INTRODUCTION
This exhibit serves to educate surgeons on the growing interest in the use of xenotransplantation procedures for the treatment of a variety of human diseases. The current controversies involving xenotransplantation procedures and efforts made to address safety issues surrounding their use are explained. Guidelines for the use of xenotransplantation procedures as described by the FDA and other regulatory agencies are described. Also, a description of current and future xenotransplanted tissue products in orthopaedic surgery with an analysis of benefits, challenges and possible risks, is summarized.

WHAT IS XENOTRANSPLANTATION
Xenotransplantation can be broadly defined as procedures involving transplantation, implantation or infusion of non-human source organs, tissues or cells. Xenotransplantation also refers to procedures involving human organs, cells or fluids that have had contact with non-human animal sources. The advantages of xenografts are unlimited supply, ease of use, and osteoconductive, osteoinductive and osteogenic properties, depending on the method of processing.

POTENTIAL CHALLENGES FACING XENOTRANSPLANTATION
Concerns Regarding Xenotransplantation
The FDA is mainly concerned with cross species blood borne pathogens and virus/prion transmission when using xenograft tissue. Several products are already approved by the FDA for use in orthopaedic surgery. Currently, developing strategies are aimed at improving upon disease detection and prevention techniques.

Immune Response to Xenogeneic Tissues
Zoonoses are diseases and/or infections which are naturally transmissible from animals to humans. They are believed to be theoretically possible even in de-cellularized xenografts. There remains to be no adequate way to screen for prions, despite numerous publications raising their possibility. To date, there is no current data to support prion transmission in current xenografts.

The immune response to tendon xenografts has been studied using rabbit models. Bovine fibroblasts, extracellular proteoglycans and glycoproteins have all elicited immune responses. Minimal immune responses however were also elicited by collagen matrices. (Clin Orthop 266:271-84, 1991).

Cellular elements within the grafted tissue elicit the greatest immune response in xenografts. Studies suggest that the extracellular matrix components induce a B-cell/antibody response while one study has identified a TH2 lymphocyte response to the extracellular matrix components. (Transplantation,65:486-493,1998).

<table>
<thead>
<tr>
<th>Xenograft</th>
<th>Zoonotic Disease</th>
<th>Risk Analysis of Cross Species Disease Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine-derived</td>
<td>Bovine Spongiform</td>
<td>The Pharmaceutical Research and Manufacturers of America (PhRMA) risk analysis revealed an incidence of infection from anorganic bone mineral (ABM) of 1.1×10^{18}</td>
</tr>
<tr>
<td>Products</td>
<td>Encephalopathy (BSE)</td>
<td></td>
</tr>
<tr>
<td>Porcine Derived</td>
<td>Porcine Endogenous</td>
<td>The German Ministry of Health model revealed ABM to be 30 orders of magnitude (or 1010 times) safer than a product of acceptable safety.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No evidence of PERV transmission in clinical trials.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A retrospective assessment of 160 patients receiving porcine tissues throughout the world showed no evidence of PERV infection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(European Association for Bioindustries)</td>
</tr>
</tbody>
</table>
Healos® Bone Graft Replacement
Healos® is an osteoconductive matrix produced by DePuy Spine, Inc. comprised of cross-linked bovine Type I collagen fibers fully coated with hydroxyapatite. When combined with autogenous bone marrow aspirate, Healos® provides an environment for osteoprogenitor cell attachment, proliferation and differentiation. It is reported to have similar structure and remodeling characteristics to endogenous bone.

Infuse® Bone Graft
Infuse® Bone Graft is produced by Medtronic Sofamor Danek and consists of an absorbable bovine-derived Type I collagen sponge carrier combined with rhBMP-2 (recombinant human morphogenetic protein-2). The Infuse® Bone Graft must be used in conjunction with the LT-CAGE® Lumbar Tapered Fusion Device and is indicated for interbody spinal fusion in patients with degenerative disc disease.

CuffPatch™ Surgical Mesh
CuffPatch™ Surgical Mesh is a resorbable matrix produced by Arthrotek, Inc. composed of porcine collagen. CuffPatch™ is intended for use as an implantation device during rotator cuff surgery. It is limited to the supraspinatus to reinforce soft tissues repaired by suture or suture anchors.

Neomem™ Membrane
Neomem™ membrane is a Type I bovine collagen matrix produced by Citagenix, Inc. indicated for use in guided tissue and bone regeneration procedures and to aid in post-surgical wound healing associated with bone defects, dental implants and ridge augmentation.
Potential Public Health Risk Posed by Xenografts

- Transmission of infectious or pathogenic agents for humans that may not be considered pathogenic or detectable in animal source.
- Transmission of organisms that may become pathogenic in the immunosuppressed or immunocompromised individuals.
- Recombination or reasortment of various infectious agents (viruses) with nonpathogenic or endogenous human infectious agents to form new pathogenic entities.

FDA GUIDELINES FOR XENOGRAFTS

The Food and Drug Administration (FDA) recently organized a guidance for industry for use of xenotransplantation products in humans. Here is a summary of the most pertinent guidelines:

Source animals from any country or region where transmissible spongiform encephalopathy (TSEs) is known to be present should not be used.

Established FDA xenotransplantation guidelines for using cellular products should be used.

Microbiological testing of xenotranplantaion products should be performed (Assays to detect pathogens and viruses).

Adequate preclinical, and clinical testing of xenotransplantation devices must be performed along with patient follow-up.

If suspect possible xenogeneic infection or if a causative infectious agent is identified, it should be reported to the FDA.

Informed consent should be obtained and must cover the risks of using xenotransplantation devices.

Recipients should be provided with updated information, especially if relevant to their clinical course.

HISTOLOGY STUDIES OF XENOGRAFTS

The two photomicrographs on the left show the Restore SIS-regenerated tendon midsubstance as a dense, longitudinally-oriented, sparsely cellular, and mostly avascular collagenous tissue typical of tendons.

The two photomicrographs on the right show that the Restore SIS-regenerated tendon-bone interface is similar to that of native tendons, with Sharpey's fibers anchoring the tendon to the adjacent cortical bone.
Bio-Oss®/Orthoss® Natural Bone Mineral

Bio-Oss® is an osteoconductive bone graft substitute produced by Geistlich Biomaterials composed of natural hydroxyapatite crystals obtained from deproteinized bovine bone. Bio-oss® shows similarity to human bone and is used for bone regeneration applications. Orthoss® is a similar bovine-derived bone graft product used as an alternative bone replacement material that when combined with autogenous bone or bone marrow aspirate, provides additional osteogenic potential.

Bio-Gide®/Chondro-Gide® Resorbable Membrane

Bio-Gide® is a resorbable membrane produced by Geistlich Biomaterials composed of porcine Type I and III collagen. The bilayer structure consists of a compact, smooth, cell-occlusive layer and a loose, porous layer that favors cell invasion. Bio-Gide® is indicated for use in guided bone regeneration and wound healing. Chondro-Gide® is a similar porcine-derived collagen membrane indicated for use during autologous chondrocyte transplantation procedures to cover and hold cultivated autogenous chondrocytes in articular cartilage defects.

Restore® Orthobiologic Implant

Restore® Orthobiologic Implant is a resorbable scaffold derived from porcine small intestine submucosa produced by DePuy, Inc. The Restore® implant can be used to reinforce soft tissues involving the supraspinatus previously repaired by sutures or anchors during rotator cuff injury repair.

Collagraft® Strip Bone Graft Matrix

Collagraft® Strip (also called Neu-Graft® Strip) is a bone graft substitute produced by NeuColl, Inc. consisting of a combination of Type I bovine dermal fibrillar collagen, hydroxyapatite and tricalcium phosphate. Collagraft® provides an osteoconductive environment for new bone formation. The addition of autogenous bone marrow also provides Collagraft® with osteoinductive and osteogenic properties and is indicated for use in acute long bone fractures, traumatic osseous defects and bony voids.
There has been a significant increase in the use of commercially available xenografts as alternatives for bone, cartilage and tendon repair. Materials involving xenografts vary from collagen components derived from bovine and porcine sources to deproteinated bone which can be combined with various polymers, ceramics and autogenous tissues.

Xenografts offer several promising alternatives for regenerative applications involving both clinical and basic research in orthopaedics.

Concerns of xenograft products are the transmission of pathogens, viruses and the immunological response elicited, especially in immunocompromised patients.

Future research must include a thorough understanding of the immunological responses to xenografts for use in orthopaedic applications. Additionally, new strategies for disease detection and prevention must be developed.

All xenotransplantation products should follow the guidance of industry established by the Food and Drug Administration.

Report all suspected xenogeneic infection or non-xenogenic causative infectious agents to the FDA.

Further information and requirements for the use of xenotransplantation devices and concerns can be found at www.fda.gov/cber/guidelines.htm.
Choices of Xenogeneic Tissues for Applications in Orthopaedic Surgery

Restore® Orthobiologic Implant

Restore® Orthobiologic Implant is a resorbable scaffold derived from porcine small intestine submucosa produced by DePuy, Inc. The Restore® implant can be used to reinforce soft tissues involving the supraspinatus previously repaired by sutures or anchors during rotator cuff injury repair.

Collagraft® Strip Bone Graft Matrix

Collagraft® Strip (also called Neu-Graft® Strip) is a bone graft substitute produced by NeuColl, Inc. consisting of a combination of Type I bovine dermal fibrillar collagen, hydroxyapatite and tricalcium phosphate. Collagraft® provides an osteoconductive environment for new bone formation. The addition of autogenous bone marrow also provides Collagraft® with osteoinductive and osteogenic properties and is indicated for use in acute long bone fractures, traumatic osseous defects and bony voids.

Summary of Currently Available Xenografts for Musculoskeletal Regeneration

There are various companies currently manufacturing xenografts. Below are some of the available products used for musculoskeletal regeneration.

<table>
<thead>
<tr>
<th>Company</th>
<th>Product *</th>
<th>Collagen</th>
<th>HAP</th>
<th>TCP</th>
<th>BMP</th>
<th>Abx</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neucoll, Inc.</td>
<td>Collagraft®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Long bone fracture & bony void filler</td>
</tr>
<tr>
<td>Medtronic SD</td>
<td>Infuse®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Interbody spinal fusion</td>
</tr>
<tr>
<td>Arthrotek, Inc.</td>
<td>CuffPatch™</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Soft tissue repair reinforcement</td>
</tr>
<tr>
<td>Geistlich</td>
<td>Bio-Gide®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Autologous chondrocyte transplantation</td>
</tr>
<tr>
<td>Biomaterials</td>
<td>Bio-Oss®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Bone grafting</td>
</tr>
<tr>
<td>DePuy, Inc.</td>
<td>Healos®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Bone grafting</td>
</tr>
<tr>
<td></td>
<td>Restore®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Soft tissue repair reinforcement</td>
</tr>
<tr>
<td>Citagenix, Inc.</td>
<td>Neomem™</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Guided bone and tissue repair & wound healing</td>
</tr>
<tr>
<td>Biomet Merck</td>
<td>Collapat® II</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Bone lesion repair</td>
</tr>
<tr>
<td>Group</td>
<td>Endobon®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Bone defect filler</td>
</tr>
<tr>
<td></td>
<td>Colloss®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Bone lesion repair</td>
</tr>
<tr>
<td></td>
<td>Targobone®</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Bone lesion repair</td>
</tr>
</tbody>
</table>

* Product Composition: Hydroxyapatite (HAP), Tricalcium Phosphate (TCP), Bone Morphogenetic Protein (BMP), Antibiotic (Abx)

Take Home Messages

There has been a significant increase in the use of commercially available xenografts as alternatives for bone, cartilage and tendon repair. Materials involving xenografts vary from collagen components derived from bovine and porcine sources to deproteinized bone which can be combined with various polymers, ceramics and autogenous tissues.

Xenografts offer several promising alternatives for regenerative applications involving both clinical and basic research in orthopaedics.

Concerns of xenograft products are the transmission of pathogens, viruses and the immunological response elicited, especially in immunocompromised patients.

Future research must include a thorough understanding of the immunological responses to xenografts for use in orthopaedic applications. Additionally, new strategies for disease detection and prevention must be developed.

All xenotransplantation products should follow the guidance of industry established by the Food and Drug Administration.

Report all suspected xenogeneic infection or non-xenogenic causative infectious agents to the FDA.

Further information and requirements for the use of xenotransplantation devices and concerns can be found at www.fda.gov/cber/guidelines.htm.
INTRODUCTION
This exhibit serves to educate surgeons on the growing interest in the use of xenotransplantation procedures for the treatment of a variety of human diseases. The current controversies involving xenotransplantation procedures and efforts made to address safety issues surrounding their use are explained. Guidelines for the use of xenotransplantation procedures as described by the FDA and other regulatory agencies are described. Also, a description of current and future xenotransplanted tissue products in orthopaedic surgery with an analysis of benefits, challenges and possible risks, is summarized.

WHAT IS XENOTRANSPLANTATION
Xenotransplantation can be broadly defined as procedures involving transplantation, implantation or infusion of non-human source organs, tissues or cells. Xenotransplantation also refers to procedures involving human organs, cells or fluids that have had contact with non-human animal sources. The advantages of xenografts are unlimited supply, ease of use, and osteoconductive, osteoinductive and osteogenic properties, depending on the method of processing.

POTENTIAL CHALLENGES FACING XENOTRANSPLANTATION

Concerns Regarding Xenotransplantation
The FDA is mainly concerned with cross species blood borne pathogens and virus/prion transmission when using xenograft tissue. Several products are already approved by the FDA for use in orthopaedic surgery. Currently, developing strategies are aimed at improving upon disease detection and prevention techniques.

Immune Response to Xenogeneic Tissues
Zoonoses are diseases and/or infections which are naturally transmissible from animals to humans. They are believed to be theoretically possible even in de-cellularized xenografts. There remains to be no adequate way to screen for prions, despite numerous publications raising their possibility. To date, there is no current data to support prion transmission in current xenografts.

The immune response to tendon xenografts has been studied using rabbit models. Bovine fibroblasts, extracellular proteoglycans and glycoproteins have all elicited immune responses. Minimal immune responses however were also elicited by collagen matrices. (Clin Orthop 266:271-84, 1991).

Cellular elements within the grafted tissue elicit the greatest immune response in xenografts. Studies suggest that the extracellular matrix components induce a B-cell/antibody response while one study has identified a TH2 lymphocyte response to the extracellular matrix components. (Transplantation,65:486-495,1998).

<table>
<thead>
<tr>
<th>Xenograft</th>
<th>Zoonotic Disease</th>
<th>Risk Analysis of Cross Species Disease Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine-derived Products</td>
<td>Bovine Spongiform Encephalopathy (BSE)</td>
<td>The Pharmaceutical Research and Manufacturers of America (PhRMA) risk analysis revealed an incidence of infection from inorganic bone mineral (ABM) of 1.1x10^{-29} The German Ministry of Health model revealed ABM to be 30 orders of magnitude (or 1010 times) safer than a product of acceptable safety.</td>
</tr>
<tr>
<td>Porcine Derived Products</td>
<td>Porcine Endogenous Retrovirus (PERVs)</td>
<td>No evidence of PERV transmission in clinical trials. A retrospective assessment of 160 patients receiving porcine tissue throughout the world showed no evidence of PERV infections. (European Association for Bioteconomics)</td>
</tr>
</tbody>
</table>

Potential Public Health Risk Posed by Xenografts
- Transmission of infectious or pathogenic agents for humans that may not be considered pathogenic or detectable in animal source.
- Transmission of organisms that may become pathogenic in the immunosuppressed or immunocompromised individuals.
- Recombination or reassociation of various infectious agents (viruses) with nonpathogenic or endogenous human infectious agents to form new pathogenic entities.

FDA GUIDELINES FOR XENOGRAFTS
Guidelines For Industry and Use of Xenotransplantation
The Food and Drug Administration (FDA) recently organized a guidance for industry for use of xenotransplantation products in humans. Here is a summary of the most pertinent guidelines:

Source animals from any country or region where transmissible spongiform encephalopathy (TSEs) is known to be present should not be used.

Established FDA xenotransplantation guidelines for using cellular products should be used.

Microbiological testing of xenotransplantation products should be performed (Assays to detect pathogens and viruses).

Adequate preclinical, and clinical testing of xenotransplantation devices must be performed along with patient follow-up.

If suspect possible xenogeneic infection or if a causative infectious agent is identified, it should be reported to the FDA.

Informed consent should be obtained and must cover the risks of using xenotransplantation devices.

Recipients should be provided with updated information, especially if relevant to their clinical course.

RESEARCH EVALUATING THE IMMUNE RESPONSE TO XENOTRANSPLANTATION
Human Helper T Cell Activation and Differentiation Is Suppressed by Porcine Small Intestinal Submucosa

ELLEN M. PALMA, P.H.A., BETH A. HELPEY, TADY MAGALHAES, P.H.A.
ROSEMARIE T. SUGNIA, P.H.A., STEVE F. RAPHAEL, B.S., M.D., N.D.
and B. R. YAN, M.D., P.H.A.

逃避 ENGINEERING
Volume 8, Number 1, 2002

ABSTRACT
A cell-free biomaterial derived from porcine small intestinal submucosa (SIS) has been used successfully in many models as a xenogeneic scaffold material without generating immune-mediated inflammatory reactions. We investigated whether this absence of inflammation is due to the presence of porcine transforming growth factor β (TGF-β) activity found in SIS that may have immunosuppressive properties on helper T (Th) cell subset activation and differentiation. We used in vitro models for the generation of human Th1 and Th2 cells to investigate the influence of SIS. We found that SIS partially suppressed Th1 cell expansion and secretion of interleukin 12 (IL-12) and interferon γ (IFN-γ) in a TGF-β-dependent manner, but Th1 cell expansion and IFN-γ secretion could be fully overcome by addition of recombinant IL-12. The suppression by SIS of Th cell activation also involved the induction of Th cell apoptosis. In addition, SIS completely abolished the generation of Th2 cells in vitro, but this effect of SIS was not reversed by neutralizing TGF-β antibodies. Our results indicate the presence in SIS of factors that can suppress Th cell activation through both the inhibition of IL-12 secretion and the induction of Th cell apoptosis. We established further that these factors include TGF-β and at least one other factor.

HISTOLOGY STUDIES OF XENOGRAFTS

The two photomicrographs on the left show the Restore SIS-regenerated tendon-musculature as a dense, longitudinally-oriented, sparsely cellular, and mostly avascular collagenous tissue typical of tendons.

The two photomicrographs on the right show that the Restore SIS-regenerated tendon-bone interface is similar to that of native tendons, with Sharpey's fibers anchoring the tendon to the adjacent cortical bone.