 IU bemiparin in the prophylaxis of postoperative thrombotic events in obese patients undergoing orthopedic surgery. *Wien Klin Wochenschr* 2009;121(13-14):454-458.

Vaziri K, Bhanot P, Hungness ES, Morasch MD, Prystowsky JB, Nagle AP. Retrievable inferior vena cava filters in high-risk patients undergoing bariatric surgery. *Surg Endosc* 2009;23(10):2203-2207.

Verlato F, Bruchi O, Prandoni P et al. The value of ultrasound screening for proximal vein thrombosis after total hip arthroplasty--a prospective cohort study. *Thromb Haemost* 2001;86(2):534-537.

Vichinsky EP, Neumayr LD, Haberkern C et al. The perioperative complication rate of orthopedic surgery in sickle cell disease: report of the National Sickle Cell Surgery Study Group. *Am J Hematol* 1999;62(3):129-138.

Vieira da Rocha EC, D'Amico EA, Caldwell SH et al. A prospective study of conventional and expanded coagulation indices in predicting ulcer bleeding after variceal band ligation. *Clin Gastroenterol Hepatol* 2009;7(9):988-993.

Villiger P, Ryan EA, Owen R et al. Prevention of bleeding after islet transplantation: lessons learned from a multivariate analysis of 132 cases at a single institution. *Am J Transplant* 2005;5(12):2992-2998.

Vince KG, Kelly MA, Beck J, Insall JN. Continuous passive motion after total knee arthroplasty. *J Arthroplasty* 1987;2(4):281-284.

Vresilovic EJ, Hozack WJ, Booth RE, Jr., Rothman RH. Comparative risk of early postoperative pulmonary embolism after cemented total knee versus total hip arthroplasty with low-dose warfarin prophylaxis. *Am J Knee Surg* 1996;9(1):2-6.

Vresilovic EJ, Jr., Hozack WJ, Booth RE, Rothman RH. Incidence of pulmonary embolism after total knee arthroplasty with low-dose coumadin prophylaxis. *Clin Orthop Relat Res* 1993;(286):27-31.

Vu LT, Nobuhara KK, Lee H, Farmer DL. Determination of risk factors for deep venous thrombosis in hospitalized children. *J Pediatr Surg* 2008;43(6):1095-1099.

Wade WE. Cost effectiveness of danaparoid compared with enoxaparin as deep vein thrombosis prophylaxis after hip replacement surgery. *Am J Orthop (Belle Mead NJ)* 1999;28(4):229-231.

Wahba A, Sander S, Birnbaum DE. Are in-vitro platelet function tests useful in predicting blood loss following open heart surgery? *Thorac Cardiovasc Surg* 1998;46(4):228-231.

Wahlander K, Larson G, Lindahl TL et al. Factor V Leiden (G1691A) and prothrombin gene G20210A mutations as potential risk factors for venous thromboembolism after total hip or total knee replacement surgery. *Thromb Haemost* 2002;87(4):580-585.

Walker RH. Secondary prevention of venous thromboembolism in joint replacement using duplex ultrasonography. *Orthopedics* 1994;17 Suppl:14-17.

Walton NP, Jahromi I, Dobson PJ, Angel KR, Lewis PL, Campbell DG. Arthrofibrosis following total knee replacement; does therapeutic warfarin make a difference? *Knee* 2005;12(2):103-106.

Wang CJ, Wang JW, Chen LM, Chen HS, Yang BY, Cheng SM. Deep vein thrombosis after total knee arthroplasty. *J Formos Med Assoc* 2000;99(11):848-853.

Wang CJ, Wang JW, Weng LH, Hsu CC, Lo CF. Outcome of calf deep-vein thrombosis after total knee arthroplasty. *J Bone Joint Surg Br* 2003;85(6):841-844.

Wang CJ, Wang JW, Weng LH, Hsu CC, Huang CC, Yu PC. Prevention of deep-vein thrombosis after total knee arthroplasty in Asian patients. Comparison of low-molecular-weight heparin and indomethacin. *J Bone Joint Surg Am* 2004;86-A(1):136-140.

Wang CJ, Wang JW, Weng LH, Huang CC, Yu PC. Clinical significance of muscular deep-vein thrombosis after total knee arthroplasty. *Chang Gung Med J* 2007;30(1):41-46.

Wang JS, Lin CY, Hung WT et al. Thromboelastogram fails to predict postoperative hemorrhage in cardiac patients. *Ann Thorac Surg* 1992;53(3):435-439.

Warbel A, Lewicki L, Lupica K. Venous thromboembolism: risk factors in the craniotomy patient population. *J Neurosci Nurs* 1999;31(3):180-186.

Ward BB, Weideman EM. Long-term postoperative bleeding after dentoalveolar surgery in the pretransplant liver failure patient. *J Oral Maxillofac Surg* 2006;64(10):1469-1474.

Ward WG, Olin MD. Simple, hybrid deep venous thrombosis/pulmonary embolus prophylaxis after total hip arthroplasty. *J South Orthop Assoc* 1999;8(1):14-19.

Warwick D, Williams MH, Bannister GC. Death and thromboembolic disease after total hip replacement. A series of 1162 cases with no routine chemical prophylaxis. *J Bone Joint Surg Br* 1995;77(1):6-10.

Warwick D, Perez J, Vickery C, Bannister G. Does total hip arthroplasty predispose to chronic venous insufficiency? *J Arthroplasty* 1996;11(5):529-533.

Warwick DJ, Whitehouse S. Symptomatic venous thromboembolism after total knee replacement. *J Bone Joint Surg Br* 1997;79(5):780-786.

Wasilewski SA, Woods LC, Torgerson WR, Jr., Healy WL. Value of continuous passive motion in total knee arthroplasty. *Orthopedics* 1990;13(3):291-295.

Webb LX, Rush PT, Fuller SB, Meredith JW. Greenfield filter prophylaxis of pulmonary embolism in patients undergoing surgery for acetabular fracture. *J Orthop Trauma* 1992;6(2):139-145.

Weill-Engerer S, Meaume S, Lahlou A et al. Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study. *J Am Geriatr Soc* 2004;52(8):1299-1304.

Welin-Berger T, Bygdeman S, Mebius C. Deep vein thrombosis following hip surgery. Relation to activated factor X inhibitor activity: effect of heparin and dextran. *Acta Orthop Scand* 1982;53(6):937-945.

Wells PS, Lensing AWA, Davidson BL, Prins MH, Hirsh J. Accuracy of ultrasound for the diagnosis of deep venous thrombosis in asymptomatic patients after orthopedic surgery. A meta-analysis. *Annals of Internal Medicine* 1995;122(1):47-53.

Welsby IJ, Jiao K, Ortel TL et al. The kaolin-activated Thrombelastograph predicts bleeding after cardiac surgery. *J Cardiothorac Vasc Anesth* 2006;20(4):531-535.

Welsby IJ, Jones R, Pylman J et al. ABO blood group and bleeding after coronary artery bypass graft surgery. *Blood Coagul Fibrinolysis* 2007;18(8):781-785.

Wenzl ME, Hasse W, Seide K, Wolter D. Prevention of thromboembolism with lowmolecular-weight heparin in orthopedic surgery: a 5-year experience. *Clin Appl Thromb Hemost* 2004;10(1):1-4.

Westermann K, Trentz O, Pretschner P, Mellmann J. Thromboembolism after hip surgery. *Int Orthop* 1981;4(4):253-257.

Westrich GH, Sculco TP. Prophylaxis against deep venous thrombosis after total knee arthroplasty. Pneumatic plantar compression and aspirin compared with aspirin alone. *J Bone Joint Surg Am* 1996;78(6):826-834.

Westrich GH, Allen ML, Tarantino SJ et al. Ultrasound screening for deep venous thrombosis after total knee arthroplasty. 2-year reassessment. *Clin Orthop Relat Res* 1998;(356):125-133.

Westrich GH, Menezes A, Sharrock N, Sculco TP. Thromboembolic disease prophylaxis in total knee arthroplasty using intraoperative heparin and postoperative pneumatic foot compression. *J Arthroplasty* 1999;14(6):651-656.

Westrich GH, Farrell C, Bono JV, Ranawat CS, Salvati EA, Sculco TP. The incidence of venous thromboembolism after total hip arthroplasty: a specific hypotensive epidural anesthesia protocol. *J Arthroplasty* 1999;14(4):456-463.

Westrich GH, Haas SB, Mosca P, Peterson M. Meta-analysis of thromboembolic prophylaxis after total knee arthroplasty. *J Bone Joint Surg Br* 2000;82(6):795-800.

Westrich GH, Scheider R, Ghelman B et al. Comparison between color Doppler imaging and ascending venography in the detection of deep venous thrombosis following total joint arthroplasty: a prospective study. *Contemp Surg* 1997;51(4):225-234.

Westrich GH, Weksler BB, Glueck CJ, Blumenthal BF, Salvati EA. Correlation of thrombophilia and hypofibrinolysis with pulmonary embolism following total hip arthroplasty: an analysis of genetic factors. *J Bone Joint Surg Am* 2002;84-A(12):2161-2167.

Westrich GH, Jhon PH, Sanchez PM. Compliance in using a pneumatic compression device after total knee arthroplasty. *Am J Orthop (Belle Mead NJ)* 2003;32(3):135-140.

White RH, Romano PS, Zhou H, Rodrigo J, Bargar W. Incidence and time course of thromboembolic outcomes following total hip or knee arthroplasty. *Arch Intern Med* 1998;158(14):1525-1531.

White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. *Thromb Haemost* 2003;90(3):446-455.

White RH, Zhou H, Gage BF. Effect of age on the incidence of venous thromboembolism after major surgery. *J Thromb Haemost* 2004;2(8):1327-1333.

Wicky J, Bongard O, Peter R, Simonovska S, Bounameaux H. Screening for proximal deep venous thrombosis using B-mode venous ultrasonography following major hip surgery: implications for clinical management. *Vasa* 1994;23(4):330-336.

Widimsky P, Motovska Z, Simek S et al. Clopidogrel pre-treatment in stable angina: For all patients >6 h before elective coronary angiography or only for angiographically selected patients a few minutes before PCI? A randomized multicentre trial PRAGUE-8. *European Heart Journal* 2008;29(12):1495-1503.

Wierod FS, Frandsen NJ, Jacobsen JD, Hartvigsen A, Olsen PR. Risk of haemorrhage from transurethral prostatectomy in acetylsalicylic acid and NSAID-treated patients. *Scand J Urol Nephrol* 1998;32(2):120-122.

Wilasrusmee C, Kiranantawat K, Horsirimanont S et al. Deep venous thrombosis in surgical intensive care unit: prevalence and risk factors. *Asian J Surg* 2009;32(2):85-88.

Wilke T, Muller S. Nonadherence in outpatient thromboprophylaxis after major orthopedic surgery: a systematic review. *Expert Rev Pharmacoecon Outcomes Res* 2010;10(6):691-700.

Wille-Jorgensen P, Christensen SW, Bjerg-Nielsen A, Stadeager C, Kjaer L. Prevention of thromboembolism following elective hip surgery. The value of regional anesthesia and graded compression stockings. *Clin Orthop Relat Res* 1989;(247):163-167.

Wille-Jorgensen P, Borris L, Jorgensen LN et al. Phlebography as the gold standard in thromboprophylactic studies? A multicenter interobserver variation study. *Acta Radiol* 1992;33(1):24-28.

Wille-Jorgensen P, Borris LC, Lassen MR et al. Potential influence of observer variation in thromboprophylactic trials. *Haemostasis* 1992;22(4):211-215.

Williams GD, Bratton SL, Riley EC, Ramamoorthy C. Coagulation tests during cardiopulmonary bypass correlate with blood loss in children undergoing cardiac surgery. *J Cardiothorac Vasc Anesth* 1999;13(4):398-404.

Williams JW, Eikman EA, Greenberg SH et al. Failure of low dose heparin to prevent pulmonary embolism after hip surgery or above the knee amputation. *Ann Surg* 1978;188(4):468-474.

Williams LA, Owen TD. Above-knee versus below-knee stockings in total knee arthroplasty. *Ann R Coll Surg Engl* 2006;88(3):302-305.

Williams O, Fitzpatrick R, Hajat S et al. Mortality, morbidity, and 1-year outcomes of primary elective total hip arthroplasty. *J Arthroplasty* 2002;17(2):165-171.

Wilson NV, Das SK, Kakkar VV et al. Thrombo-embolic prophylaxis in total knee replacement. Evaluation of the A-V Impulse System. *J Bone Joint Surg Br* 1992;74(1):50-52.

Windfuhr JP, Chen YS, Remmert S. Unidentified coagulation disorders in posttonsillectomy hemorrhage. *Ear Nose Throat J* 2004;83(1):28, 30, 32.

Winkelmayer WC, Levin R, Avorn J. Chronic kidney disease as a risk factor for bleeding complications after coronary artery bypass surgery. *Am J Kidney Dis* 2003;41(1):84-89.

Winter SL, Kriel RL, Novacheck TF, Luxenberg MG, Leutgeb VJ, Erickson PA. Perioperative blood loss: the effect of valproate. *Pediatr Neurol* 1996;15(1):19-22.

Witmer CM, Elden L, Butler RB, Manno CS, Raffini LJ. Incidence of bleeding complications in pediatric patients with type 1 von Willebrand disease undergoing adenotonsillar procedures. *J Pediatr* 2009;155(1):68-72.

Wolf LR, Hozack WJ, Balderston RA, Booth RE, Jr., Rothman RH. Pulmonary embolism. Incidence in primary cemented and uncemented total hip arthroplasty using low-dose sodium warfarin prophylaxis. *J Arthroplasty* 1992;7(4):465-470.

Wolowacz SE, Hess N, Brennan VK, Monz BU, Plumb JM. Cost-effectiveness of venous thromboembolism prophylaxis in total hip and knee replacement surgery: the evolving application of health economic modelling over 20 years. *Curr Med Res Opin* 2008;24(10):2993-3006.

Wolowacz SE, Roskell NS, Plumb JM, Caprini JA, Eriksson BI. Efficacy and safety of dabigatran etexilate for the prevention of venous thromboembolism following total hip or knee arthroplasty. A meta-analysis. *Thromb Haemost* 2009;101(1):77-85.

Wood JJ, Bevis PM, Bannister GC. Wound oozing after total hip arthroplasty. *Ann R Coll Surg Engl* 2007;89(2):140-142.

Woolson ST. Intermittent pneumatic compression prophylaxis for proximal deep venous thrombosis after total hip replacement. *J Bone Joint Surg Am* 1996;78(11):1735-1740.

Woolson ST, McCrory DW, Walter JF, Maloney WJ, Watt JM, Cahill PD. B-mode ultrasound scanning in the detection of proximal venous thrombosis after total hip replacement. *J Bone Joint Surg Am* 1990;72(7):983-987.

Woolson ST, Robinson RK, Khan NQ, Roqers BS, Maloney WJ. Deep venous thrombosis prophylaxis for knee replacement: warfarin and pneumatic compression. *Am J Orthop (Belle Mead NJ)* 1998;27(4):299-304.

Woolson ST, Zehnder JL, Maloney WJ. Factor V Leiden and the risk of proximal venous thrombosis after total hip arthroplasty. *J Arthroplasty* 1998;13(2):207-210.

Wroblewski BM, Siney PD, White R. Fatal pulmonary embolism after total hip arthroplasty. Seasonal variation. *Clin Orthop Relat Res* 1992;(276):222-224.

Wroblewski BM, Siney PD, Fleming PA. Fatal pulmonary embolism after total hip arthroplasty: diurnal variations. *Orthopedics* 1998;21(12):1269-1271.

Wroblewski BM, Siney PD, Fleming PA. Fatal pulmonary embolism and mortality after revision of failed total hip arthroplasties. *J Arthroplasty* 2000;15(4):437-439.

Wu CC, Lin CP, Yeh YC, Cheng YJ, Sun WZ, Hou SM. Does different time interval between staggered bilateral total knee arthroplasty affect perioperative outcome? A retrospective study. *J Arthroplasty* 2008;23(4):539-542.

Wu O, Robertson L, Twaddle S et al. Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. *Health Technol Assess* 2006;10(11):1-110.

Wuerz TH, Regenbogen SE, Ehrenfeld JM et al. The Surgical Apgar Score in Hip and Knee Arthroplasty. *Clin Orthop Relat Res* 2010.

Wulf H, Biscoping J, Beland B, Bachmann-Mennenga B, Motsch J. Ropivacaine epidural anesthesia and analgesia versus general anesthesia and intravenous patient-controlled analgesia with morphine in the perioperative management of hip replacement. Ropivacaine Hip Replacement Multicenter Study Group. *Anesth Analg* 1999;89(1):111-116.

Wurtz LD, Feinberg JR, Capello WN, Meldrum R, Kay PJ. Elective primary total hip arthroplasty in octogenarians. *Journals of Gerontology - Series A Biological Sciences and Medical Sciences* 2003;58(5):468-471.

Xing KH, Morrison G, Lim W, Douketis J, Odueyungbo A, Crowther M. Has the incidence of deep vein thrombosis in patients undergoing total hip/knee arthroplasty changed over time? A systematic review of randomized controlled trials. *Thromb Res* 2008;123(1):24-34.

Xu GG, Sathappan SS, Jaipaul J, Chan SP, Lai CH. A review of clinical pathway data of 1,663 total knee arthroplasties in a tertiary institution in Singapore. *Ann Acad Med Singapore* 2008;37(11):924-928.

Yasunaga H, Tsuchiya K, Matsuyama Y, Ohe K. High-volume surgeons in regard to reductions in operating time, blood loss, and postoperative complications for total hip arthroplasty. *J Orthop Sci* 2009;14(1):3-9.

Yasunaga H, Tsuchiya K, Matsuyama Y, Ohe K. Analysis of factors affecting operating time, postoperative complications, and length of stay for total knee arthroplasty: Nationwide web-based survey. *Journal of Orthopaedic Science* 2009;14(1):10-16.

Yau WP, Tang WM, Ng TP, Chiu KY. Factors leading to blood transfusion among Chinese patients undergoing total knee replacements: a retrospective study. *J Orthop Surg (Hong Kong)* 2004;12(2):153-157.

Yegen HA, Lederer DJ, Barr RG et al. Risk factors for venous thromboembolism after lung transplantation. *Chest* 2007;132(2):547-553.

Yen D, Weiss W. Results of adjusted-dose heparin for thromboembolism prophylaxis in knee replacement compared to those found for its use in hip fracture surgery and elective hip replacement. *Iowa Orthop J* 2007;27:47-51.

Yende S, Wunderink RG. Effect of clopidogrel on bleeding after coronary artery bypass surgery. *Crit Care Med* 2001;29(12):2271-2275.

Yercan HS, Sugun TS, Bussiere C, Ait Si ST, Davies A, Neyret P. Stiffness after total knee arthroplasty: Prevalence, management and outcomes. *Knee* 2006;13(2):111-117.

Yoo MC, Kang CS, Kim YH, Kim SK. A prospective randomized study on the use of nadroparin calcium in the prophylaxis of thromboembolism in Korean patients undergoing elective total hip replacement. *Int Orthop* 1997;21(6):399-402.

Yoo MC, Cho YJ, Ghanem E, Ramteke A, Kim KI. Deep vein thrombosis after total hip arthroplasty in Korean patients and D-dimer as a screening tool. *Arch Orthop Trauma Surg* 2009;129(7):887-894.

Yoo MC, Cho YJ, Kim KI, Ramteke A, Chun YS. The outcome of cementless total hip arthroplasty in haemophilic hip arthropathy. *Haemophilia* 2009;15(3):766-773.

Young T, Tang H, Aukes J, Hughes R. Vena caval filters for the prevention of pulmonary embolism. *Cochrane Database Syst Rev* 2007;(4):CD006212.

Zakhary EM, Elmore JR, Galt SW, Franklin DP. Optional filters in trauma patients: can retrieval rates be improved? *Ann Vasc Surg* 2008;22(5):627-634.

Zarowitz BJ, Tangalos E, Lefkovitz A et al. Thrombotic risk and immobility in residents of long-term care facilities. *J Am Med Dir Assoc* 2010;11(3):211-221.

Zenios M, George V, Helm RH. Post-thrombotic syndrome after total hip arthroplasty. *HIP International* 2003;13(3):163-166.

Zhan C, Kaczmarek R, Loyo-Berrios N, Sangl J, Bright RA. Incidence and short-term outcomes of primary and revision hip replacement in the United States. *J Bone Joint Surg Am* 2007;89(3):526-533.

Zhang K, Young C, Berger J. Administrative claims analysis of the relationship between warfarin use and risk of hemorrhage including drug-drug and drug-disease interactions. *J Manag Care Pharm* 2006;12(8):640-648.

Ziegler S, Schillinger M, Maca TH, Minar E. Post-thrombotic syndrome after primary event of deep venous thrombosis 10 to 20 years ago. *Thromb Res* 2001;101(2):23-33.

Zufferey P, Laporte S, Quenet S et al. Optimal low-molecular-weight heparin regimen in major orthopaedic surgery: A meta-analysis of randomised trials. *Thrombosis and Haemostasis* 2003;90(4):654-661.

REFERENCES

- (1) Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. *J Bone Joint Surg Am* 2007;89(4):780-785.
- (2) Pedersen AB, Sorensen HT, Mehnert F, Overgaard S, Johnsen SP. Risk factors for venous thromboembolism in patients undergoing total hip replacement and receiving routine thromboprophylaxis. *J Bone Joint Surg Am* 2010;92(12):2156-2164.
- (3) Pedersen A.B., Mehnert .F, Johnsen S.P., Husted S., Sorensen H.T. Venous thromboembolism in patients having knee replacement and receiving thromboprophylaxis: A Danish population-based follow-up study. J Bone Joint Surg Am. In press 2011.
- (4) Shaneyfelt TM, Centor RM. Reassessment of clinical practice guidelines: go gently into that good night. *JAMA* 2009;301(8):868-869.
- (5) Institute of Medicine. Clinical Practice Guidelines We Can Trust. Washington, D.C.: National Academies Press; 2011.
- (6) Conflict of Interest in Medical Research, Education, and Practice. Washington, D.C.: National Academies Press; 2009.
- (7) Hirsh J, Guyatt G. Clinical experts or methodologists to write clinical guidelines? *Lancet* 2009;374(9686):273-275.
- (8) Atkins D, Eccles M, Flottorp S et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. *BMC Health Serv Res* 2004;4(1):38.
- (9) Poolman RW, Struijs PA, Krips R, Sierevelt IN, Lutz KH, Bhandari M. Does a "Level I Evidence" rating imply high quality of reporting in orthopaedic randomised controlled trials? *BMC Med Res Methodol* 2006;6:44.
- (10) . GRADE handbook for grading quality of evidence and strength of recommendation. Schunemann H, Brozek JL, Oxman AD, editors. [Version 3.2].
 2009. The GRADE Working Group. 1-1-2011.
- (11) Moher D, Dulberg CS, Wells GA. Statistical power, sample size, and their reporting in randomized controlled trials. *JAMA* 1994;272(2):122-124.
- (12) Institute of Medicine. Finding What Works in Health Care: Standards for Systematic Reviews. Washington, D.C.: National Academies Press; 2011.
- (13) Morrison A, Moulton K, Clark M et al. English-Language Restriction When Conducting Systematic Review-based Meta-analyses: Systemataic Review of

Published Studies. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2009.

- (14) Kastner M, Wilczynski NL, Walker-Dilks C, McKibbon KA, Haynes B. Agespecific search strategies for Medline. J Med Internet Res 2006;8(4):e25.
- (15) Haynes RB, McKibbon KA, Wilczynski NL, Walter SD, Werre SR. Optimal search strategies for retrieving scientifically strong studies of treatment from Medline: analytical survey. *BMJ* 2005;330(7501):1179.
- (16) Montori VM, Wilczynski NL, Morgan D, Haynes RB. Optimal search strategies for retrieving systematic reviews from Medline: analytical survey. *BMJ* 2005;330(7482):68.
- (17) Wong SS, Wilczynski NL, Haynes RB. Comparison of top-performing search strategies for detecting clinically sound treatment studies and systematic reviews in MEDLINE and EMBASE. *J Med Libr Assoc* 2006;94(4):451-455.
- (18) Wilczynski NL, Haynes RB. EMBASE search strategies achieved high sensitivity and specificity for retrieving methodologically sound systematic reviews. *J Clin Epidemiol* 2007;60(1):29-33.
- (19) Wong SS, Wilczynski NL, Haynes RB. Optimal CINAHL search strategies for identifying therapy studies and review articles. *J Nurs Scholarsh* 2006;38(2):194-199.
- (20) Treadwell JR, Tregear SJ, Reston JT, Turkelson CM. A system for rating the stability and strength of medical evidence. *BMC Med Res Methodol* 2006;6:52.
- (21) Higgins J, Altman D. Assessing risk of bias in included studies. In: Higgins J, Green S, editors. *Cochrane Handbook for SYstematic Reviews of Interventions*. John Wiley & Sons; 2008. 187-241.
- (22) Thorpe KE, Zwarenstein M, Oxman AD et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. *J Clin Epidemiol* 2009;62(5):464-475.
- (23) Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. *BMC Med Res Methodol* 2003;3:25.
- (24) Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. *BMC Med Res Methodol* 2006;6:9.
- (25) Sismondo S. Pharmaceutical company funding and its consequences: a qualitative systematic review. *Contemp Clin Trials* 2008;29(2):109-113.

- (26) Ezzet KA. The prevalence of corporate funding in adult lower extremity research and its correlation with reported results. *J Arthroplasty* 2003;18(7 Suppl 1):138-145.
- (27) Khan SN, Mermer MJ, Myers E, Sandhu HS. The roles of funding source, clinical trial outcome, and quality of reporting in orthopedic surgery literature. *Am J Orthop (Belle Mead NJ)* 2008;37(12):E205-E212.
- (28) Montori VM, Jaeschke R, Schunemann HJ et al. Users' guide to detecting misleading claims in clinical research reports. *BMJ* 2004;329(7474):1093-1096.
- (29) Salanti G, Higgins JP, Ades AE, Ioannidis JP. Evaluation of networks of randomized trials. *Stat Methods Med Res* 2008;17(3):279-301.
- (30) Petitti DB, Teutsch SM, Barton MB, Sawaya GF, Ockene JK, DeWitt T. Update on the methods of the U.S. Preventive Services Task Force: insufficient evidence. *Ann Intern Med* 2009;150(3):199-205.
- (31) Murphy MK, Black LA, Lamping DL, McKee CM, Sanderson C.F., Askam J. Consensus development methods, and their use in clinical guideline development. *Health Technol Assess* 1998.
- (32) Fleming TR, DeMets DL. Surrogate end points in clinical trials: are we being misled? *Ann Intern Med* 1996;125(7):605-613.
- (33) Shaughnessy AF, Slawson DC. What happened to the valid POEMs? A survey of review articles on the treatment of type 2 diabetes. *BMJ* 2003;327(7409):266.
- (34) Grimes DA, Schulz KF. Surrogate end points in clinical research: hazardous to your health. *Obstet Gynecol* 2005;105(5 Pt 1):1114-1118.
- (35) Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. *Stat Med* 1989;8(4):431-440.
- (36) Kassai B, Shah NR, Leizorovicza A, Cucherat M, Gueyffier F, Boissel JP. The true treatment benefit is unpredictable in clinical trials using surrogate outcome measured with diagnostic tests. *J Clin Epidemiol* 2005;58(10):1042-1051.
- (37) Barrellier MT, Lebel B, Parienti JJ, Mismetti P, Dutheil JJ, Vielpeau C. Short versus extended thromboprophylaxis after total knee arthroplasty: a randomized comparison. *Thromb Res* 2010;126(4):e298-e304.
- (38) Della Valle CJ, Steiger DJ, DiCesare PE. Duplex ultrasonography in patients suspected of postoperative pulmonary embolism following total joint arthroplasty. *Am J Orthop (Belle Mead NJ)* 2003;32(8):386-388.

- (39) Kalebo P, Anthmyr BA, Eriksson BI, Zachrisson BE. Phlebographic findings in venous thrombosis following total hip replacement. *Acta Radiol* 1990;31(3):259-263.
- (40) Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. *BMJ* 2004;329(7458):168-169.
- (41) Jaeschke R, Guyatt G, Lijmer J. Diagnostic Tests. In: Guyatt G, Drummond R, editors. *Users' Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice*. Chicago: AMA; 2007. 121-140.
- (42) Higgins JPT, Green S. Cochrane handbook for systematic reviews of *interventions*. Oxford: Wiley-Blackwell; 2008.
- (43) Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. *Stat Med* 2004;23(20):3105-3124.
- (44) Brooks S, Gelman A. Alternative methods for monitoring convergence of iterative simulations. *J Comp Graph Stat* 1998;7:434-455.
- (45) Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. *Stat Med* 2010;29(7-8):932-944.
- (46) Bradburn MJ, Deeks JJ, Berlin JA, Russell LA. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. *Stat Med* 2007;26(1):53-77.
- (47) Sweeting MJ, Sutton AJ, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. *Stat Med* 2004;23(9):1351-1375.
- (48) Colwell CW, Jr., Froimson MI, Mont MA et al. Thrombosis prevention after total hip arthroplasty: a prospective, randomized trial comparing a mobile compression device with low-molecular-weight heparin. *J Bone Joint Surg Am* 2010;92(3):527-535.
- (49) Cohen J. *Statistical Power Analysis for the Behavioral Sciences*. 2nd ed. Lawrence Erlbaum Associates; 1998.
- (50) Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. *J Clin Epidemiol* 2001;54(10):979-985.
- (51) Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. *Ann Intern Med* 1993;118(3):201-210.